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[0,∞) 3 r 7→ rp is concave but Rd 3 u 7→ |u|p is not. Indeed, for p > 0,

0 =

∣∣∣∣12u+
1

2
(−u)

∣∣∣∣p < |u|p = 1

2
|u|p + 1

2
| − u|p, u ∈ Rd\{0}.

Let A(P0, P1) denote the set of stochastic processes X(·) such that

X(·) ∈ AC([0, 1]), a.s., (X(0), X(1)) ∈ Π(P0, P1).

Here, for T > 0, AC([0, T ]) denotes the space of all absolutely continuous func-
tions from [0, T ] to Rd. We consider the following stochastic optimal transport for
absolutely continuous stochastic processes:

(1.2) V (P0, P1) := inf

{
E

[∫ 1

0
L(X ′(t))dt

]
: X(·) ∈ A(P0, P1)

}
,

where X ′(t) :=
d

dt
X(t).

We briefly describe the relation between T and V . The following holds without
any assumption:

(1.3) V (P0, P1) ≤ T (P0, P1).

If L : Rd → [0,∞) is convex, then the equality holds in (1.3) and V (P0, P1) can be
considered the Lagrangian formulation of T (P0, P1) (see, e.g. [15] for the proof of
(1.3) and also [12] for related topics).
If (i) L(ru) ≥ rL(u), 0 < r < 1, u ∈ Rd; (ii) L(u)/|u| → 0, |u| → ∞, and (iii)
T (P0, P1) is finite, then

(1.4) V (P0, P1) = 0

(see Appendix for the proof and also Theorem 2.8 and Corollary 2.11 in section 2).
A typical example of such L(u) is |u|p, p ∈ (0, 1) (see Remark 2.1 in section 2 for
more examples).

(1.3)–(1.4) imply that, to study the Lagrangian formulation of T (P0, P1) when
L is not convex, we have to modify a cost function or restrict a class of stochastic
processes in (1.2).

We first modify a cost function and give two Lagrangian formulations for T (P0, P1).
For t > 0, φ ∈ L∞([0, t]),

(1.5) 1 ≤ N1(φ)t :=


t||φ||∞,t

|
∫ t
0 φ(s)ds|

, if
∫ t
0 φ(s)ds 6= 0,

1, otherwise,

(1.6) 1 ≤ N2(φ)t :=


t||φ||∞,t

||φ||1,t
, if ||φ||1,t > 0,

1, otherwise,

where

||φ||∞,t := ess.sup {|φ(s)| : 0 ≤ s ≤ t} , ||φ||1,t :=
∫ t

0
|φ(s)|ds.

For simplicity, ||φ||p := ||φ||p,1 for p = 1,∞ and Ni(φ) := Ni(φ)1, i = 1, 2.



LAGRANGIAN FORMULATION OF OPTIMAL TRANSPORT 813

Let ℓ : [0,∞) → [0,∞) and ℓ(0) = 0 (see (A1) in section 2). For i = 1, 2,

(1.7) Li(t, φ) := Ni(φ)ℓ

(
|φ(t)|
Ni(φ)

)
, (t, φ) ∈ [0, 1]× L∞([0, 1]),

(1.8) Ṽi(P0, P1) := inf

{
E

[∫ 1

0
Li(t,X

′)dt

]
: X(·) ∈ A∞(P0, P1)

}
,

where

A∞(P0, P1) := {X(·) ∈ A(P0, P1) : ||X ′||∞ < ∞ a.s.}.
We show that

T (P0, P1) = Ṽi(P0, P1), i = 1, 2,

under different assumptions (see Theorems 2.2–2.4 in section 2).

Remark 1.1. If L : Rd → [0,∞) is convex, L(0) = 0 and V (P0, P1) is finite, then
the following holds (see Appendix for the proof): for i = 1, 2,

V (P0, P1) = T (P0, P1)(1.9)

= inf

{
E

[∫ 1

0

1

Ni(X ′)
L
(
Ni(X

′)X ′(t)
)
dt

]
: X(·) ∈ A∞(P0, P1)

}
.

