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such that for all v ∈ X

‖v‖B ≤ ε‖v‖X + η‖v‖Y .

The first proof can be found in Lions [14, Prop. 4.1, p. 59], see also [15, Lemma
5.1, p. 58].

Remark. Some authors, see, e.g., [8, 3], refer to this as Ehrling’s lemma. Also
Nirenberg [16] quotes Ehrling’s result. In Ehrling [7, eq. (6)] we find the following
concrete estimate, resembling the above inequality:

(1.1) ‖f‖2L2(∂D) ≤ A
(
h‖f‖2

Ḣ1(D)
+ h−1‖f‖2L2(D)

)
corresponding to X = Ḣ1(D), B = L2(∂D), and Y = L2(D) with h positive. Here,

Ḣ denotes a homogeneous Sobolev space. However, these spaces do not have the
above embedding properties. Using this on the derivative yields [7, eq. (7)]

‖f‖2
Ḣ1(∂D)

≤ A
(
h‖f‖2

Ḣ2(D)
+ h−1‖f‖2

Ḣ1(D)

)
.

Furthermore, he gets [7, p. 272, line 7]

‖f‖2
Ḣ1(D)

≤ A
(
h‖f‖2

Ḣ2(D)
+ h−1‖f‖2L2(D)

)
.

Estimate (1.1) appears as a “Peter–Paul” version of the standard Sobolev estimate
for traces, namely ‖f‖L2(∂D) ≤ C‖f‖H1(D). Since these estimates do not have the
relevant embedding properties and are stated for very concrete spaces, the term
“Ehrling’s lemma” does not seem justified.

Shortly after the appearance of Aubin’s paper, Dubinskĭı [6, Lemma 1, p. 229
of [1]]1, see also [15, Lemma 12.1, p. 141], generalized the Aubin–Lions inequality
in a very useful direction. See [3] for a nice review and correction of Dubinskĭı’s
argument. His approach replaced the Banach space X with a coneM , being a subset
of a vector space that is closed with respect to multiplication with nonnegative
scalars, and the norm by a non-negative homogeneous scalar function (a gauge in
our preferred terminology) that only vanishes for a zero argument. His aim was
to show existence of unique weak solutions of degenerate parabolic equations, an
example being

ut = ∇ ·
(
|u|γ∇u

)
+ h,

on a bounded domain in Rd with Dirichlet boundary conditions. In order to accom-
plish this, he proved the generalization of the Aubin–Lions inequality below.

We first define a gauge [u]M on a cone M as a map [ · ]M : M → [0,∞) such that
[u]M = 0 if and only if u = 0. In addition we require [λu]M = λ[u]M for all λ ≥ 0.

Lemma (Aubin–Lions–Dubinskĭı inequality). Let A0, A1 be normed spaces, and let
M be a cone with gauge [ · ]M . Assume that M ⊂ A0 ⊂ A1 with M ⊂ A0 compact
and A0 ⊂ A1 continuous embeddings, respectively. Then for any ε > 0 there exists
an N(ε) such that for all u, v ∈M we have

‖u− v‖A0 ≤ ε([u]M + [v]M ) +N(ε)‖u− v‖A1 .

1[1] contains the English translation of [6]
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Remark. Dubinskĭı called M a seminormed non-negative cone with [ · ]M a semi-
norm, but we have used our preferred terminology instead. Precise definitions will
be given later. He gives an example of a gauge as

[u]α+β
M =

∫
D
|u|α|∇u|βdx+

∫
∂D

|u|α+βds,

for α > 0, β ≥ 1 and D a bounded domain in Rd with smooth boundary ∂D.
The cone M was the set of u satisfying [u]M < ∞. It is not closed under addition
(equivalently for cones, not convex).

Dubinskĭı showed the following compactness result, shown here as corrected and
generalized by Barrett and Süli:

Theorem ([6, Thm. 1, p. 229], [3, Thm. 2.1]). Let A0, A1,M be as in the lemma,
and p, p1 ∈ [0,∞] with (p, p1) 6= (∞, 1). Further, let Y be the set of Bochner
measurable functions (0, T ) → M having a weak derivative ut that is also Bochner
measurable, such that

[u]Y :=

(∫ T

0
[u]pM dt

)1/p

+

(∫ T

0
‖ut‖p1A1

)1/p1

is finite. Then Y ⊂ Lp((0, T );A0) is a compact embedding (Apply the obvious
modifications if p = ∞ or p1 = ∞).

