A new parametric kernel function yielding the best known iteration bounds of interior-point methods for the Cartesian P*(kappa)-SCLCP (PJO) |
 |
Volume 13
|
Number 4
|
pp. 547-570
|
|
|
A new parametric kernel function yielding the best known iteration bounds of interior-point methods for the Cartesian P*(κ)-SCLCP |
X.Z. Cai, L. Li, M. El Ghami, T. Steihaug and G.Q. Wang |
|
 |
|
Keywords |
Mathematices Subject Classification |
interior-point methods, linear complementarity problem, Cartesian P*(κ)-property, Euclidean Jordan algebras, large-update method, small-update method, polynomial complexity |
90C33, 90C51 |
|
|
|
|
|
|
|
|
|
|
|
|
Copyright© 2017 Yokohama Publishers |
|
For Editor |
|
For Authors |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|