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PAIRS TRADING UNDER GEOMETRIC BROWNIAN MOTIONS
WITH REGIME SWITCHING

PHONG LUU, NICOLE SONG, JINGZHI TIE, AND QING ZHANG

ABSTRACT. This paper is about an optimal pairs trading rule. A pairs position
consists of a long position in one stock and a short position in the other. The
problem is to find stopping times to open and then close the pairs position to
maximize expected reward functions. In this paper, we consider the optimal pairs
trading rule with one round trip. The underlying stock prices follow a general
geometric Brownian motion with regime switching. The optimal policy is char-
acterized by threshold curves obtained by solving the associated HJB equations
(quasi-variational inequalities). Moreover, numerical examples are provided to
illustrate optimal policies.

1. INTRODUCTION

This paper is concerned with pairs trading of stocks. The idea behind pairs
trading is to track the price movements of a pairs of stocks over time and compare
their relative price strengths. A pairs position consists of a short position in the
stronger stock and a long position in the weaker one. A pairs trade is about buying
and then selling such pairs positions. The strategy bets on the reversal of their
price strength. What makes the strategy attractive is its ‘market neutral’ nature in
the sense that it can be profitable under any market conditions. Pairs trading was
initially introduced by Bamberger and followed by Tartaglia’s quantitative group at
Morgan Stanley in the 1980s; see Gatev et al. [4] for related history and background
details. There are many in-depth discussions in connection with the cause of the
divergence and subsequent convergence; see the book by Vidyamurthy [15] and
references therein.

Mathematical trading rules have been studied for many years. For example,
Zhang [17] considered a selling rule determined by two threshold levels, a target
price and a stop-loss limit. In [17], such optimal threshold levels are obtained by
solving a set of two-point boundary value problems. Guo and Zhang [5] studied
the optimal selling rule under a model with switching geometric Brownian motion.
Using a smooth-fit technique, they obtained the optimal threshold levels by solv-
ing a set of algebraic equations. These papers are concerned with the selling side
of trading in which the underlying price models are of GBM type. Dai et al. [1]
developed a trend following rule based on a conditional probability indicator. They
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showed that the optimal trading rule can be determined by two threshold curves
which can be obtained by solving the associated Hamilton-Jacobi-Bellman (HJB)
equations. A similar idea was developed following a confidence interval approach
by Iwarere and Barmish [7]. Besides, Merhi and Zervos [9] studied an investment
capacity expansion/reduction problem following a dynamic programming approach
under a geometric Brownian motion market model. In connection with mean re-
version trading, Zhang and Zhang [18] obtained a buy-low and sell-high policy by
characterizing the ‘low’ and ‘high’ levels in terms of the mean reversion parameters.
Song and Zhang [11] studied pairs trading under a mean reversion model. It is
shown that the optimal trading rule can be determined by threshold levels that can
be obtained by solving a set of algebraic equations. A set of sufficient conditions
are also provided to establish the desired optimality. Deshpande and Barmish [2]
introduced a control-theoretic approach. In particular, they were able to relax the
requirement for spread functions and showed that their trading algorithm produces
positive expected returns. Other related pairs technologies can be found in Elliott
et al. [3] and Whistler [16]. Recently, Tie et al.[14] studied an optimal pairs trading
rule under geometric Brownian motions.. The objective is to initiate and close the
positions of the pair sequentially to maximize a discounted payoff function. Using
a dynamic programming approach, they studied the problem under a geometric
Brownian motion model and proved that the buying and selling can be determined
by two threshold curves in closed form. They also demonstrate the optimality of
their trading strategy.

Market models with regime switching are important in market analysis. In this
paper, we consider a geometric Brownian motion with regime switching. The market
mode is represented by a two-state Markov chain. In a recent paper, Tie and Zhang
[13] treated the selling part of pairs trading that generalizes the results of Hu and
Oksendal [6] by incorporating models with regime switching. They showed that the
optimal selling rule can be determined by two threshold curves and established a
set of sufficient conditions that guarantee the optimality of the policy. To complete
the circle of pairs trading, one has to come up with the buying part of the trading
rule to determine how much divergence is needed that triggers the entry of the
position. It is the focus of this paper. In particular, we study pairs trading under
geometric Brownian motions with regime switching. The objective is to buy and
then sell a pairs position to maximize the expected return. Using a smooth-fit
method, we characterize the trading policies in terms of threshold curves which can
be determined by a set of algebraic equations, We also provide a set of sufficient
conditions for the optimality of the trading policy. Finally, we present numerical
examples to illustrate the results.

This paper is organized as follows. In §2, we formulate the pairs trading problem
under consideration. In §3, we study the associated HJB equations and their solu-
tions. In §4, we provide a set of sufficient conditions that guarantee the optimality
of our trading rule. Numerical examples are given in §5. Some concluding remarks
are given in §6. Finally, key steps for pairs selling rules are given in Appendix.
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2. PROBLEM FORMULATION

Our pairs trading strategy involves two stocks S and S2. Let {X},* > 0} denote
the prices of stock S' and {X?,¢ > 0} that of stock S2. They satisfy the following
stochastic differential equation:

)(1 Xl ul(at) Ull(at) 0'12(061}) VV1
21) d( L) = t dt d <t
a0 a(36) = (% xe) [(nten ) 2+ (Tote) oo )2 G )]
where ay € M = {1, 2} is a two-state Markov chain and (W}, W?) a two-dimensional

standard Brownian motion. Here, for o = 1,2, p;(a), i = 1,2, are the return rates
and o;;(e), ,j = 1,2, the volatility constants.

Let @ be the generator of a; given by Q) = ( A2 A ), with A; > 0 and

A2 > 0. We assume oy and (W}, W?) are independent.

In this paper, we assume, for simplicity, a pairs position consists of one-share
long position in stock S! and one-share short position in stock S?. Let Z denote
the corresponding pairs position. One share in Z represents the combination of one
share long position in S' and one share short position in S2.

Remark 2.1. Intuitively, if stock S' is cheap (i.e., X} is small) and stock S? is
dear (i.e., X? is large), then one should buy S' and sell (short) S2. This amounts
to open a pairs position Z. The idea of pairs trading is to bet on the eventual price
reversal. Therefore, one should close the pairs position Z by selling S' and buying
back S? after, relatively speaking, substantial rises of S' and/or adequate falls of
S? in their prices.

We consider one round trip pairs trading. The net position at any time can be
either long (with one share of Z) or flat (no stock position of either S* or S?). Let
1 = 0,1 denote the initial net position and let 79, 71, 7o denote stopping times with
71 < 79.. If initially the net position is flat (¢ = 0), then one should start to buy a
share of Z. That is, to first buy at 7 and then sell at 7. The decision is denoted
by Ag = {71, 72}. If initially the net position is long (i = 1), then one should sell Z.
The corresponding decision is denoted by A1 = {7p}.

Let K denote the fixed percentage of transaction costs associated with buying or
selling of stocks S%, i = 1,2. For example, the cost to establish the pairs position
Zatt =t is (1+K)X} — (1 - K)X? and the proceeds to close it at a later
time ¢ =ty is (1 — K)X/}, — (1 + K)X7,. For ease of notation, let f, = 1+ K and
Gs=1—-K.

Given the initial state (21, z2, @), the initial net position ¢ = 0, 1, and the decision
variables Ag and A, the corresponding reward functions

JO(xla 2, o, AO) = E{ [e_pT2 (BSX}-Q - 5bX7%2)I{TQ<OO}
(22) —e P (ﬁqull - 5SX21>I{T1<OO}]}7
J1 (xla Z2, &, Al) = E{e_pTO (,BSX%) - /BbX’TQ'())I{T()<OO}}7
where p > 0 is a given discount factor and I, is the indicator function of an event
A.
Let 7 = o{(X}, X2 a;) : r <t}. The problem is to find {F;} stopping times 7o,
71, and T2, to maximize J;. For i = 0,1, let V;(x1, 22, a) denote the value functions
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with the initial state (X3, X3, a0) = (71,22, ) and initial net positions i = 0, 1.
That is, Vi(z1, 22, @) = supy, Ji(z1, 22,0, Ag), i = 0, 1.