Dubinskĭı’s inequality was further generalized in [4], where the authors realized
that one does not need the continuous embedding A0 ⊂ A1. More precisely they
showed the following result.

Lemma. Let B, Y be Banach spaces, and let M be a cone in B with gauge [ · ]M .
Assume that M ⊂ B is compactly embedded. Assume that for all wn ∈ B ∩ Y such
that wn → w in B and wn → 0 in Y we have that w = 0. Then we have that for
any ε > 0 there exists an N(ε) such that for all u, v ∈M we have

‖u− v‖B ≤ ε
(
[u]M + [v]M

)
+N(ε)‖u− v‖Y .

Under these conditions, they showed the following compactness result.

Theorem. Let B, Y,M be as in the lemma, and assume that M ∩ Y 6= ∅. Let p ∈
[1,∞]. Assume the conditions of the lemma are satisfied. Let U ⊂ Lp((0, T );M∩Y )
be bounded in Lp((0, T );M). Furthermore, assume that translations are uniformly
continuous, that is, ‖σhu− u‖Lp((0,T−h);Y ) → 0 uniformly for u ∈ U as h→ 0.

Then U is relatively compact in Lp((0, T );B).

Our interest in these questions arose from the obvious analogy with precompact
subsets of Lebesgue spaces. The classical theorem of Kolmogorov–Riesz and its
improvement by Sudakov give a complete characterization of precompact subsets
of Lebesgue spaces, see [9, 10, 11]. In the present paper, we draw on the analogy
between these questions. In particular, we shall prove versions of the results ref-
erenced above for Bochner spaces based on Rn rather than an interval (0, T ). We
strive for simplicity of proof and digestible and self-contained exposition. We also
suggest and use terminology somewhat different from what is seen in the literature
so far.
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2. Compactness for Bochner spaces based on Euclidean spaces

We start with a very brief overview of the basic theory of Bochner spaces. Con-
sider a σ-finite measure space (Ω, µ), and a Banach space B. A function f : Ω → B
is called Bochner measurable if it is the µ-almost everywhere limit of a sequence
of simple functions, a simple function being one that takes only a finite number
of values, each on a measurable subset of Ω with finite measure. The Pettis mea-
surability theorem [17, Thm. 1.1] states that f is Bochner measurable if, and only
if, it is weakly measurable and separably-valued. Here, f is called weakly measur-
able if the composition of f with any bounded linear functional is measurable, and
separably-valued if there is a separable subspace B′ ⊆ B so that f(x) ∈ B′ for
µ-almost every x ∈ Ω. Pettis considered only the case where µ(Ω) < ∞, but the
σ-finite case follows easily.

The Bochner space Lp(Ω, µ;B) (with 1 ≤ p <∞) consists of all Bochner measur-

able functions f satisfying
∫
Ω ‖f‖p dµ <∞. With the norm ‖f‖p =

(∫
Ω ‖f‖p dµ

)1/p
,

the space Lp(Ω, µ;B) becomes a Banach space.
A note on notation: Whenever f : Ω → B, we let ‖f‖ denote the function t 7→

‖f(t)‖. Think of it as “pointwise norm”. Accordingly, we never omit the subscript
p on the Lp-norm ‖f‖p.

It turns out that the simple functions are dense in L1(Ω, µ;B). This fact allows
the definition of the Bochner integral

∫
Ω f dµ for all f ∈ L1(Ω, µ;B) by continu-

ity, starting from the obvious definition of the integral for simple f . Elementary
properties like the integral triangle inequality ‖

∫
Ω f dµ‖ ≤

∫
Ω ‖f‖ dµ are immediate

consequences.
The totally bounded subsets of Lp(Ω, µ;B) were characterized by Diaz and May-

oral in [5]; see [19] for an elementary proof. This characterization is not well suited
for applications in PDE theory, however.

From now on we concentrate our attention on the Bochner spaces Lp(Rd;B) (the
use of Lebesgue measure is hidden in the notation). We write |Q| for the Lebesgue
measure of a set Q ⊆ Rd.