For X(·) ∈ A∞(P0, P1) and t ≥ 0, Li(t,X
′) ≥ 0 and = 0 if X ′(t) = 0. When we

consider minimizers of Ṽi, we assume that ℓ(u) > 0, u > 0 so that we only have to
consider X(·) such that X(t) = X(0) if and only if ||X ′||1,t = 0. In particular, we
can assume that the following holds:

(1.10) N1(X
′) ≥ N2(X

′) ≥ 1, a.s.,

which implies the following:

(1.11) |X ′(t)| ≥ |X ′(t)|
N2(X ′)

≥ |X ′(t)|
N1(X ′)

, L1(t,X
′) ≥ L2(t,X

′),

provided ℓ(ru) ≥ rℓ(u) for (r, u) ∈ (0, 1) × (0,∞) (see (3.13) and also Theorems
2.2–2.4 and Proposition 2.5 in section 2). The following also holds (see Appendix
for the proof):

Ṽi(P0, P1)(1.12)

= inf

{
E

[∫ τ

0
ℓ
(
|X ′(t)|

)
dt

]
: τ = τ(ω) ≥ 1, X(·) ∈ AC([0, τ ]),

Ni(X
′)τ = τ, a.s., (X(0), X(τ)) ∈ Π(P0, P1)

}
.

Next, we consider a restricted class of absolutely continuous stochastic processes
with almost surely essentially bounded time derivatives. For P0, P1 ∈ P(Rd), and
B ⊂ P([0,∞)),

A∞(P0, P1;B)

:= {(X(·),M) : X(·) ∈ A∞(P0, P1), P
M ∈ B, ||X ′||∞ ≤ M, a.s.},

Π∞(P0, P1;B)

:= {(X0, X1,M) : (X0, X1) ∈ Π(P0, P1), P
M ∈ B, |X1 −X0| ≤ M, a.s.}.
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V (P0, P1;B)(1.13)

:= inf

{
E

[∫ 1

0
ℓ(|X ′(t)|)dt

]
: (X(·),M) ∈ A∞(P0, P1;B)

}
,

T V (P0, P1;B)(1.14)

:= inf{E[ℓ(M)M−1|X1 −X0|;M > 0] : (X0, X1,M) ∈ Π∞(P0, P1;B)}.
We show that the following holds (see Theorem 2.8 in section 2):

V (P0, P1;B) = T V (P0, P1;B).

It is a continuation of the second author’s master thesis [22] in which she only
considered the case where L(u) = |u|p, p ∈ (0, 1) and B is a set of a delta measure.

A generalization of our result to the case where stochastic processes under con-
sideration are semimartingales is the first step to the theory of stochastic optimal
transport with a non–convex cost and is our future project.

We state our results in section 2 and prove them in section 3. In Appendix, we
give the proofs for (1.4), (1.9), and (1.12) for the sake of completeness.

2. Main result

In this section, we state our results. We first state the assumptions.
(A1). (i) ℓ : [0,∞) → [0,∞), ℓ(0) = 0,

(2.1) ℓ(ru) ≥ rℓ(u), (r, u) ∈ (0, 1)× (0,∞).

(ii) In (2.1), the equality does not hold for any (r, u) ∈ (0, 1)× (0,∞). (iii) ℓ(u) >
0, u > 0.
(A2). (i) ℓ : [0,∞) → [0,∞) is non–decreasing. (ii) ℓ : [0,∞) → [0,∞) is strictly
increasing. (iii) ℓ ∈ C([0,∞)) and ℓ(u) → ∞, as |u| → ∞.

We state remarks on (A1)–(A2).