Remark 2.2. We would like to point out that our ‘one-share’ pair position is not
as restrictive as it appears. For example, one can consider any pairs with n; shares
of long position in S' and ny shares of short position in S2. To treat this case, one
only has to make change of the state variables (X}, X?) — (n1 X}, n2X?). Due to
the nature of GBMs, the corresponding system equation in (2.1) will remain the
same. The modification only affects the reward function in (2.2) implicitly.

Throughout this paper, we impose the following conditions:

(A1) p> pj(a), fora=1,2 and j =1,2.

Under these conditions, we can establish the lower and upper bounds for the
value functions as follows.

Lemma 2.3. For some constant C, the inequalities hold

(2.3) 0 < Wo(z1, 29, 0) < Caa.
In addition, we have
(2.4) Bsw1 — Pore < Vi(xy, w2, 00) < By,

Proof. We first consider the inequalities in (2.3). Clearly, V) > 0. To see Vj < Czo,
note that

Jo(1, 22,0, Ag) < E{[e™"™(X7, = X2) [(ryco0y — € " (XF, — X2 ) <00y}
= Ele™" X}, [irycooy — € " X7 7, coc]
— E[e " X2 Iirycooy — € " X2 Iir cocy]-
Following from the proof of Lemma 3.1 of Tie et al. [14], we can show the first term

above is less than or equal to 0. To find an upper bound for the second term, it
suffices to show

T2
E e P X2 (p — p2(ay))dt < Cxs.
T1
To this end, let fimin = min{ia(1), 12(2)} and fimex = masc{pio(1), fo(2)}. Then, we
have

B [ e Xt o - mala)it < (p— ) [ e EXar
Note that E "
Eth =29+ E/Ot Xf,uz(as)ds < T9 + fmax /Ot EXSst.
Use Gronwall’s inequality to obtain Eth < goetmaxt Tt follows that

R 2 L2
/ e PEX2dt = — 2
0 P — Mmax
Therefore, we have
T2 _ .
E/ e_thf(p — po(ay))dt < w =: Cxo.
1 p - ,Ufmax
Similarly, the inequalities in (2.4) can be obtained. O



PAIRS TRADING UNDER GBMS WITH REGIME SWITCHING 787

3. HJB EQUATIONS

In this paper, we follow the dynamic programming approach and focus on the
associated HJB equations. For ¢ = 1,2, let

A= (i)z? i + 2a15(i)x 1 82 +a (i)x262
i == lan(?)x]—= a12(?)x —
(3.1) 9 | 1ax§ 12 ! 28m18m2 22 269@3
+ u(i)z —a + po(i)x —8
H1 18951 M2 2(%2
where

an (i) = o7, (i) + ai(i),
alg(i) = O'11(’i)0’21 (l) + Olg(i)ggg(i), and

agz (i) = 03, (i) + 035(4).

Formally, the associated HJB equations have the form:
(3.2)
min{(p — A1)vo(z1,x2,1) — M (vo(x1, 22,2) — vo(x1, 22, 1)),
vo(x1, z2,1) —vi (21, @2, 1) + Bpa1 — Bsaa} =0,
min{(p — Ag)vo(.%'l, 9, 2) — /\2(1)0(.%’1, 9, 1) — 1)0(:6'1, 9, 2)),
vo(@1, 22,2) — vi (21, 2,2) + Bpx1 — Bsxa} =0,

(3.3)
min{(p — A1)vi(z1,x2,1) — A\ (v1 (21, 22,2)
—v1(x1,22,1)), vi(x1,22,1) — Bsw1 + Bpa2} =0,
min{(p — Ag)vl(.%'l, 9, 2) — /\2(1)1(.%’1, 9, 1)
—Ul<$1,$2, 2)), Ul(.%'l,xg, 2) — Bsx1 + Bbib’Q} =0.

For ease of notation, let uy = vo(x1,x2,1), us = vo(x1,x2,2), ug = v1(x1, 22, 1),
and ug = vy (21, 22,2).

To solve the above HJB equations, we first convert them into single variable
equations. Let y = xo/x1 and w;(x1,x2) = x1w;(x2/x1), for some function w;(y)
and ¢ = 1,2,3,4. Then we have by direct calculation that

o wi(y) — ywi(y), s = w;(y),
Pui _y'wily) Pu _wily) o Pw_ yui(y)
or? x| Ox3 m Or10x9 x

Write Ajui in terms of w; to obtain
Ajui = 1 {ojy*w] (y) + [p2(5) — m(Nlywi(y) + mGwi(y) }

where 0; = (a11(j) — 2a12(j) + a22(j))/2.
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Then, the HJB equations can be given in terms of y and w; as follows:

min | (p+ A1 — L1)wi(y) — Mwa(y), wi(y) —ws(y) + B — Bsy p = 0,
(3.4) min ¢ (p + A2 — La)wa(y) — Aawi(y), wa(y) —wa(y) + B — Bsy ¢ =0,
min § (p + A1 — L1)ws(y) — Mwa(y), wz(y) + oy — Bs ¢ =0,
min 3 (p + A2 — L2)wa(y) — Aews(y), wa(y) + Bpy — Bsp =0,
where
(3.5) Lj[wi(y)] = ojy*w] (y) + [u2(5) — p(9)]ywi(y) + p(F)wily)-

In this paper, we only consider the case when o; # 0, j = 1,2. If either 0y = 0
and/or o2 = 0, the problem reduces to a (partial) first order case and can be treated
in a similar and simpler way. Next, we consider the joint equations (p+X\ —L1)w; =
Awe  and  (p+ Ay — L2)wy = Agw;. Combine them to obtain
(p+)\17[,1)(p+)\27L2)w2 = AMAowy and (p+)\2*£2)(p+)\1*£1)U)1 = A\ w;.
Both wy and we must satisfy

[(p+ A — El)(p + Ay — EQ) — )\1)\2]111 =0.

Note that the operators £1 and Ly are the Euler type and the solutions to the
above equation are of the form w; = y°. Thus, § must satisfy the equation

(3.6) P0):=[p+ I —A1(0)][p+ A2 — A2(0)] — M A2 =0,

where

(3.7)

Aj(0) = 0506 = 1)+ [(p2(7) — i (DI0 + p1(4) = 056° = [0 + 1 (§) — 2(5)}0 + pa (5).-
Note that p+ A1 — A1(¢) = 0 and p + A\ — A2(v) = 0 have roots, respectively,

2
41_;+ﬂ1(1)2;1ﬂ2(1)+\/<;+m(1)—u2(1)> Lot ()

201 01
(3.8)
1 m(1) — (1) o) =)\ pt+d—m(1)
C2—2+2@.1‘\/<2+ 201 > T
and
_ 1 m(2) —pe(2) 1 m(2) = p2(2)\* | p+de—m(l)
59) S \/(2 T, > * o

2 209 02

Note also that (; > 1 and v; > 1, and (3 < 0 and v, < 0.
It is elementary to show that the equation P(4) = 0 has four distinct roots dj;,
1 <j<4with 64 <93 <0< 1<d2 <d1. The §;, (; and v; should have relation

(@) - (2 \/(1 n(2) —u2(2)>2+ pt o= (1)

04 < min{(a, 2}, 0> d3 > max{(e, 12}, 0 < do < min{(y,v1},
and 97 > max{(1,v1}.
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The general solutions of the equations
(p + A — El)wl = AMwsy and (p 4+ Ay — ,CQ)IUQ = dwq

can be given as
4 4

wy = chjyéj and  wg = Z c27y%,
j=1 J=1
for constants c;;. Substituting them into the original equations leads to

4 4
D erjlp+ M — A6;))y =MD oy
Jj=1 J=1
and
4
ng(p + )\2 — A2(5j))y5j = )\2 Z Cljyaj.
J=1 Jj=1

Hence, we have
crj(p+ A —A1(d5)) = Mo and  cai(p+ A2 — Aa(05)) = Aacyj.
Let n; = (p+ A1 — A1(05))/A1. Then, we have

_ptM Ay A2
A1 p+ Ao — Az(0;)

(3.10) 15

Necessarily, cz; = n;c1;. Hence,

4 4

(3.11) wy = chjy‘sﬂ' and wg = ancljy6j.
j=1 j=1

Similarly we can show the general solutions of (p+A1—L1)ws = A\jwy and
A2 — Lo)wy = Aows are given by

4 4
(3.12) wg =Y dijy’ and wy =Y ndiy”,
=1 j=1

for constants d;;.
By direct computation, we can show

w>0: wi—ws+ Py —Bsy=01N{y>0: w3+ By — Bs =0} =0,
{y>0: wo—ws+fy —Psy =0y N{y >0: wy+ Py — Bs =0} = 0.