Our concern is with precompactness, but let us turn our attention to a closely
related concept. Recall that a subset S of a metric space X is called totally bounded
if for every ε > 0, S can be covered by a finite number of sets, each of diameter less
than ε (an ε-cover). Equivalently, for each ε > 0, there is a finite subset of S (an
ε-net) so that every member of S is closer than ε to some member of the subset. It
is well known that a metric space is compact if and only if it is complete and totally
bounded. It follows that a subset of a complete metric space is precompact if and
only if it is totally bounded. In applications, one wants convergent subsequences,
i.e., one wants precompactness. However, from now on we shall concentrate on total
boundedness instead, simply because that is what emerges from the proofs.

In the following definitions, F is a subset of Lp(Rd;B), where 1 ≤ p <∞.

Definition 2.1 ([13]). F is called Lp-equivanishing if
∫
Rd [|x| > r] ‖f(x)‖p dx → 0

when r → ∞, uniformly for f ∈ F . Here and later we employ the “Iverson bracket”
[12]: When S is a statement, [S] = 1 if S is true, and [S] = 0 if S is false.
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Definition 2.2 ([13]). F is called Lp-equicontinuous if ‖σhf − f‖p → 0 when |h| →
0, uniformly for f ∈ F . Here σhf(x) = f(x+ h) (x, h ∈ Rd).

It is easily seen that a totally bounded set is Lp-equivanishing and Lp-equicon-
tinuous, since it is true of any singleton set and hence of any finite set.

Definition 2.3. F is called totally bounded in the mean if for each bounded mea-
surable set E ⊂ Rd, {

∫
E f(x) dx|f ∈ F} is totally bounded in B.

A totally bounded set is totally bounded in the mean because the map f 7→∫
E f(x) dx is uniformly continuous.
The following theorem is due (at least) to Aubin and Simon in the case of func-

tions supported on a bounded interval. (In that case, Lp-equivanishing is of course
irrelevant.) It may also be considered a variant of the Kolmogorov–Riesz theo-
rem – and indeed, our proof is a straightforward adaptation of the proof of the
Kolmogorov–Riesz theorem given in [9]. All the compactness results below will be
proved by reducing them to this theorem.

Theorem 2.4. Let B be a Banach space, and F ⊂ Lp(Rd;B) a subset with 1 ≤
p <∞. Then F is totally bounded if and only if it is Lp-equivanishing, Lp-equicon-
tinuous, and totally bounded in the mean.

We shall prove the theorem using the following lemma. We omit the trivial proof.
The reader can probably construct one in less time than it would take to look it up
in [9].

Lemma 2.5 ([9, Lemma 1]). Let X be a metric space. Assume that, for every ε > 0,
there exists some δ > 0, a metric space W, and a mapping Φ: X →W so that Φ[X]
is totally bounded, and whenever x, y ∈ X are such that d

(
Φ(x),Φ(y)

)
< δ, then

d(x, y) < ε. Then X is totally bounded.

Proof of Theorem 2.4. The necessity of the three conditions was dealt with above.
Now assume that the three conditions are satisfied. Let ε > 0, and pick

R and ρ > 0 so that
∫
Rd [|x| > R] ‖f(x)‖p dx < εp (Lp-equivanishing) and∫

Rd ‖f(x+ h)− f(x)‖p dx < εp whenever |h| < ρ (Lp-equicontinuity).

Let Q ⊂ Rd be a closed cube with diameter less than ρ, centered at the origin.
Let Qi, i = 1, . . . , N , be non-overlapping (in the sense of pairwise disjoint interiors)
translates of Q whose union contains {x ∈ Rd | |x| < R}. Define the map

P : Lp(Rd;B) → BN , (Pf)i = fi := |Q|−1

∫
Qi

f dx.

Note that |Qi| = |Q|, so the integral is an average over Qi. By total boundedness
in the mean, {Pf | f ∈ F} is totally bounded. Note that

‖f(x)− fi‖p =
∥∥∥∥|Q|−1

∫
Qi

(
f(x)− f(y)

)
dy

∥∥∥∥p
≤
(
|Q|−1

∫
Qi

‖f(x)− f(y)‖ dy
)p

≤ |Q|−1

∫
Qi

‖f(x)− f(y)‖p dy
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using first the integral triangle inequality and then Jensen’s inequality, and hence

N∑
i=1

∫
Qi

‖f(x)− fi‖p dx ≤ |Q|−1
N∑
i=1

∫
Qi

∫
Qi

‖f(x)− f(y)‖p dy dx

≤ |Q|−1
N∑
i=1

∫
Qi

∫
2Q

‖f(x)− f(x+ h)‖p dh dx

= |Q|−1

∫
2Q

N∑
i=1

∫
Qi

‖f(x)− f(x+ h)‖p dx dh

≤ |Q|−1

∫
2Q

∫
Rd

‖f(x)− f(x+ h)‖p dx dh < 2dεp,

at the end using the Lp-equicontinuity inequality and the fact that |h| < ρ when
h ∈ 2Q.

