


764 J. D. LÓPEZ-BARRIENTOS, J. M. MENDOZA MADRID, AND P. F. GONZÁLEZ-VEGA

In 1949, G.H. Hardy proved that if at least one of the so-called Cesàro and Abel
limits exists for a continuous and bounded function c, then the other also exists
and they coincide (see [12, Chapters 7.5 and 7.6]). There are numerous uses for this
conclusion and its generalizations. In this paper, we consider an Abelian theorem for
the asymptotics of optimal values in the statement of an optimal control problem.
We intend to optimize the Cesàro mean so that then we move on to the limit of
the optimal values corresponding to the Abel mean. It is possible to trace back the
first use of this approach to [2] for a stochastic problem. The version of the Abelian
theorem we use was taken from Lemma 5.6(a) in [15].

Theorem 1.1. Let (ct : t = 0, 1, ...) be a sequence of Real numbers bounded below.
Then

lim inf
T→∞

1

T

T−1∑
t=1

ct ≤ lim inf
α↑1

(1− α)

∞∑
t=1

αtct

≤ lim sup
α↑1

(1− α)

∞∑
t=1

αtct ≤ lim sup
T→∞

1

T

T−1∑
t=1

ct.

We intend to use Theorem 1.1 to compute the expected average optimal value of
the so-called N -Markov decision process as the limit, when α ↑ 1, of the expected
α-discounted optimal value function for the same process.

One of the difficulties we overcome in our developments is the fact that studying
the deterministic optimal control problem under the ergodic cost criterion remains
an open problem. We have managed to prove the existence of a solution to the
average cost inequality arising from the use of standard dynamic programming
techniques and our very particular set of hypotheses.

1.1. Mathematical preliminaries and nomenclature. A Borel space is a Borel-
measurable subset of a Polish space. For a Borel space Z, we denote the correspond-
ing metric as dZ , and B(Z) stands for the Borel-σ-algebra. In this context, the term
“measurable” for sets and functions, refers to “Borel-measurable”.

We consider the class of Real-valued bounded functions on Z endowed with the
supremum norm ‖h‖ := supz∈Z |h(z)|, and the subspace of all Real-valued bounded
and continuous functions on Z. The symbol P(Z) stands for the set of all probability
measures on Z.

If Z = {z1, z2, ..., zn}, the vector p := (p(z1), p(z2), ..., p(zn)) such that
∑n

i=1p(zi) =
1 and p(zi) ≥ 0 for i = 1, ..., n denotes a probability measure p ∈ P(Z). As usual,
‖ · ‖∞ stands for the norm in L∞(P(Z)), i.e., for every p ∈ P(Z):

‖p‖∞ := max{|p(z1)|, |p(z2)|, ..., |p(zn)|}.
Let Z and Y be Borel spaces. We define a stochastic kernel Q(·|·) on Z given Y
as a function Q : B(Z) × Y → [0, 1], such that Q(·|y) ∈ P(Z) for each y ∈ Y , and
Q(D|·) is a measurable function on Y for each D ∈ B(Z).

Lastly, we use ID to denote the indicator function of the set D, N is the set of
positive integers, N0 := N ∪ {0}, NN := {1, 2, ..., N} for N ∈ N, and R denotes the
set of Real numbers.

The remainder of the paper is organized as follows. In the next section, we state
the features of the system that we intend to control with the ergodic criterion.
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Then, in section 3, we follow [1, 7, 25, 27] to define a suitable topology for the space
of Markov controllers, summarize the results we borrowed from [18, 19, 17, 20] to
ensure discounted optimality in the stochastic model with N interacting objects,
and use the Abelian Theorem 1.1 to ensure ergodic optimality in the fashion of [28].
Since these models are posed in a large dimension, section 4 proposes a deterministic
control model that implicitly depends on the unknown disturbance law and presents
an analysis of the performance of its optimal control policies in the original problem.
We enlist our conclusions and further questions in section 5.

For the sake of brevity, the paper is purposefully illustrations-free. We are cur-
rently working on some examples applied to the context of the insurance industry.
These will be published in our forthcoming research (see the concluding remarks in
section 5).

2. A stochastic model on a set of measures

We investigate a discrete-time Markov decision process in the system containing
a large number of interconnected items. There are N interacting objects, each
of which can be categorized into a small number of different classes. Let S :=
{1, 2, ..., s} be the set of classes, and let XN

n (t), n ∈ NN , t ∈ N0 be a random
variable defined on the probability space (Ω,F ,P) representing the class of the n-th
object at time t ≥ 0. Hence, XN

n (t) ∈ S for all n ∈ NN and t ∈ N0. The process
XN

n (t) is controlled by an agent who chooses an action u(t) at each time t ∈ N0,
from a given Borel set U . In concrete, the evolution of

(
XN

n (t) : t ∈ N0

)
is given by:

XN
n (t+ 1) = F

(
XN

n (t), u(t), ξ(t)
)
, t ∈ N0

where F : S × U × R → S is a given (known) function and (ξ(t) : t ∈ N0) is a
sequence of independent and identically distributed Real random variables defined
on (Ω,F ,P) with a common (but unknown) density ρ.