789

(p+

In view of Remark 2.1, if a = 1, we divide the first quadrant into three regions
{(x1,22) > 0: =y > kiz1} (open position region), {(z1,22) > 0: ksz1 < z2 <
k1z1}, (hold region) and {(x1,z2) > 0 : x3 < ksz1} (close position region), for
some positive constants k1 and k3. If o = 2, we can do so similarly with regions
{(x1,22) > 0 : ma > kox1} (open position region), {(z1,z2) > 0: kqz1 < z2 <
koz1} (hold region), and {(z1,x2) > 0: z2 < kyx1} (close position region), for some
positive k2 and k4. These regions are illustrated in Figure 1. A main objective is

to determine these key thresholds (k1, ko, k3, and ky).
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A T2 a=1 T2 a=2
xo = ki1 Zo = kox1
Buy S! and Buy S! and
Sell Short S2 Sell Short S2
Hold 22 = k4o
Hold vz = ka1
Sell S! and Sell S! and
Buy Back S2 Buy Back S2
(@] ;1 o 1

FIGURE 1. Switching Regions o = 1 (left) and a = 2 (right)

([) + A1 — [,1)11)1 = w2 (p + A1 — L1)’w1 = \jws wl(y) = 71)3(3/) — By + [))Sy
a=1| | f f
0 w3 = Bs — Bry ks (p+A—Li)ws = ws g, (p+ A1 — L1)ws = Aiws
(p+ A2 — Lo)wa = Aowy (p+ A2 — L2)wz = Aawn wa2(y) = wa(y) — o + Bsy
a=2| | } }
0 wa = Bs — Boy ke (PtXe—L)wi=Xws f, (p+ 22— L2)ws= w3

FIGURE 2. Equalities of HIB equations

Remark 3.1. In this paper, Theorems 1 and 2 (to follow) provide formulas for the
computation of these key levels. In particular, one can start with (7.6) and (7.7) for
k3 and ks4. Then, solve the equations (3.17) in Case I (k3 < k1 < ka4 < k2); (3.21)
in Case IT (k3 < k4 < k1 < k2); and (3.24) in Case III (k3 < kg4 < ko < kq) for k;
and ko.

Note here k3 < ki and kg4 < ko. As a result, recall the change of variables
(y = x2/x1), the equations in (3.4) can be specified as follows:

wg = Ps — Ppy and (p+ A\ — L1)wy = Ajws when y < ks,
(p+ M —L1)wr = \wy and  (p+ A\ — L1)ws = A\wy  when k3 < y < ky,
wr =w3s+Bsy—LGp and (p+ A1 — L1)ws = Ajwy when y > ki,
wy = PFs — By and (p+ A2 — Lo)wa = dowy when y < ky,
(p+ Ao — Lo)ws = Xowy and  (p+ Ao — Lo)wy = Nows  when ky < y < ko,
we =ws+ Bsy — B and  (p+ A2 — La)wg = Aaws3 when y > ko.

Each of these intervals and the corresponding equalities are given in Figure 2.

We have four threshold parameters ki, ko, k3 and k4 to be determined. There
are a number of ways to order them. Recall that ks < ki and k4 < ko. The largest
is either kq or k9 and the smallest is either k3 or k4. If k3 is the smallest, then we
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can place ki at three different places. So this will lead to the following three cases.
ks <ky <ky<ko, ky<hky<k <ky ky<ky<ky<k.

Similarly if k4 is the smallest, then we can place ko at three different places. Hence
the next three possibilities:

ky <ko <ks<ki, ki<ks<ko<ki, ki<ks<k <ks.

In this paper, we only consider these cases with k3 < k4. The rest cases can be
treated in a similar way.
On the region (0, k1 A ko] with ki A ke = min{k;, k2}, we have

(p + A — El)wl = AMwsy and (p + Ay — [,2)71)2 = w1,

this implies
4 4
wy = chjy‘;j and wp = ancljy6f.
j=1 j=1
in this region. Recall Lemma 2.3 and d3 < 0, 64 < 0. It follows that the coeflicients
for y% and y% have to be zero. Thus, we have

wy = C1y” + Coy® and  wy = Cimy®™ + Comoy™.
Similarly, in the region [k3 V k4, 00) with k3 V ky = max{ks, k4},
(p+ M —L)ws =Nwy and (p+ A2 — Lo)wy = Aaws,
the linear growth conditions (recall 1,02 > 1) yield
w3 = Csy® + Cyy™  and  wy = Csnzy™ + Camuy®.

To solve the HJB equations, we first note that w3 and w4 are not coupled with
wy and we and can be found separately. This is treated as a pure selling problem in
Tie and Zhang [13]. In this paper, we only consider the case (k3 < k4) and provide
key steps for this case in Appendix for the sake of completeness.

Solving for w; and ws. In this section, we solve for w; and ws using the solution
ws and wy. Recall that wy and ws satisfy the HJB equations

min § (p + A1 — L1)wi(y) — Mwa(y), wi(y) —ws(y) + By — Bsyp =0,

(3.13)
min | (p + A2 — La)wa(y) — Aewi(y), w2(y) —wa(y) + By — Bsy ¢ = 0.

To find threshold type solutions, we are to determine k; and ko so that on (0, k1):
(p+ A= Li)wi(y) — Mwa(y) =0 and  wi(y) —w3(y) + By — By = 0; on [k, 00):
(p+ A1 = Ly)wi(y) — Awa(y) 20 and  wi(y) —ws(y) + o — sy = 0; on (0, k2):
(p+ Ao — Lo)wa(y) — ewi(y) = 0 and  wa(y) — wa(y) + By — Bsy > 0; and on
[k2,00): (p+ A2 — L2)wa(y) — Adgwi(y) 2 0 and  wa(y) — waly) + By — Bsy = 0.

Recall that k4 < ko and k3 < ki. Recall also the condition k3 < k4. We need
consider the three cases k3 < k1 < kg < ko, ks < ks <ki <ky, k3<ksi<k <
k1. To focus on key ideas, we only treat each of these cases with strict inequalities.
Cases with equalities can be dealt with in a similar way.
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Case I: k3 < k1 < k4 < ko. First, we consider the case when k3 < k1 < kg < ko.
For 0 < y < ki1, we have (p + \1 — L1)wi(y) — Mwa(y) = 0 and (p + Ao —
Lo)wa(y) — Aow1(y) = 0. Their general solutions have the form:

wiy) = C1y™ + Coy®™ and  wa(y) = Crmy’ + Canay®™.
For ki <y < ky, we have wi(y) = w3(y) = Bp + By and  (p + Ao — La)ws(y) —
Xowi(y) = 0. For ko < y < oo, we have w1 (y) = ws(y) — fp + By and wa(y) =

wa(y) — Bv+ Bsy- Recall that the solution w3(y) and w4(y) in (7.9) (Appendix). This

leads to, on [k1, k4], w1 (y) = w3(y) — By + Bsy = E1y% + Fay®® +ay — By + (Bs — az)y
and wy(y) satisfies