Now consider two functions f , g ∈ F . Using the Lp-equivanishing inequality, the
triangle inequality in B, Minkowski’s inequality, and the above estimate, we find

‖f − g‖p < 2ε+

(
N∑
i=1

∫
Qi

‖f(x)− g(x)‖p dx

)1/p

≤ 2ε+

(
N∑
i=1

∫
Qi

(
‖f(x)− fi‖+ ‖fi − gi‖+ ‖fi(x)− g(x)‖

)p
dx

)1/p

≤ 2ε+

(
N∑
i=1

∫
Qi

‖f(x)− fi‖p dx

)1/p

+

(
N∑
i=1

∫
Qi

‖fi − gi‖p dx

)1/p

+

(
N∑
i=1

∫
Qi

‖gi − g(x)‖p dx

)1/p

< (2 + 21+d/p)ε+

(
|Q|

N∑
i=1

‖fi − gi‖p
)1/p

.

Thus, if
(∑N

i=1 ‖fi − gi‖p
)1/p

< |Q|−1/pε then ‖f − g‖p < (3+21+d/p)ε. By Lemma
2.5 and the total boundedness of {Pf | f ∈ F}, F is totally bounded. □

Directly proving that a family of functions is totally bounded in the mean can
be difficult. However, a common scenario considers Lp-functions with values in a
compactly embedded subspace. As mentioned in the introduction, this has since
been generalized, replacing the subspace by a cone. Once the usefulness of this
generalization is realized, the proof turns out to require little extra work compared
to the original setting.

We start with some definitions. Note that we deviate from the terminology
commonly seen in the literature (indicated in parentheses below), which we find
cumbersome and somewhat confusing.
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Definitions 2.6. A cone (nonnegative cone) is a nonempty subset X of some vector
space so that ax ∈ X whenever a ∈ [0,∞) and x ∈ X.

A gauge (seminorm) on a cone X is a map 〈〈 · 〉〉 : X → [0,∞) so that 〈〈ax〉〉 = a〈〈x〉〉
whenever x ∈ X and a ≥ 0, and 〈〈x〉〉 > 0 if x 6= 0. A cone with a gauge is called a
gauged cone (seminormed non-negative cone).

A gauged cone X in a Banach space is called a compactly gauged cone (com-
pactly embedded seminormed non-negative cone (!)) if Xr := {x ∈ X | 〈〈x〉〉 ≤ r} is
precompact for r = 1 – and hence for all r > 0, since Xr = rX1.

Now assume that X is a compactly gauged cone in a Banach space B. Then there
is a constant C such that ‖x‖ ≤ C〈〈x〉〉 for any x ∈ X. We may assume without
loss of generality that C = 1, so ‖ · ‖ ≤ 〈〈 · 〉〉. Define Lp(Rd;X) to be the set of all
functions f : Rd → X such that f is Bochner measurable as a function into B, and

〈〈f〉〉 is measurable as well, with
∫
Rd〈〈f〉〉p dx <∞. Write 〈〈f〉〉p =

(∫
Rd〈〈f〉〉p dx

)1/p
.

The measurability of 〈〈f〉〉 does not follow automatically from Bochner measur-
ability, as is shown by the following simple example: Let B = C as a real vector
space, let X be the upper half plane, let ψ : (0, π) → (0, 1) be a non-measurable
function, put 〈〈teiθ〉〉 = tψ(θ) for t ≥ 0 and θ ∈ (0, π), and define f(θ) = eiθ for
θ ∈ (0, π).

We can now state the following result.

Theorem 2.7. Let X be a compactly gauged cone in a Banach space B, and let
F ⊂ Lp(Rd;X) be bounded (i.e., there is a uniform bound on 〈〈f〉〉p for all f ∈ F).

Assume further that F is Lp-equivanishing and Lp-equicontinuous in Lp(Rd;B).
Then F is totally bounded in Lp(Rd;B).

We need a definition and some lemmas for the proof.

Definition 2.8. A set F ⊂ Lp(Ω, µ;B) is called uniformly Lp-integrable if for each
ε > 0 there exists some r so that∫

Ω
[‖f‖ > r] ‖f‖p dµ < ε (f ∈ F).