Remark 2.1. (i) (2.1) and (A1,ii) mean that (0,∞) 3 u 7→ ℓ(u)/u is non–increasing
and is strictly decreasing, respectively. In particular, (A1,ii) implies (A1,iii), pro-
vided ℓ(u) ≥ 0.
(ii) If ℓ is concave and ℓ(0) = 0, then (2.1) holds. If ℓ is strictly convex and ℓ(0) = 0,
then (2.1) does not hold. ℓ(u) = u satisfies (A1,i), but not (A1,ii).
(iii)

ℓ(u) =

{
2u exp(−u), 0 ≤ u < 1,

u exp(−u), u ≥ 1

is concave on [0, 1) and [1, 2] and is convex on [2,∞). It is strictly increasing and
strictly decreasing on [0, 1) and [1,∞), respectively. It is not continuous at u = 1
and satisfies (A1).
(iv) (2.1) and (A2,i) imply that ℓ ∈ C((0,∞)) since, if 0 < h < u,

ℓ(u)

u+ h
≤ ℓ(u+ h)

u+ h
≤ ℓ(u)

u
≤ ℓ(u− h)

u− h
≤ ℓ(u)

u− h
.

We describe a list of notations of the sets of minimizers.
ΠT,opt(P0, P1) :=the set of minimizers of T (P0, P1).

ΠTV ,opt(P0, P1;m) :=the set of minimizers of T V (P0, P1;m).
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Ai,opt(P0, P1) :=the set of minimizers of Ṽi(P0, P1), i = 1, 2.
Aopt(P0, P1;m) :=the set of minimizers of V (P0, P1;m).

We say that A ⊂ [0, 1] is a random measurable set if and only if there exists
a {0, 1}–valued stochastic process {η(t, ω)}0≤t≤1 defined on a probability space
(Ω,F , P ) such that

[0, 1]× Ω 3 (t, ω) 7→ η(t, ω) ∈ {0, 1}

is jointly measurable and A = A(ω) = η(·, ω)−1(1), i.e. η(t, ω) = IA(ω)(t), where
IB(x) = 1, x ∈ B; = 0, x 6∈ B. It is easy to see that the Lebesgue measure |A(ω)| =∫ 1
0 I{1}(η(t, ω))dt is a random variable.

For x, y ∈ Rd, a Lebesgue measurable set A ⊂ [0, 1], and t ∈ [0, 1],

(2.2) X(t;x, y,A) :=

x+
|A ∩ [0, t]|

|A|
(y − x), if x 6= y, |A| > 0,

x, otherwise.

The following gives the relation between T (P0, P1) and Ṽ1(P0, P1) (see (1.1) and
(1.8) for notation).

Theorem 2.2. Suppose that (A1,i) holds. Then for any P0, P1 ∈ P(Rd), the fol-
lowing holds.
(i)

(2.3) T (P0, P1) = Ṽ1(P0, P1).

(ii) If (X0, X1) ∈ ΠT,opt(P0, P1) and a random measurable set A ⊂ [0, 1] are defined
on the same probability space and if

P (|A| > 0|X0 6= X1) = 1,

then X(·;X0, X1, A) ∈ A1,opt(P0, P1).
(iii) If X(·) ∈ A1,opt(P0, P1), then (X(0), X(1)) ∈ ΠT,opt(P0, P1). Suppose, in addi-

tion, that (A1,ii) holds. Then X(·) = X(·;X(0), X(1), (X ′)−1(Rd\{0})), where

(X ′)−1(Rd\{0}) := {t ∈ [0, 1] : X ′(t) 6= 0}.

Remark 2.3. In the case where L is strictly convex, for an optimal path X(·) of
V (P0, P1), X(·) = X(·;X(0), X(1), [0, 1]) by Jensen’s inequality (see, e.g. [15]). In
particular, it moves at constant velocity. Theorem 2.2 implies that under (A1), an
optimal path X(·) ∈ A1,opt(P0, P1) can stop even randomly. But when it moves, the
velocity is constant in t and can be random.

Under (A1,i,iii), Ṽ1 ≥ Ṽ2 (see (3.13)). The following implies that equality holds
under an additional assumption (A2,i).

Theorem 2.4. Suppose that (A1,i,iii) and (A2,i) hold. Then for any P0, P1 ∈
P(Rd), the following holds.
(i)

(2.4) Ṽ1(P0, P1) = Ṽ2(P0, P1).
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(ii) Suppose, in addition, that (A2,ii) holds. Then

A1,opt(P0, P1) = A2,opt(P0, P1).