(p+ A2 — La)wa(y) = Aowi(y) = A2[Ery™ + Eoy® + a1 — By + (Bs — a2)y)-
Then the solution wa(y) = Biy"* + Bay"? + wap, (y), where Biy”* + Boy? is the

general solution of the homogeneous differential equation (p + Ao — L2)wa(y) = 0
with v and o given in (3.9). A particular solution of

(p+ A2 — Lo)wa(y) = dowi(y) = Aa[E1y®t + By + ay — By + (Bs — az)y]

can be given by

A2 En o A2 By ¢
w = + 2
(3.14) 2 (1) p+)\2—A2(Cl)y p+)\2—A2(C2)y
' Aa(ar — Pr) Xo(Bs — az)

+ .
p+Ae—pui(2)  p4+ Ao —M2(2)y

Next, on the interval [kq, k], wi(y) = ws(y) — By + Bsy = Cay® + Cyy®* — By, + By
and ws(y) satisfies the inhomogenous equation (p + A2 — La)wa(y) = lowi(y) =
Ao (C3y% 4 Cyy®* — By + Bsy). Similarly, a general solution wo(y) = D1yt + Daoy*? +
w2 p, (y), where wa 5, (y) is the particular solution given by

Wa p, (y) = A2l y% A2l y%
(3.15) b2 P4 A — Ax(03) P+ Ay — Ax(04)
) )\Qﬂb )\2ﬁsy

ot A= (2 pt A — pe(2)

Recall that n3 = Ao/(p+ Ao — A2(d3)) and ng = Aa//(p+ Ao — A2(d4)). Tt follows
that

A2Bp L hebsy
pt+Az—pi(2)  pt A —p2(2)

Wa py (y) = Canzy® + Cynay® —

Finally, on the interval [ks, 0), w1 (y) = w3(y)—Bp+5sy = C3y” +Cay® —Bp+Bsy
and wz(y) = wa(y) — By + Bsy = Cssy® + Camay® — By, + Bsy. These computations
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can be summarized as follows:

(3.16)
On (0,k1): wi(y) = C1y% + Cay®2,
wa(y) = C1my® + Canay®2,
On [k1, ka) : wi(y) = w3(y) — Bp + Bsy = E1y*! + B2y + a1 — By + (Bs — a2)y,
wa(y) = Bry™ + Bay”? + wap, (y),
On [ky, ko] : wi(y) = w3(y) — By + Bsy = C3y% + Cuy® — By + By,
wa(y) = D1y"* + Day™ 4 w2 p, (y),
On (ko,00) : wi(y) = ws(y) — Bo + Bsy = C3y®* + Cay®* — By, + Bsy,
wa(y) = wa(y) — By + Bsy = Csnzy® + Camuy® — By, + By,
where
_ Aoy G Ao Ey C2
w2 () = Pt — A0 T e — As(G)

A2(a1 — Bp) A2(Bs — as)
ptAr2—pa(2)  ptAe—p2(2)
A2Bp A2Bsy
+ .
ptAe—p1(2)  pt A —pa(2)
We follow the smooth-fit method to determine parameters C'y, Co, By, B, D1, Ds,
k1 and ky. The continuity of wy(y), wa(y), w(y) and wh(y) at k; yields

)

Wa p, (1) = Cnzy® + Camuy® —

Ciky! + Cok? = ws (k1) + Bok1 — B,
C101k ™ + Codok ™ = wi(ky) + Bs,
Cimk + Comk(? = Bik{" + Boki?® + wap, (k1),
017715116‘1;171 + 02772527?(15271 = By k' 4 Bowpk2 7t 4 wy,, (k).
The continuity of wa(y) and wh(y) at ks yields

Biky' + Boki? 4+ wap, (ka) = Diky' + Doki® + wa p, (ka),
Bll/lkzl_l + BQVQ/CZQ_I + wé’pl (k4) = Dlylkil_l + Dzl/gkf_l + w/27p2 (k4)

The continuity of wa(y) and wh(y) at ko yields

lelgll + ng? + W2, py (kg) =
Dll/lkglil + Dgljgk‘?il + w§7p2 (k‘Q) =

~(m 0 A
A_<O 772> and (I)(t,sl,SQ)—<81tsl 82t52 .

1 Sot™ L —t7%t
-1 _ 2
2 (s 52) = S9 — 51 <—81t_52 t752. ) '

Let

Then, we have
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Using these matrices, we can write the first four equations at ki as
C1 w3 (k1) + Bsk1 — B
D(kq, 61,0 =
(1, 01,02) (@) ( Bafuh (k) + 6] )
C1 By wa p, (k1)
D(kq,01,02)A =d(k e .
(k1,01,62) <02> (k1,v1,10) <Bg> + <k1w§,p1(k’1)

It follows, by solving for C, Co, B1 and Bs, that

(ca) — & k1, 61, 62) (wﬁiﬂg@m /gs]ﬁb> ’

B _ _
( 1) =0 (ky, 11, 10) [‘I’(/C1751,52)A‘I’ "(ky,61,62)
w3(ky) + Bsk1 — Bo\ [ w2p (k1)
ker[wy (k1) + Bs] kywy , (k1)) |-
In addition, simple calculation yields

1 09 — 120 —
-1 _ 102 — 1201 2 — M
k1, 01, 02) AT (1, 01, 02) = 02 — 01 <5152(771 —1n2) 1202 — 77151) '

Note that this matrix is independent of k;. Moreover, we can write (from the
continuity of wy and w} at ky)

Bl — D1 w2 (k4) — W2 (k4)
P(k — sP2 »P1 .
ks, v, ) (Bz - D2> <k‘4 (w3 p, (Ka) = wh , (ka)]
This yields
By — Dy -1 W2 py (k4) - W2,py (k4)
=o' (k y y .
<B2 - D2> ( b Vl, V2) <k4[w/2,p2 (k4) - wé,pl (k4)]
Finally, follow from the continuity of we and w), at ko, we write

D1\ w(k)—w,z(k)_ﬁ + Bsk
i) () = (" v A1)

This gives

D\ _ 1 wa(k2) — wap, (k2) — By + Bska
<D2> =0 (kz,Vl,VQ) ( k?z[wfl(kig) ﬁwé’m(k@) +BS] ) .

Combine this with the previous formula to obtain the second expression or B; and

BQZ
B - w,Q(k)_w,l(k)
<B;> = ¢ 1(k4,1/1,1/2) <k4[zi§p2(2:4) — ;im(};)])
wy(kz) — wap,(k2) — By + /Bsk2> ‘

-1
+&7 " (ka, 11, 12) < ko[wh (ko) — wé,pQ (k2) + Bs]
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Eliminate (B1, B2) to obtain the following equations for k1 and ko:
(3.17)

@1@hm»m[@whmﬁgA¢1@b&ﬁg<w“h)+5$1&)

klwé(kl) + ﬁskl
k:lwé’pl (/{71)
_ k) — wap, (ky)
— o1k w27p2( 4 2,p1
<4”h”<mngm%wﬁmwm

-1 wy(k2) — wap, (k2) — B + Bskz
+ @ (kQ,VlaVZ) < kQ[wg(k'Q) f w/27p2(k’2) +BS] > .

Formula (3.17) yields two equations of k1 and ky. The existence of k; and ko can
proved by following the method in Lemma 4.2 of [12]. Once we find k; and k2 and
note that the constants By, Bo, C1, Co, D1, and Dy can be written as functions of
k1 and ko. So are functions wi(y) and wa(y). In view of this, k1 and ks have to be
determined so that the following variational inequalities are satisfied:

On (0,k1) :  wi(y) —ws(y) + By — Bsy >0,
wa(y) — wa(y) + By — Bsy > 0,

On [kl, kQ] : (p + A\ = L’l)wl(y) — /\1w2(y) >0,
wa(y) — wa(y) + P — Bsy > 0,

On (k2,00) : (p+ A1 — L1)wi(y) — Mwa(y) >0,
(p+ A2 — La)wa(y) — Aawi(y) > 0.