With this definition we get the following result.

Lemma 2.9. A totally bounded subset of Lp(Ω, µ;B) is uniformly Lp-integrable.

We omit the easy proof, hinting only that it is true for a singleton set, hence for
a finite set. Now use total boundedness to approximate the given set by a finite set.
See also [19].

Lemma 2.10. Assume that F ⊂ Lp(Rd;B) is bounded, Lp-equivanishing, and Lp-
equicontinuous. Then F is uniformly Lp-integrable.

Proof. First, note that the set ‖F‖ := {‖f‖ | f ∈ F} is also bounded in Lp(Rd) and
Lp-equicontinuous – the latter follows from

∣∣‖f(x+h)‖−‖f(x)‖
∣∣≤‖f(x+h)−f(x)‖.

The set ‖F‖ is Lp-equivanishing, because F is. And since bounded subsets of R are
totally bounded, ‖F‖ is totally bounded by Theorem 2.4. (We could also use the
Kolmogorov–Riesz theorem [9, Thm. 5] here.) By Lemma 2.9, ‖F‖ is uniformly Lp-
integrable, and hence (trivially) so is F . □
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Lemma 2.11. If F ⊂ Lp(Rd;B) is uniformly Lp-integrable, then for each ε > 0
there exists δ > 0 so that

∫
D ‖f(x)‖p dx < ε whenever D ⊂ Rd is measurable with

|D| < δ.

Proof. Simply write∫
D
‖f(x)‖p dx =

∫
D
[‖f(x)‖ ≤ r]‖f(x)‖p dx+

∫
D
[‖f(x)‖ > r]‖f(x)‖p dx,

pick r so that the last integral is less than ε/2 for all f ∈ F (with D = Rd), and
then note that the first integral is at most δrp. Choosing δ = ε/(2rp) yields the
desired inequality. □
Proof of Theorem 2.7. In light of Theorem 2.4, we only need to show that F is
totally bounded in the mean.

First, take any ε > 0. Combining Lemmas 2.10 and 2.11, there is some δ > 0 so
that

∫
D ‖f(x)‖p dx < εp whenever |D| < δ.

Write 〈〈f〉〉p ≤ M for all f ∈ F . Then |{x ∈ Rd | 〈〈f(x)〉〉 > r}| < (M/r)p. Hence,

if r > M/δ1/p, we get ‖[〈〈f〉〉 > r] f‖p < ε. That is, ‖f − f̃‖p < ε, where we write

f̃ = [〈〈f〉〉 ≤ r] f .

Next, note that f̃ takes values in the totally bounded set Xr. The convex hull
coXr is totally bounded as well. Consider a bounded measurable set E ⊂ Rd. The
mean value |E|−1

∫
E f̃ dx belongs to the closure coXr of coXr, which is also totally

bounded.
From the above estimates, the integral

∫
E f dx has distance less than ε to the

compact set |E| coXr. Since this is so for any ε > 0 (note that r depends on ε > 0),
the set {

∫
E f dx | f ∈ F} is totally bounded. This completes the proof. □

The first condition of Theorem 2.7 allows us to somewhat relax the Lp-equicon-
tinuity condition: We merely need to assume this condition in Lp(Rd;Y ), where
B is continuously embedded in a Banach space Y . The resulting setting can be
summarized by the formula X ⋐ B ⊆ Y , where X is a compactly gauged cone in
B and B is embedded in Y .

However, a yet more general assumption, first identified in [4], avoids even the
need for an embedding, and instead has B and Y be Banach spaces embedded in
some common space, and X ⊂ B∩Y with X ⋐ B. This requires one more technical
assumption, detailed in the lemma below. The assumption clearly holds when B
is embedded in Y , and also in the very common situation where both spaces are
embedded in a common topological vector space, such as a space of vector-valued
distributions.

We will write ‖ · ‖ for the norm on B, and ||| · ||| for the norm on Y . Correspond-
ingly, we also write ‖ · ‖p and |‖ · ‖|p for the norms in Lp(Rd;B) and Lp(Rd;Y )
respectively.