In particular, for any X(·) ∈ A1,opt(P0, P1),

(2.5) N1(X
′) = N2(X

′).

The following implies that Theorem 2.4 does not necessarily hold without (A2,i)
(see Remark 2.1, (iii) for an example and also Theorem 2.2).

Proposition 2.5. Suppose that there exists r0 > 0 such that ℓ is strictly decreasing
on [r0,∞). Then for any P0, P1 ∈ P(Rd) for which T (P0, P1) has a minimizer
(X0, X1) such that P (|X1 −X0| ≥ r0) > 0, the following holds:

(2.6) T (P0, P1) > Ṽ2(P0, P1).

For f ∈ Cb(Rd),

(2.7) f ℓ(x) := inf{ℓ(|y − x|) + f(y)|y ∈ Rd}, x ∈ Rd.

From (i) in Theorems 2.2–2.4, we easily obtain the following and omit the proof
(see the proof of Theorem 2.1 in [14]).

Corollary 2.6. Suppose that (A2,iii) holds. Suppose also that “(A1,i)” or “(A1,i,iii)
and (A2,i)” hold. Then for i = 1 or 2, the following holds, respectively: for any
P0 ∈ P(Rd) such that P0(dx) � dx and any f ∈ Cb(Rd),

inf

{
E

[∫ 1

0
Li(t,X)dt+ f(X(1))

]
: X ∈ A∞(P0, P

X(1))

}
(2.8)

=

∫
Rd

f ℓ(x)P0(dx).

Remark 2.7. (2.8) is a finite–time horizon optimal control problem for absolutely
continuous stochastic processes (see [7] for stochastic control theory) and the l. h.
s. can be also written as follows:

inf

{
Ṽi(P0, P ) +

∫
Rd

f(x)P (dx) : P ∈ P(Rd)

}
.

The following gives the relation between V (P0, P1;B) and T V (P0, P1;B).

Theorem 2.8. Suppose that (A1,i) holds.Then for any P0, P1 ∈ P(Rd) and B ⊂
P([0,∞)), the following holds.
(i)

(2.9) V (P0, P1;B) = T V (P0, P1;B).

(ii) If (X0, X1,M) ∈ ΠTV ,opt(P0, P1;B) and a random measurable set A ⊂ [0, 1] are
defined on the same probability space and if

P

(
|A| = |X1 −X0|

M

∣∣∣∣M > 0

)
= 1,

then (X(·;X0, X1, A),M) ∈ Aopt(P0, P1;B).
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(iii) If (X(·),M) ∈ Aopt(P0, P1;B), then (X(0), X(1),M) ∈ ΠTV ,opt(P0, P1;B).
Suppose, in addition, that (A1,ii) holds. Then

(2.10) P

(
|(X ′)−1(Rd\{0})| = |X(1)−X(0)|

M

∣∣∣∣M > 0

)
= 1,

and X(·) = X(·;X(0), X(1), (X ′)−1(Rd\{0})).

Remark 2.9. Even if ℓ is lower semicontinuous,

AC([0, 1]) 3 φ 7→
∫ 1

0
ℓ(|φ′(t)|)dt

is not necessarily lower semicontinuous in the supnorm. In particular, it is not
trivial if Aopt(P0, P1;B) is not empty.

(A1,i) implies that ℓ(u)/u is convergent as u → ∞ (see Remark 2.1, (i)):

Cℓ := lim
u→∞

ℓ(u)

u
.

In particular, the following holds from Theorem 2.8, (i).

Corollary 2.10. Suppose that (A1,i) holds. Then for any P0, P1 ∈ P(Rd), the
following holds:

(2.11) inf

{
E

[∫ 1

0
ℓ(|X ′(t)|)dt

]
: X(·) ∈ A∞(P0, P1)

}
= Cℓ · T1(P0, P1).