To facilitate numerical computations, we provide equivalent inequalities for those
involving the differential operators £;. First, we consider the two inequalities on
the interval [kg, 00):

(3.19) (p+ M —Li)wi(y) —Awz(y) 20 and  (p+ A2 — La)wa(y) — Adswi(y) > 0.

Recall that wi(y) = ws(y) — Bp + By and wa(y) = wa(y) — By + Bsy, and we apply
L1 to wi(y) and Lo to wa(y) to get

(p+ A1 — L1)wi(y) = Mwa(y) + (p+ A1 — p2(1))Bsy — (p+ A1 — pa (1)) B,
(p+ A2 — L2)wa(y) = Aaws(y) + (p + A2 — p12(2)) Bsy — (p + A2 — p1(2))Bo.
Then (3.19) is equivalent to

(p+ A1 —p2(1)Bsy — (p+ A1 — p1(1)) By = M(Bsy — Pv)s
(p+ A2 — p2(2))Bsy — (p+ X2 — 11(2)) By = X2(Bsy — Bo)-
Simplify to obtain

(p—p2(1))Bsy — (p— p1(1))Bp 20 and  (p — p2(2))Bsy — (p — p1(2))Bp = 0.

These inequalities hold as long as
ey > (p— Ml(]))ﬁb
(p — 12(7))Bs

Next, we consider the inequality involving L1, i.e, (p+A1—L1)w1(y)—A1wa(y) >0
on [k, k2]. Recall that wi = w3 — B, + fsy and we satisfies (p + Ao — Lo)wa(y) =

(3.18)

for j =1,2.
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Aowi(y) on this interval. Applying (p + A\ — £1) to w; yield

(p+ M = L)wr = (p+ A — L)ws + (p+ M — p2(1))Bsy — (p+ A1 — p1 (1)) By.
Recall that ks < k1 < kg < ko and (p + A1 — L£1)ws = Ajwy. It follows that

(p+ M —Ly)wr = ws + (p+ A1 — p2(1)Bsy — (p+ A1 — pi(1)) Bo.

Recall also that wy = s — By on the interval [0, k4]. Hence on interval [k, k4] C
[0, k4], (p+ A1 — L1)wi(y) — Mwa(y) > 0 is equivalent to

A (Bs = Boy) + (p+ A1 — p2(1))Bsy — (p+ A1 — p1(1)) By > Mwz.

Since wa(y) = B1y"* + Bay"? +w p, (y) on the interval [k1, k4], the above inequality
is equivalent to

me+Bw”+wmst[p W(U%+& qu—[p “(%%+&—ﬂ4.

Similarly on the interval [k4, k2], wa(y) = D1y"* + Day”> + wap,(y), and the
inequality is equivalent to
— p2(1)
A1

D1y" + Day"? + wap, (y) < [p

m+&—mh—v (1)

Bb+6b_6s:| .

Case II: k3 < ky < k1 < ko. Next, we treat the case (ks < ks < k1 < k2). Note
that, for 0 < y < k1, we have (p + A\ — L1)wi(y) — Mwa(y) =0 and (p+ Ao —
Lo)wa(y) — Aowi(y) = 0. Their general solutions are of the forms

wi(y) = Cry®™ + Coy®™  and  wa(y) = Cimy® + Canoy™

For k1 <y < kg, we have wi(y) = w3(y) — Bp + Bsy and  (p+ A2 — L2)wa(y) —
Xow1 (y) = 0. For ko < y < 0o, we have wy(y) = ws(y) — Bp + Bsy and  wa(y) =
wy(y) — By + Bsy. Recall also the solutions ws(y) and w4 (y) in (7.9) (Appendix): It
follows that, on the interval [ki, k2], w1(y) = w3(y) — By + Bsy = E1ySt + By +
a1 — By + (Bs —az2)y; and wy(y) satisfies the equation (p+ Ao — Lo)wa(y) = Aowr(y) =
Ao[E1ySt + Eay? + a1 — By + (Bs — az)y]. Then the general solution we(y) = Byy** +
Boy"? + w3 ,(y) where the particular solution

__ B G Ao by &
w2p(y) = Pt o — As(Gr)Y * Pt ho — As(Ga)
X2(a1 — Br) X2 (Bs — az)

+ .
P+ —p1(2)  p+ A —M2(2)y

In this paper, the use of parameters A;, B;, C;, etc is limited to the particular
section. They may be different across sections if no confusion arises.
Finally, on the interval (kq,00), we have

wi(y) = w3(y) — Bo + Bsy = C3y™ + Cyy™ — By, + Bsy,
wy(y) — By + Bsy = Canzy® + Canay™ — B + Bey.
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Summarize the above computation to obtain
(3.20)

On (0,k1): wi(y) = C1y% + Cay?2,
wa(y) = C1my® + Canay®?,
On [k1, ko] : wi(y) = w3(y) — By + Bsy = E1y** + Eay® + a1 — By + (Bs — a2)y,
wy(y) = Bry"™ + Bay"? + w2 p(y),
On (kg,00):  wi(y) = ws(y) — B + Bsy = C3y® + Cay® — By + Bsy,

wa(y) = wa(y) — By + Bsy = Canzy®® + Canay® — By, + Bsy-

Next, we use the smooth-fit conditions to determine the parameters Cy, Co, By, B3,
k1 and ko. First, the continuity of wi(y), wa(y), w)(y) and wh(y) at k; yields

Ciky' + Coky? = w3 (k1) + Bok1 — B,
Cro kS ™ 4 Ok = wh(ky) + Bs,
Crm kS + Compkl? = BikY" 4 Bok?? + wap(k1),
Cymo1kd ™ + Compdak® ™! = By k'™ + Bawok{? ™ + wh (k1)
Similarly, the continuity of wa(y) and wj(y) at ko yields
Biky' + Baky? + wa p(ka) = wa(ke) — By + Bska,
By ks + Bovoks? ™!+ wh (ko) = w(ks) + Bs.

We can write them in matrix form:

Cr\ _ 4-1 w3 (k1) + Bsk1 — By
(02> =& (k17617(52) < kl[wg(kl) +/BS] > 5

(131) = o (o, 1) [@(kzl,al,az)m1<k1,61,52>

By

The continuity of wo and w’2 at ko leads to the equations

B B w(k;)—wp(k)—ﬁ +6sk
o) (5) = (Mo S 1 A1)

It follows that

B\ . wa(ko) — wap(ka) — By + Pska
<B2) = & (Ko, v, 10) ( ko, (k) ? wh (k) + B ) )

Eliminate B; and B> to obtain the equations for k1 and ks:
(3.21)
1 1 w3(k1) + Bsk1 — By
P (kl, v, 1/2) |:<I>(/{71, (51, 52)/\(1) (k‘h 517 52) ( kl[wé(kl) 4 ,Bs]
_ wa,p(k1)
k‘lwé’p(kl)
- k2) — wap(ka) — Bp + Bsk2
— P (k wy (k2 P )
(2, 1, 02) ( Fo[w) (k) — wh, (k2) + B
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Recall that the constants Bi, By, C1, and (5 can be represented as functions
of k1 and k9. So are functions wi(y) and wy(y). Therefore, k1 and k2 need to be
determined so that the following variational inequalities are satisfied:

On (0,k1):  wi(y) —ws(y) + B — Bsy > 0,
wa(y) —wa(y) + B — Bsy = 0,
On [kl, kQ] : (p + )\1 — £1)w1(y) — /\1w2(y) Z 0,
wa(y) —wa(y) + B — Bsy = 0,
On (k2,00) 1 (p+ A1 — L1)wi(y) — Mwa(y) = 0,
(p+ A2 — L2)wa(y) — Aawi(y) = 0.
Next, we consider equivalent inequalities for those involving the differential op-

erators £;. First, on the interval [k, 00), the variational inequalities are equivalent
to

(3.22)