Lemma 2.12 ([4, Lemma 4]). Let (B, ‖ · ‖) and (Y, |‖ · ‖|) be Banach spaces which
are subspaces of the same vector space, and let X ⊂ B be a compactly gauged cone
in B. Assume that there is no sequence in B ∩ Y converging in Y to 0 and in B to
some non-zero vector. Then for each η > 0 there exists c > 0 such that

‖u− v‖ ≤ η (〈〈u〉〉+ 〈〈v〉〉) + c|||u− v||| for all u, v ∈ X.
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Proof. First, note the following reformulation of the stated sequence condition:
Each non-zero x ∈ B has a neighborhood U in B so that ||| · ||| has a positive lower

bound on U ∩Y . (If U ∩Y = ∅, we may take that lower bound to be +∞.) It follows
that ||| · ||| has a positive lower bound on K ∩ Y for any compact set K ⊂ B \ {0}.

Now let K be the closure in X of the set {u − v |u, v ∈ X and 〈〈u〉〉 + 〈〈v〉〉 ≤ 1},
which is totally bounded in B because {u ∈ X | 〈〈u〉〉 ≤ 1} is totally bounded and
subtraction is uniformly continuous. Thus K is compact in B, and so is L = {w ∈
K | ‖w‖ ≥ η}. Since 0 /∈ L, ||| · ||| has a positive lower bound on L ∩ Y , so for a
sufficiently large c, ‖w‖ ≤ η + c|||w||| for all w ∈ L, and hence for all w ∈ K. That
is,

‖u− v‖ ≤ η + c|||u− v||| for all u, v ∈ K with 〈〈u〉〉+ 〈〈v〉〉 ≤ 1.

Replacing arbitrary u, v ∈ X by u/ (〈〈u〉〉+ 〈〈v〉〉) and v/ (〈〈u〉〉+ 〈〈v〉〉) respectively
yields the desired result. □

Theorem 2.13 (compare Thm. 3.4 below). Let B and Y be Banach spaces which
are subspaces of the same vector space, and let X ⊂ B be a compactly gauged cone
in B. Assume that there is no sequence in B ∩ Y converging in Y to 0 and in B to
some non-zero vector. Further, assume that F ⊂ Lp(Rd;X)∩Lp(Rd;Y ) is bounded
in Lp(Rd;X), Lp-equivanishing in Lp(Rd;B), and Lp-equicontinuous in Lp(Rd;Y ),
where 1 ≤ p <∞. Then F is totally bounded in Lp(Rd;B).

Proof. We only need to prove that F is Lp-equicontinuous in Lp(Rd;B), and then
Theorem 2.7 takes care of the rest.

To this end, let ε > 0, pick η > 0 (to be determined later), and pick a constant c
as in the statement of Lemma 2.12. If f ∈ F and h ∈ Rd then

‖σhf − f‖p =
(∫

Rd

‖f(x+ h)− f(x)‖p dx
)1/p

≤
(∫

Rd

(
η
(
〈〈f(x+ h)〉〉+ 〈〈f(x)〉〉

)
+ c|||f(x+ h)− f(x)|||

)p
dx

)1/p

≤ 2η〈〈f〉〉p + c|||σhf − f |||p.

Since F is bounded in Lp(Rd;X), we can pick η to ensure that 2η〈〈f〉〉p < ε for

all f ∈ F . After this is done, c is now fixed. If |h| is small enough, we have
c|||σhf − f |||p < ε for all f ∈ F , since F is Lp-equicontinuous in Lp(Rd;Y ). Thus we

have ‖σhf − f‖ < 2ε, and the proof is complete. □

3. Compactness for Bochner spaces based on bounded intervals

We have expressed our results so far for functions defined on a Euclidean space Rd,
since this seems natural. However, in the most commonly occurring applications in
PDE theory, an interval (0, T ) is used instead. We can of course embed Lp(0, T ;B)
in Lp(R;B) by extending functions to be zero outside (0, T ). All of our notions and
results survive this extension intact, with one exception, namely, the definition of
Lp-continuity (Definition 2.2). The common definition for functions on (0, T ) is as
follows. The seemingly minor, but potentially damaging, difference is the need to
restrict the interval of integration to the part where σhf(t) = f(t+ h) is defined:
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Definition 3.1 ([13]). F ⊂ Lp(0, T ;B) is called Lp-equicontinuous if∫ T−h
0 ‖f(t+ h)− f(t)‖p dt→ 0 when 0 < h→ 0, uniformly for f ∈ F .

If we extend the integral to all of R, we get Definition 2.2. However, in doing so,

we have to contend with two extra terms
∫ h
0 ‖f‖p dt and

∫ T
T−h ‖f‖

p dt. It turns out
that these extra terms vanish in the limit if we assume also that F is bounded. The
following proposition allows us to apply all the compactness results of the previous
section to families of functions in Lp(0, T ;B).