In particular, if P0 6= P1 and the l. h. s. of (2.11) has a minimizer, then

(2.12) inf

{
u > 0 :

ℓ(u)

u
= Cℓ

}
< ∞.

r 7→ V (P0, P1; {δr}) is non–increasing and converges to V (P0, P1; {δM}M>0), as
r → ∞, where δr denotes the delta measure on {r}. In particular, we easily obtain
the following from Theorem 2.8, (i) and we omit the proof.

Corollary 2.11. Suppose that (A1,i) holds. Then for any P0, P1 ∈ P(Rd) with
bounded supports, the following holds: for any r ≥ sup{|x0 − x1|;xi ∈ supp(Pi), i =
0, 1},

(2.13) V (P0, P1; {δr}) =
ℓ(r)

r
T1(P0, P1).

In particular,

(2.14) V (P0, P1; {δM}M>0) = Cℓ · T1(P0, P1)

and the left–hand sides of (2.11) and (2.14) coincide.

Remark 2.12. For a ≥ 0, ℓ(u) = au+1− exp(−u) is concave, satisfies (A1,i), and
Cℓ = a.
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3. Proofs of results in section 2

In this section, we prove our results. When it is not confusing, we omit “a.s.” for
the sake of simplicity.

We first prove Theorem 2.2.

Proof. (Theorem 2.2) We first prove (i). We prove

(3.1) T (P0, P1) ≤ Ṽ1(P0, P1).

Suppose that X(·) ∈ A∞(P0, P1). If X(1) 6= X(0), then

(3.2) N1

∫ 1

0
ℓ

(
|X ′(t)|
N1

)
dt ≥ ℓ (|X(1)−X(0)|) ,

where N1 = N1(X
′) (see (1.5) for notation). Indeed, from (A1,i),

ℓ

(
|X ′(t)|
N1

)
= ℓ

(
|X ′(t)|

N1|X(1)−X(0)|
|X(1)−X(0)|

)
(3.3)

≥ |X ′(t)|
N1|X(1)−X(0)|

ℓ (|X(1)−X(0)|) , dt− a.e.

since
|X ′(t)|

N1|X(1)−X(0)|
=

|X ′(t)|
||X ′||∞

≤ 1, dt− a.e..

Besides,

(3.4) ||X ′||1 ≥ |X(1)−X(0)|.
If X(1) = X(0), then (3.2) holds trivially. (3.2) implies (3.1) immediately.

We prove

(3.5) Ṽ1(P0, P1) ≤ T (P0, P1).

Suppose that (X0, X1) ∈ Π(P0, P1).

(3.6) X(t) := X0 + t(X1 −X0), 0 ≤ t ≤ 1.

Then X(·) ∈ A∞(P0, P1), N1 = N1(X
′) = 1, and

(3.7) ℓ(|X1 −X0|) = N1

∫ 1

0
ℓ

(
|X ′(t)|
N1

)
dt,

which implies (3.5).
We prove (ii). We write X(·;X0, X1, A) = X(·;A) for simplicity. X(·;A) ∈

A∞(P0, P1) and (3.7) with X(·) = X(·;A) holds since

|X ′(t;A)| = IA(t)
|X1 −X0|

|A|
, dt− a.e., N1(X

′(·;A)) =
1

|A|
,

provided X1 6= X0, |A| > 0. (2.3) and (3.7) with X(·) = X(·;A) imply (ii).
(2.3) and (3.2) imply the first part of (iii). We prove that X(·) = X(·;X(0), X(1), (X ′)−1(Rd\{0})).

For X(·) ∈ A1,opt(P0, P1), if X(1) 6= X(0), then the equality holds in (3.2)–(3.4). In
particular, the following holds:

||X ′||1 = |X(1)−X(0)|, a.s.,(3.8)

|X ′(t)| = 0, N1|X(1)−X(0)|, dtdP−a.e.
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from (A1,ii), where N1 := N1(X
′). Notice that the equalities in (3.8) hold if X(1) =

X(0) (see an explanation above (1.10) and Remark 2.1, (i)). The following completes
the proof:

(3.9) X ′(t) =
X(1)−X(0)

|(X ′)−1(Rd\{0})|
, on (X ′)−1(Rd\{0}), dtdP−a.e..