(p+ A1 —p2(1)Bsy — (p+ A1 — p1(1)) By > Mi(Bsy — Br),
(p+ A2 — 12(2))Bsy — (p+ X2 — 111(2)) By > A2(Bsy — Bo).

as in Case 1. The equivalent conditions for these inequalities to hold are

ko > w for j =1,2.
(p — 12(4))Bs
Move on to the interval [k, k2] and recall wy = w3 — By + Bsy. Apply (p+A1—L1)
to wi to obtain

(p+ A1 —L)wr = (p+ A — Lo)ws + (p+ M — p2(1)Bsy — (p+ At — 11(1)) By

In addition, recall that ks < ky < k1 < k2 and (p + A\ — L1)wg = M\wy. It follows
that

(p+ M = L)wr = Mwa + (p+ M — p2(1)Bsy — (p+ M — p1(1))By.
Recall also that wy = C3nzy® + Cynay® for y > ks and wa(y) = Biy”* + Bay™? +
wap(y). Hence the inequality (p + A\ — L1)wi(y) — Mwa(y) > 0 is equivalent to
Byt + Bay"? + wap(y)

: + A= 1 + A — 1
< Camay® + Camay® + [le()} By — [le()

N N ] Bb-

Case III: k3 < ky < kg < k. Finally, we consider the last case (ks < k4 < k2 < ky).
For 0 < y < ko, we have the equations

(p+ A1 — L)wi(y) — Mwa(y) =0 and  (p+ Ao — La)wa(y) — Aowi(y) = 0.
Their general solutions can be given by
wi(y) = C1y’ + Coy®  and  wa(y) = Crmy® + Comay™.
For k1 <y < ko, we have
wi(y) = w3(y) = Bo + fsy and  (p+ A2 — Lo)wa(y) — Agwi(y) = 0.
For ke < y < 00, we have
wi(y) = w3(y) — Bo + sy and  wa(y) = wa(y) — By + Bsy-
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Recall the solutions ws and wy given in (7.9) (Appendix). It follows that, on the
interval [ko, k1],

wa(y) = wa(y) — By + Bsy = Canzy® + Canay®™ — By, + Bsy;
and wy (y) satisfies
(p+ M1 — L)wi(y) = Mwa(y) = M[Canzy® + Canay® — By, + Bsy)-

Then the general solution wy(y) = B1y*! + Bay®? + wi ,(y) where the particular
solution

A1C3m3 53 A1naCy 54
p+/\1—A1(53)y +p+)\1—A1(54)y
B A1Sb A1Ps
Pt — () oA — (D)
Note that \1/(p+ A1 — A1(d3)) = 1/n3 and A1 /(p+ A1 — A1(64)) = 1/n4. These
imply

wl,p(y) =

1B A1 Bsy
p+Ar—p(l)  p+ A — p(l)
>\le )\lﬁsy
prM —pi(1)  p+ A —pe(l)

Finally, on the interval [k1,00), we have
wi(y) = w3(y) — B + By = Csy™ + Cay®* — By + Boy,
wa(y) = wa(y) — By + Bsy = Canzy® + Canay® — By + Bsy.

Summarize the above computation to obtain
(3.23)
On (0,k2) : wi(y) = C1y® + Cyy?,
(y) = Crmy’ + Canay®
On [kz, k‘ﬂ : wl(y) = BlyCI + Bgy@ + ’11}17p(y),
()
()

w1 p(y) = C3y% + Cyy™t —

= ws(y) —

= wy(y) — B + Bsy = Csn3y® + Canay® — By + Bsy,
On (ki,00) 1 wi(y) = ws(y) — Bo + Bsy = C3y° + Cay® — By, + Bsy,
wa(y) = wa(y) — By + Bsy = C3nzy® + Canay® — By, + Bsy.

Next, we apply the smooth-fit method to determine the parameters C1, Co, B, Ba,
k1 and k. First, the continuity of wi(y), wa(y), w)(y) and wh(y) at ko yields

ChES + Cokd? = BikS' + Bok$? + w1 p(k2),
Cro1ky ™" + Cadoky* ™! = BiGiks' ™" + BaGoks® ™' + wh (ko)
Criky' + Conahy® = wa(ke) + Bskz — B,
Crmorky ™! + Compdakd? ™ = w) (ko) + Bs.
The continuity of wq(y) and w](y) at kp yields
B1k§1 + B2k§2 +wy p(k1) = w3(k1) — By + Bska,
BiGik§ ™ + BaGok* T+ wy (k1) = wi(k1) + Bs.
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Solve for C, Cy, B1 and By to obtain

Cr) _ y—1g-1 wy(kz2) + Bska — By
<C2> =A@ (k2751,52)< kZ[ng(kZ)“_Bs] >7

@) = (k1. ) [‘% 01,2)A71 07 (k, 81, 87) <w4’€(522?’£;k+2 /Efb>

_ w1 p(k2)
kigwi’p(kig) ’
The continuity of wy and w} at ky yields the system

B ws (k1) —wip(k1) — By + Bsk
(k1,1 C2) (B;> = ( Rl (k) ) (k) + 1)
This gives

B\ .1 w3 (k1) — w1p(k1) — By + Bsky
(Bg) =& (k1,(1,¢2) < Joy [}, (1) r wi (k1) + B ) .

Eliminate By and Bs to obtain the following equations for k; and ks:

(3.24) ‘I’_l(k%Ch@)[‘I’(kz,51,52)A_1q’_1(k2,51,52)

wy(k2) + Bskz — By wi,p(k2)
< ko[w](k2) + 5] ) B <k2w,17p(k32)>]
_ w(k?)—w,p(k)_ﬁ +Bsk
= & Yk, (1, G0) < 1;1[103(;@1)1— wlll’p(lﬂ;)-f- Bs] 1) ’

Again, note that the constants By, Bs, C1, and Cs can be given as functions of
k1 and k2. So are functions w;(y) and wa(y). Therefore, ki and k2 need to be
determined so that the following variational inequalities are satisfied:

On (0,k2) : wi(y) —ws(y) + Bp — Bsy = 0,
wa(y) — wa(y) + By — Bsy = 0,
(3.25) On [k, k1] : wi(y) —ws(y) + By — Bsy = 0,
(p+ A2 = La)wa(y) — Aowi(y) = 0,
On (k1,00) : (p+ A1 — L1)wi(y) — hwa(y) =0,
(p+ A2 = La)wa(y) — Adgwi(y) = 0.
Finally, to see equivalent conditions for the above inequalities involving £;, we first

note that, on the interval (k;,00), the variational inequalities are equivalent to (as
in Case II by switching the roles of k1 and k2, (and w; and wy),

ky > (p— Ml(ﬂ.))ﬂb

(P — 12(5)) s

Next, on the interval [k, k1], to relate (p+ Ao — L2)wa(y) — A2wi(y) > 0, recall that

wi(y) = Biy® + Bay® + wip(y) and wa(y) = wa(y) — By + By on [k2, k1]. Apply
(p+ A2 — Lo to wsy) to obtain

(p+ A2 — La)wa(y) = Aaws — (p+ A2 — 11(2)) B + (p + A2 — 12(2)) Bsy-

for j =1,2.
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Hence, (p + Ao — L2)wa(y) — A2w1(y) > 0 is equivalent to

p+/\2—M1(2)] BbJ{erAQ_uQ 2

By +Boy +wi p(y) < ng53+04y‘54—[ " " ( )} Bsy-

4. VERIFICATION THEOREMS

In this section, we provide verification theorems for Cases I, II, and III. First, we
recall the optimal selling rule given in Tie and Zhang [13].

Theorem 4.1. (Selling Rule k3 < k4). Assume (Al). Let ks and ks be given in (7.6)
and (7.7), resp. Let w3(y) and wa(y) be given as in (7.9) such that the variational
inequalities in (7.10) are satisfied. Then, vy (x1,z2,1) = v1ws(z2/x1) = Vi(21, 22, 1)
and vi(x1,x2,2) = xrywa(ze/x1) = Vi(21,292,2). Let Dg = {(z1,22,1) : x2 >
ksz1} U {(x1,29,2) 1 T2 > kgz1}. Let 78 = inf{t: (X}, X2, a4) & Ds}. Then 7§ is
optimal.