Proposition 3.2. Assume that F ⊂ Lp(0, T ;B) is bounded and Lp-equicontinuous
according to Definition 3.1. Then, if we extend each function to R by setting it zero
outside (0, T ), the resulting set is Lp-equicontinuous according to Definition 2.2.

The proof depends on a slight detour:

Lemma 3.3. If F ⊂ Lp(0, T ;B) (1 ≤ p < ∞) is bounded and Lp-equicontinuous,
then ‖F‖p is L1-equicontinuous.

Proof. Assume 1 < p <∞, and let q be the conjugate exponent. (The case p = 1 is
immediate.) Writing a ∨ b for the maximum of a and b, and assuming 0 < h < T ,
we estimate∫ T−h

0

∣∣‖f(t+ h)‖p − ‖f(t)‖p
∣∣ dt

≤ p

∫ T−h

0

(
‖f(t+ h)‖ ∨ ‖f(t)‖

)p−1∣∣‖f(t+ h)‖ − ‖f(t)‖
∣∣ dt

≤ p

(∫ T−h

0

(
‖f(t+ h)‖ ∨ ‖f(t)‖

)(p−1)q
dt

)1/q

·
(∫ T−h

0

∣∣‖f(t+ h)‖ − ‖f(t)‖
∣∣p dt)1/p

≤ p

(∫ T−h

0

(
‖f(t+ h)‖+ ‖f(t)‖

)p
dt

)1/q

·
(∫ T−h

0
‖f(t+ h)− f(t)‖p dt

)1/p

using the Hölder inequality and noting that (p− 1)q = p. The first integral on the
final line is uniformly bounded for f ∈ F , and the desired result follows. □

Proof of Proposition 3.2. We only need to show that
∫ h
0 ‖f(t)‖p dt → 0 and also∫ T

T−h ‖f(t)‖
p dt → 0 as 0 < h → 0, uniformly for f ∈ F . (Proving the sufficiency

of this claim is left to the reader.) We only prove the former; the latter is shown
similarly.

By Lemma 3.3, we may as well replace F by ‖F‖p, and p by 1; i.e., we assume
that B = R, p = 1 and that F consists of non-negative functions.

We shall prove the contrapositive: Assume that ε > 0 and that for every h > 0

there is some f ∈ F with
∫ h
0 f dt ≥ ε, and also that F is Lp-equicontinuous according

to Definition 3.1.
We shall prove that then F is unbounded.
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To this end, pick any η>0 and let ρ ∈ (0, T ) be so that
∫ T−h
0 ‖f(t+h)−f(t)‖ dt<

η whenever 0 < h < ρ. Next pick any natural number n, let h ∈ (0, ρ) with

(n+1)h < T , and let f ∈ F with
∫ h
0 f dt ≥ ε. Write fi(t) = f(ih+ t), for t ∈ (0, h)

and i = 0, 1, . . . , n. Then∫ T

0
f dt ≥

n∑
i=1

‖fi‖1

= n‖f0‖1 +
n−1∑
i=0

(n− i) (‖fi+1‖1 − ‖fi‖1)

≥ nε− n

n−1∑
i=0

∣∣‖fi+1‖1 − ‖fi‖1
∣∣ ≥ nε− n

n−1∑
i=0

‖fi+1 − fi‖1

≥ nε− n

∫ T−h

0
|f(t+ h)− f(t)| dt ≥ n(ε− η).

Thus merely picking η < ε and n large (forcing h to be small), we get arbitrarily
large values for ‖f‖1 with f ∈ F . □

Combining Prop. 3.2 and Thm. 2.13 immediately yields the following:

Theorem 3.4 ([4, Thm. 1]). Let B and Y be Banach spaces which are subspaces
of the same vector space, and let X ⊂ B be a compactly gauged cone in B. Assume
that there is no sequence in B ∩ Y converging in Y to 0 and in B to some non-
zero vector. Further, assume that F ⊂ Lp(0, T ;X) ∩ Lp(0, T ;Y ) is bounded in
Lp(0, T ;X), Lp-equivanishing in Lp(0, T ;B), and Lp-equicontinuous in Lp(0, T ;Y ),
where 1 ≤ p <∞. Then F is totally bounded in Lp(0, T ;B).
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