We prove (3.9). (3.8) implies that for P– almost all ω, there exists Z = Z(ω) such
that |Z| = 1 and

(3.10) X ′(t) = N1|X(1)−X(0)|Z, on (X ′)−1(Rd\{0}), dt−a.e..

In particular,

(3.11) X(1)−X(0) = N1|X(1)−X(0)|Z × |(X ′)−1(Rd\{0})|.

(3.10)–(3.11) imply (3.9). □

We prove Theorem 2.4.

Proof. (Theorem 2.4) We first prove (i). We prove

(3.12) Ṽ2(P0, P1) ≤ Ṽ1(P0, P1).

For X(·) ∈ A∞(P0, P1) such that ||X ′||∞ = 0 if X(1) = X(0) and hence N2 ≤ N1,
from (A1,i),

(3.13) N1ℓ

(
|X ′(t)|
N1

)
= N1ℓ

(
|X ′(t)|
N2

N2

N1

)
≥ N2ℓ

(
|X ′(t)|
N2

)
.

(A1,iii) implies (3.12) (see (1.10)).
We prove

(3.14) T (P0, P1) ≤ Ṽ2(P0, P1),

which completes the proof of (i) from Theorem 2.2. The following implies (3.14):
for X(·) ∈ A∞(P0, P1), from (A2,i),

(3.15) N2

∫ 1

0
ℓ

(
|X ′(t)|
N2

)
dt ≥ ℓ (|X(1)−X(0)|) ,

in the same way as (3.3), where N2 = N2(X
′). Indeed, if ||X ′||1 > 0, then

(3.16) ℓ

(
|X ′(t)|
N2

)
= ℓ

(
|X ′(t)|

N2||X ′||1
||X ′||1

)
≥ |X ′(t)|

N2||X ′||1
ℓ
(
||X ′||1

)
.

We prove (ii). For X(·) ∈ A1,opt(P0, P1), the equality holds in (3.13) from (2.4),
which implies that X(·) ∈ A2,opt(P0, P1).

For X(·) ∈ A2,opt(P0, P1), the equalities hold in (3.15)–(3.16), since from (2.3)

and (2.4), Ṽ2(P0, P1) = T (P0, P1). This implies that N2(X
′) = N1(X

′) from (A2,ii).
In particular, X(·) ∈ A1,opt(P0, P1) from (2.4). □

We prove Proposition 2.5.
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Proof. (Proposition 2.5) If |X1−X0| ≥ r0, then take a random variable Y such that
the following holds:

C := |Y −X1| = |Y −X0| = 1 +
|X1 −X0|

2
.

(3.17) Y (t) :=

{
X0 + 2t(Y −X0), 0 ≤ t ≤ 1

2 ,

Y + (2t− 1)(X1 − Y ), 1
2 ≤ t ≤ 1.

Then Y (t) = Xt, t = 0, 1 and the following holds under our assumption:

(3.18) N2(Y
′)

∫ 1

0
ℓ

(
|Y ′(t)|
N2(Y ′)

)
dt = ℓ(2C) < ℓ(|X1 −X0|),

since |Y ′(t)| = ||Y ′||∞ = ||Y ′||1 = 2C.
If |X1 −X0| < r0, then

(3.19) Y (t) := X0 + t(X1 −X0), 0 ≤ t ≤ 1.

Then Y (t) = Xt, t = 0, 1 and the following holds:

(3.20) N2(Y
′)

∫ 1

0
ℓ

(
|Y ′(t)|
N2(Y ′)

)
dt = ℓ(|X1 −X0|).

since |Y ′(t)| = ||Y ′||∞ = ||Y ′||1 = |X1 −X0|.
From (3.18) and (3.20), under our assumption, the following holds:

Ṽ2(P0, P1) ≤ E

[
N2(Y

′)

∫ 1

0
ℓ

(
|Y ′(t)|
N2(Y ′)

)
dt

]
(3.21)

< E[ℓ(|X1 −X0|)] = T (P0, P1).

□

We prove Theorem 2.8.