Theorem 4.2. (Buying Rule). Assume (Al). Let ki and ko be given by (3.17)
in Case I (by (3.21) in Case II and (3.24) in Case III, resp.). Let also w1(y) and
wa(y) be given by (3.16) in Case I (by (3.20) in Case II and (3.23) in Case III,
resp.) Suppose the variational inequalities in (3.18) hold (Case I) (in (3.22) (Case
II) and (3.25) (Case III), resp.). Then, vo(x1,x2,1) = x1wi(x2/21) = V(21,22 1)
and vo(x1,x2,2) = xywe(xe/11) = Vo(21,22,2). Let D = {(x1,22,1) 1 x2 <
kiz1} U {(71,292,2) : @9 < kow1}. Define 7f = inf{t : (X}, X2, ay) € D} and
3 =inf{t > 77 : (X}, X7, ou) € Ds}. Then Ao = (7§, 75) is optimal.

Proof. The proof is similar to that of [14, Theorem 5.1]. We sketch key steps for
the sake of completeness. First, we show v;(x1,x9, ) > Ji(z1,z2,, A;). To this
end, note that, in view of the variational inequalities in the HJB equations, for any
stopping times 0 < 61 < 65, a.s.,

(41) E (e_pglvz'(XelpXgl»ael)f{el@o}) >F (e_p02vi(X6127X9227a92)1{92<oo}> ,

fori=0,1.
Given Ag = (11, 72), it follows that
1}0(331,%‘2,04)2 E (e_pZIUO(X;iXﬁuaT1)I{T1<oo})
2 (6 m ( XTl’XTl’aTl) ﬁbX’rl +BTS 7'1) I{Tl<oo})
= b (6 ?’Xn’a‘f'l)I{T1<oo} —e” l(lﬁbX BS )I{T1<OO})
> K (6 XTQ7XTQ7aT2)I{T2<OO} —e (B 1 X )I{‘r1<oo})
2 E( _pT2 BS 6bX )I{’TQ<OO} —e€ pﬁ( bX X )I{T1<OO})

Jo(x1, 22, v, Ao)

Next, we establish the equality v;(z1,22) = Ji(z1,22,A}). Recall that 77 =
inf{t >0: (X}, X? ot) € Dp} and 75 = inf{t > 77 : (X}, X?, ) € Ds}. Using
Dynkin’s formula over the intervals (0, 7]) and (71, 75) to obtain

vo(21, T2, ) = E[eiprUO(Xil* ) X7]'-f’ an)I{T <oo}]
= E[efﬂTl (’[)1 (XTlf7X;f7aT1) 6bX + B X )I{T <oo}]
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We have also

—p7s 1 2
E (e foy (XL, X2

Combine these two equalities to obtain vg(x1, z2, a) = Jo(x1, T2, @, Aj).

,aq*)f{ﬁ*@o})
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E (e (X;Q* X2 aTg*)I{Ték<oo})

T2

E(erm (ﬁinz* - Bszz*) I{T2*<oo}> ’

5. NUMERICAL EXAMPLES

In this section, we give three examples, one for each of the three cases.

Example 5.1. (Case I: k3 < k1 < k4 < ko). In this example, we take

pi(1) = 0.30,
o11(1) = 0.44,
0'11(2) = 019,
A1 = 6.0,

p2(1) =0.27,
0'12(1) == 027,
012(2) = 0.65,
A2 = 10.0,

p1(2) = —0.43,
o91(1) = 0.31,
021(2) = 0.28,
K = 0.001,

o2 (1) = 0.60,
022(2) = 0.15,
p=0.50

First, we solve (7.6) and (7.7) for k3 and k4 followed by (3.17) for k1 and ko. We
obtain k; = 0.597020, ke = 0.690976, ks = 0.578407, and k4 = 0.601707. Using
these to calculate the rest parameters to get By = —1082.994378, By = 0.002139,
C) = 6.721641, Cy = —0.043221, Cs = 0.189389, Cy = —0.000004, D; = —0.078520,
Dy = —0.0007050, B = 1.377957, and Es = 4.440166. Plugging these numbers into
(3.16) and (7.9) to obtain the corresponding value functions. We verify that all the
variational inequalities in (3.18) and (7.10) are satisfied. Finally, the graphs of these
value functions are given in Figure 3.
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VO(x1,x2,1)

VA(x1,%2,2)
o = N @ :

FIGURE 3. Value Functions Vy(x1,x2,1), Vo(z1,22,2), Vi(21,22,1),
and ‘/i(ﬂfl,Ig,Q)

Example 5.2. (Case II: k3 < k4 < k1 < ko). In this example, we take

(1) = —0.26, pa(1) = —056, p(2) = —04, pa(2) =0.22,
011(1) =0.37, o012(1) =0.46, o9 9
o11(2) = 047,  o12(2) = 0.31, oo

A1 = 6.0, Ao = 10.0, K =0.001, p=0.50.

Similarly as in Example 1, we solve (7.6) and (7.7) and then (3.21) to obtain
k1 = 0.929500, ko = 0.962000, ks = 0.678861, and k4 = 0.810852. Then, we
calculate and get By = 0.295000, By = 0.021266, C; = 0.078164, C2 = 0.048996,
C3 = 0.097388, Cy = —0.000156, E; = 0.225207, and E2 = 0.000199. Feeding these
numbers into (3.20) and (7.9) to obtain the corresponding value functions. It can
be shown that all the variational inequalities in (3.22) and (7.10) are satisfied. The
graphs of the value functions are given in Figure 4.
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VO(x1,x2,1)
o - N w -
VO(x1,x2,2)

VA(x1,x2,1)
V1(x1,x2,2)
Lo w

FIGURE 4. Value Functions Vy(x1,x2,1), Vo(z1,22,2), Vi(21,22,1),
and Vi(z1,x9,2)

Example 5.3. (Case III: k3 < k4 < ko < k1). Finally, in this example, we take

p1(1) =0.20, po(1) =0.25, p1(2) = —0.30, p(2) = —0.35,
0'11(1) = 030, 0'12(1) = 010, 021 ) == 010, 0'22(1) == 035,
0'11(2) == 040, 0'12(2) == 020, 021 ) == 020, 0'22(2) == 045,
A1 = 6.0, A2 = 10.0, K =0.001, p = 0.50.

Similarly as in previous examples, we solve (7.6) and (7.7) and then (3.24) to
obtain k1 = 1.379000, ko = 1.212000, ks = 0.723277, and k4 = 0.737941. Then, we
calculate and get By = 0.000175, By = 0.043496, C; = —0.000069, Cy = 0.147433,
Cs = 0.114418, Cy = —0.000006, F1 = 0.291176, and Fy = 0.000294. Using these
numbers in (3.23) and (7.9) to obtain the corresponding value functions. It can be
shown that all the variational inequalities in (3.25) and (7.10) are satisfied. The
graphs of the value functions are given in Figure 5.
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VO(x1,x2,1)

V1(x1,x2,2)

FIGURE 5. Value Functions Vy(x1,x2,1), Vo(z1,22,2), Vi(21,22,1),
and Vi (z1,x2,2)

6. CONCLUSIONS

This paper is about an optimal pairs trading rule. The main results include
threshold type trading rules and sufficient optimality conditions in terms of verifi-
cation theorems. It would be interesting to consider models in which the market
mode oy is not directly observable. In this case, the Wonham filter can be used for
calculation of the conditional probabilities of @ = 1 given the stock prices up to
time ¢. Some ideas along this line have been used in Dai et al. [1] in connection
with trend following trading.
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7. APPENDIX: THE SOLUTIONS w3 AND 1wy

In this appendix, we sketch the key steps in derivation of solutions ws and wy.
Recall the corresponding HJB equations:

min < (p + A1 — L1)ws(y) — Mwa(y), ws(y) + Boy — Bs ¢ =0,

(7.1)
min { (p + A2 — Lo)wa(y) — Aows(y), wa(y) + By — Bs ¢ = 0.