Proof. (Theorem 2.8) We first prove (i). We prove

(3.22) T V (P0, P1;B) ≤ V (P0, P1;B).

If (X(·),M) ∈ A∞(P0, P1;B), then PM ∈ B and

|X(1)−X(0)| ≤
∫ 1

0
|X ′(t)|dt ≤ M,(3.23) ∫ 1

0
ℓ

(
|X ′(t)|
M

M

)
dt ≥

∫ 1

0

|X ′(t)|
M

ℓ(M)dt(3.24)

≥ ℓ(M)

M
|X(1)−X(0)|,

from (A1,i), provided M > 0, which implies (3.22).
We prove

(3.25) V (P0, P1;B) ≤ T V (P0, P1;B).
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If (X0, X1,M) ∈ Π∞(P0, P1;B), then (XM (·) := X(·;X0, X1, AM ),M) ∈ A∞(P0, P1;B),
where AM := [0, |X1 − X0|/M ] if M > 0 and = {0} if M = 0. In the case where
M 6= 0,

|X ′
M (t)| =


M, 0 < t <

|X1 −X0|
M

,

0,
|X1 −X0|

M
< t < 1,

(3.26)

∫ 1

0
ℓ(|X ′

M (t)|)dt =
∫ |X1−X0|

M

0
ℓ(M)dt =

ℓ(M)

M
|X1 −X0|,

which implies (3.25). (3.22) and (3.25) imply (2.9).
We prove (ii). Since (X0, X1,M) ∈ ΠTV ,opt(P0, P1;B), the following holds: from

(2.9),

V (P0, P1;B) ≤ E

[∫ 1

0
ℓ(|X ′(t;X0, X1, A)|)dt

]
(3.27)

= E

[
ℓ(M)

M
|X1 −X0|;M > 0

]
= T V (P0, P1;B) = V (P0, P1;B).

Indeed, if M ≥ |X1 −X0| > 0, then |A| > 0 and

|X ′(t;X0, X1, A)| = |X1 −X0|
|A|

= M on A, dt−a.e..

We prove the first part of (iii). Since (X(·),M) ∈ Aopt(P0, P1;B), the following
holds: from (2.9) and (3.23)–(3.24),

T V (P0, P1;B) = V (P0, P1;B)(3.28)

= E

[∫ 1

0
ℓ(|X ′(t)|)dt

]
≥ E

[
ℓ(M)

M
|X(1)−X(0)|;M > 0

]
≥ T V (P0, P1;B).

We prove the second part of (iii). For (X(·),M) ∈ Aopt(P0, P1;B), from (A1,ii),

(3.29) |X ′(t)| = 0 or M, dtdP−a.e.,

(3.30) |X(1)−X(0)| = ||X ′||1, a.s.,

since the equality holds in (3.24) from (2.9). The following can be proved in the
same way as (3.9):

(3.31) X ′(t) =
X(1)−X(0)

|(X ′)−1(Rd\{0})|
, on (X ′)−1(Rd\{0}), dtdP−a.e..

Indeed, replace N1|X(1)−X(0)| by M in (3.8). (3.11) also implies the following:

(3.32) |X(1)−X(0)| = M × |(X ′)−1(Rd\{0})|, a.s.,

which completes the proof. □
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We prove Corollary 2.10.

Proof. (Corollary 2.10) From Theorem 2.8, (2.11) can be obtained by the following:

(3.33) T V (P0, P1;P([0,∞))) = Cℓ · T1(P0, P1),

(3.34) V (P0, P1;P([0,∞))) = inf

{
E

[∫ 1

0
ℓ(|X ′(t)|)dt

]
: X(·) ∈ A∞(P0, P1)

}
.

(3.33) can be proved by the following. If (X0, X1,M) ∈ Π∞(P0, P1;P([0,∞))), then
(X0, X1) ∈ Π(P0, P1) and

E[ℓ(M)M−1|X1 −X0|;M > 0] ≥ CℓE[|X1 −X0|;M > 0] = CℓE[|X1 −X0|].
If (X0, X1) ∈ Π(P0, P1), then for R > 0, (X0, X1,max(|X1−X0|, R)) ∈ Π∞(P0, P1;P([0,∞))),
and by the dominated convergence theorem,

E

[
ℓ(max(|X1 −X0|, R))

max(|X1 −X0|, R)
|X1 −X0|

]
→ CℓE[|X1 −X0|], R → ∞.

(3.34) can be proved by the following. If (X(·),M) ∈ A∞(P0, P1;P([0,∞))), then
X(·) ∈ A∞(P0, P1). IfX(·) ∈ A∞(P0, P1), then (X(·), ||X ′||∞) ∈ A∞(P0, P1;P([0,∞))).

For X(·) ∈ A∞(P0, P1), from (A1,i),

(3.35)

∫ 1

0
ℓ(|X ′(t)|)dt ≥ Cℓ

∫ 1

0
|X ′(t)|dt,

where the equality holds if and only if

ℓ(|X ′(t)|) = Cℓ|X ′(t)|, dtdP − a.e..

If P0 6= P1, then P (||X ′||∞ = 0) < 1, which implies (2.12). □

4. Appendix

In this section, we state the proofs of (1.4), (1.9), and (1.12).
We prove (1.4). For (X0, X1) ∈ Π(P0, P1) such that E[L(X1 −X0)] is finite,

Yn(t) :=


X0 + n(X1 −X0)t, 0 ≤ t ≤ 1

n
,

X1,
1

n
≤ t ≤ 1.

Then Yn ∈ A(P0, P1), and

0 ≤ V (P0, P1) ≤ E

[∫ 1

0
L(Y ′

n(t))dt

]
= E[n−1L(n(X1 −X0))]

→ 0, n → ∞
by Lebesgue’s dominated convergence theorem since

n−1L(n(X1 −X0)) ≤ L(X1 −X0).

We prove (1.9). For (X0, X1) ∈ ΠT,opt(P0, P1), X(·) defined by (3.6) is a min-
imizer of V (P0, P1) by Jensen’s inequality and N1(X

′) = 1, provided V (P0, P1) is
finite. The following implies that (1.9) holds: for N ≥ 1,

L(x) = L

(
1

N
Nx+ (1− 1

N
)0

)
≤ 1

N
L(Nx) + (1− 1

N
)L(0) =

1

N
L(Nx)
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since L : Rd → [0,∞) is convex and L(0) = 0.
We prove (1.12). For T ≥ 1, φ ∈ AC([0, T ]) such that Ni(φ

′)T = T ,

φ(T ·) ∈ AC([0, 1]), Ni(φ
′(T ·)) = Ni(φ

′)T = T,∫ T

0
ℓ
(
|φ′(t)|

)
dt =

∫ 1

0
ℓ
(
|φ′(Ts)|

)
Tds

=

∫ 1

0
Ni(φ

′(T ·))ℓ
(

1

Ni(φ′(T ·))

∣∣∣∣ ddsφ(Ts)
∣∣∣∣) ds,

which implies that (l. h. s.) ≤ (r. h. s.) in (1.12).
For φ ∈ AC([0, 1]), T ≥ 1,

φ
( ·
T

)
∈ AC([0, T ]), Ni

(
φ′
( ·
T

))
T
= Ni(φ

′),

∫ 1

0
Ni(φ

′)ℓ

(
|φ′(t)|
Ni(φ′)

)
dt =

∫ T

0
Ni(φ

′)ℓ

(
1

Ni(φ′)

∣∣∣φ′
( s

T

)∣∣∣) 1

T
ds

=

∫ T

0

Ni

(
φ′ ( ·

T

))
T

T
ℓ

(
T

Ni

(
φ′
( ·
T

))
T

∣∣∣∣ ddsφ( s

T

)∣∣∣∣
)
ds

=

∫ T

0
ℓ

(∣∣∣∣ ddsφ( s

T

)∣∣∣∣) ds,

provided T = Ni(φ
′). This implies that (l. h. s.) ≥ (r. h. s.) in (1.12).
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