In this appendix, we only consider the case k3 < k4. Details on other cases can be
found in [13]. First, we divide the interval (0, c0) into three subintervals:

Fl = (O,kg), FQ = (k‘g,/@;), and Fg = [ki4,00).
Note that wy = wyq = Bs — Bpy on I'y;
w3 = C3y53 + C4y‘54 and w4 = 773C'3y53 + 774C’4y54 on I's;

and wy = Bs — PBpy and (p + A1 — L1)ws(y) = Aqwa(y) on I'y. To solve the non-
homogeneous linear equation of Euler type:

(p+ A — L1)ws(y) = Mwa(y) = M(Bs — Byy),
let

_ A Bs and  ay — By
p+ A — (1) p+ A1 — p2(1)

Then a particular solution can be given as w3 ,(y) = a1 — azy. The general solution
is given by

(7.2) aq

(7.3) ws = Eﬂ/c1 + Egy<2 + a1 — a2y,

where (; and (» are given by (3.8).
Next we apply smooth-fit conditions to find the parameters Cy, Co, F1, Fo, k3
and k4. First the continuity of wy and its derivative at ky yield

Bs — Byka = n3Cak3® + naCukst,
—By = n303C3kP " + nud4Cakyt .
The continuity of ws and its derivative at k3 and k4 yield
Bs — Byks = E1kS' 4+ E2k$® + a1 — asks,
—By = E1Gk§ T 4 BaGok$ T — ag,
EikS + Eok$® + a1 — aghky = C3kS? + CukSt,
ErCES T 4 BoGok ™! — ag = 0303k 1 4 6,04 k5 L

A _(m 0
(7.4) B(t, 51, 52) = <S1t51 827552) and A = (0 772>
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Then the above system can be rewritten as
Cs Bs — Brka
D (ky,03,04)A =
(4,03, 64) <C4> ( ok >,
Ey (Bs —a1) — (Bb — a2)ks
d(k =
(k3,C1,C2) <E2> ( —(By — a)ks

@(k4,<1,(2) <g;) + (al_;2a1€24k4> = q)(k4;53;(54) <gi> .

Eliminate the parameters C7, Csy, Fq, and E5 to obtain the equations for k3 and ky:

ki, G ) (. o) (2707 (el o (01 )

—ask
(7.5) 2

—Pokas
Let r = k4/ks. Some simple calculations yield

1 ( Cerz _ CQT-Q 7S G2 >
G — G \GQG(re =) et — (e

1 02 — 190 _
D(ky. 62 0OA" D (ky. 84.64) = —— [ 93 = 7204 N2 771).
(k4,03,04) (ka,03,04) ey S Y <5354(771 L

= (ka, 03, 0) AT @ (ka, 83, 04) (ﬁs y Bbk4> -
q)(k47 (1, C2)q)_1(k'3, (1, CQ) =

We can rewrite these (7.5) as follows

1
C1— G2

< (G2 = 1)(Bp — az)ks — C2(Bs — a1) CG(Bs—a1)+ (1 =) (Bp — a)ks ) (?”Q)
Gi[(G2 = 1)(By — az2)ks — Ca(Bs — a1)]  Ga[Ci(Bs — a1) + (1 — C1)(By — az)ks] ) \r

_ 1 ( 03 — 1204 N2 —Mm ) (55 - 5b/€4> _ (al - a2k’4>
mmn2(93 — 84) \0364(m1 —m2) 1203 — N164 — Bk —agks )
Let

a1 = (G —1)(Bp —az)ks —Q(Bs—a1) and a2 = (G2 —1)(By, —a2)ks — C2(Bs —a1).
The matrix on the lefthand side is

; ™ 2 with inverse _% 11
G — G \Cla1 Gae a1

a2 a2

This yields

¢ 1
rN _ (e an
rC2 g _ 1

o a9

1 1M03 — 1204 n2 =M Bs — Boka) (a1 — a2k
mn2(63 — d4) \0304(m —n2) 1203 — M104 —Brka —anky
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Simplify them to obtain

[C2(Bs — a1) + (1 — C2)(Bp — a2)ks]rst + a1 + (1 — (2)asky
_ —04Bs + (04— 1)Boks 6385 + (1 — 63) Byka

n3(03 — d4) (=) n4(83 — 4) (G2 =),
[—C1(Bs —5@61) + ((§1 - 11))éﬁlbs_ as)ksr? 4;5%1 - aazl? )—ﬁ%m
_ 04Ps + (04 — L)Ppkiy o 30s + (1 — 03)Bpka .
B 773(53 — 54) (53 Cl) + 774(53 — 54) (54 Cl)
Let
_ —04fBs(C2 —d3) | I3Bs(Ca—da)
A= n3(03 — 04) T 0103 — o) 201,
_ (0= =) (1—=03)B(C—00) o
Bl = 773(53 — 54) 774(53 — (54) (]. CQ)(I%
~ —04Bs(03 — 1) | 93Bs(04 — (1)
A2 - 773(53 — 54) + 774(53 _ 54) + Clala
_ (6 =1)(63—=C)By , (1 =63)Bp(6a—C1) .
By = 7305 — 01) (03 — 82) (1 —1as

Then we can rewrite the above system as
[C2(Bs — a1) + (1 = (2)(By — az)ks]r®" = Ay + Biky
[—C1(Bs — a1) + (G — 1)(Bp — a2)k3]r** = Ay + Baky
Since k4 = rks, we can obtain

Ay — (Bs — ar)r® Ao + G (Bs — a1)r®

(76) k3 = (1 —_ Cz)(,@b — a2)r41 — Bir = (Cl — 1)(6b — ag)TCQ — BQ’/“’
and
(7.7) ky =rks = Ayr — <2(/85 - 01)7“(1+1 _ Aor + Cl(ﬂs _ a1)7“<2+1

(1 —=C)(Bp —az)rs —Bir (G —1)(Bp — az)r®2 — Bar’
The second equality in (7.6) yields an equation for r:

A1 — G(Bs — ar)r A+ G- ap)ré

(1= G)(By —ag)rst — Bir (G — 1)(By — ag)r2 — Bar
Since we assume that ks < k4, we need to show that the above equation has a
unique solution 7 > 1. Once we find r, we can find k3 and k4 from (7.6) and (7.7).
Then C1, Cs, 1 and E5 can be given as follows:
O — =048+ (0a—1)Bpks O, — 93Bs+(1=63)Bvks

3 13(83—04) k3 4 14(83—84)ky*

E, = —Go(Ba—ar)~(1-Co) (By—a2)ks Ey = G(Bs—a1)=(G1=1)(By—az)ks

(C1—Ca)ks! ’ (CL—Co)ks?
We summarize the solutions w3 and wy as follows:

) )

(7.8)

(0,k3) 1 w3 = Bs — Bry,

ks, ka] : ws = E1y®t + Foy? + a1 — agy,
(7.9) (ky,00) 1 w3 = C3y® + Cyy4,

[07 k4] : Wy = IBS - ﬂby)

(k4, OO) :

wy = C3n3y® + Canay®™,
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where a; and ag are given by (7.2), C1, Co, Eq and Es are given by (7.8); and m;
and 7y are given by (3.10). In addition, we assume the inequalities to hold:

(0,k3) = (p+ A1 — L1)ws(y) — Mwa(y) >0,

(ks, ka] : w3 = E1y* + Eay®? + ay — a2y > Bs — By,
(7.10) [ky,00) 1 ws = C3y® + Cay® > Bs — Bpy,

(0,ka) + (p+ A2 — L2)wa(y) — Aaws(y) > 0,

[ks,00) + wa = Cangy® + Canay® > Bs — Byy.

Some sufficient conditions for these inequalities can be found in Tie and Zhang [13].
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