Next, we describe the evolution of the system. The central controller selects
her/his/its action u ∈ U , and a random movement of the objects from class i ∈ S
to class j ∈ S happens according to a transition probability

Kρ
ij(u) :=P

(
XN

n (t+ 1) = j|XN
n (t) = i, u(t) = u

)
=

∫
R
Ij (F (i, u, z)) ρ(z)dz,

(2.1)

which is homogeneous in N (see (2.2) in [18]). Finally, the agent pays a cost that
depends on the proportion of the objects in each state. Note that Kρ

ij(·) greatly
depends on ρ, which, at this point, is unknown to the controller. However, at each
time, it is possible for the central agent to observe the behavior of the objects. We
will deal with this in the sequel.

Assumption 2.1. (i) The control space U is a compact metric Borel space.
We denote its metric as dU .

(ii) The mapping u 7→ Kρ
ij(u) is continuous for all i, j ∈ S.

To define the proportion we just referred to, we assume that the states of the
objects can be observed at all times so that the central controller can determine
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only the cardinality of the objects in each state. We define the proportion MN
i (t)

of objects in state i ∈ S at time t as

MN
i (t) :=

1

N

N∑
n=1

I{XN
n (t)=i} for i ∈ S.

Further, M⃗N (t) :=
(
MN

1 (t),MN
2 (t), ...,MN

s (t)
)
is the vector whose components are

these proportions.
Recall from section 1.1 that P(S) stands for the set of all probability measures on

S. Let PN (S) := {p ∈ P(S) : Np(i) ∈ N for i ∈ S} and note that M⃗N (t) ∈ PN (S) ⊂
P(S). Moreover, since for N fixed and all i ∈ S, we have Np(i) ∈ N, then p(i) is
of the form mi/N with mi ∈ N for mi ≤ N , therefore PN (S) is a finite set. Thus
∪∞N=1PN (S) is a denumerable set. In fact, ∪∞N=1PN (S) is dense subset of P(S) with
the metric induced by ‖·‖∞. Indeed, for every p ∈ P(S), and every ε > 0, there
exists p⃗ ∈ ∪∞N=1PN (S) such that ‖p− p⃗‖∞ < ε. From this fact, we gather that P(S)
is a Borel space with the metric induced by ‖·‖∞ (see [20, Remark 1]). We will use
this property of P(S) in the sequel.

For i ∈ S, n = 1, ..., NMN
i (t) and t ∈ N0, let wi

n(t) be a uniformly distributed
random variable in [0, 1]. Now, by the arguments in [11, 18, 19, 20], there exists a
Borel-measurable function GN

ρ : PN (S)× U × RN → PN (S) such that

(2.2) M⃗N (t+ 1) = GN
ρ

(
M⃗N (t), u(t), w⃗(t)

)
,

where
(
w⃗(t) ∈ RN : t ∈ N0

)
is a sequence of independent and identically distributed

vectors with common distribution θ with w⃗(t) :=
(
w1(t), ..., ws(t)

)
and wi(t) :=(

wi
1(t), ..., wNMN

i (t)(t)
)

for i ∈ S. This renders the process
(
M⃗N (t) : t ∈ N0

)
a

non-homogeneous Markov chain (see [11, 22]).
It is possible to explicitly obtain the function GN

ρ . To this end, we apply the
Monte Carlo Markov chain simulation technique described in [20]. This is the
purpose of Algorithm 1.

From Algorithm 1, we define

(2.3) GN
ρ (m⃗, u, w⃗) :=

(
GN

ρ,1 (m⃗, u, w⃗) , ..., GN
ρ,s (m⃗, u, w⃗)

)
for (m⃗, u, w⃗) ∈ PN (S)× U × [0, 1]N , where

(2.4) GN
ρ,j (m⃗, u, w⃗) :=

1

N

s∑
i=1

Nmi∑
n=1

I∆ij(u)

(
wi
n

)
,

for j ∈ S, with m⃗ = (m1, ...,ms).

Observe that GN
ρ defined in (2.3)-(2.4) is the dynamic of the process M⃗N (t) in

(2.2). At the same time, M⃗N (t) ∈ PN (S) ⊂ P(S) stands for the layout of the system
at time t, which depends on the controller’s actions –see (2.2)-.

The following result is a consequence of Assumption 2.1 (see also the discussion at
Remark 2.2 in [18] and Remark 2.4(b) in [17]). It is the first step to prove the lower
semi-continuity of the expected α-discounted cost and the expected average cost
defined below. Our proof closely follows the arguments presented in Proposition 1
in [20].
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Algorithm 1: Simulation of the dynamic of a generic object

Data: Initial distribution of proportions M⃗N (0) and transition probability

function Kρ(u) =
[
Kρ

ij(u)
]

Result: General form of GN
ρ

1 w⃗(0)← 0 ∈ RN ;

2 for t ∈ N0 do
3 for j ∈ S do

4

[
GN

ρ

(
M⃗N (t), u, w⃗(t)

)]
j
←MN

j (t)

5 end

6 for i, j ∈ S and u ∈ U do

7 Ψij(u)←
∑j−1

ι=1 K
ρ
iι(u);

8 ∆ij(u)← [Ψij(u),Ψi,j+1(u)] ⊆ [0, 1]; ▷ The symbol {∆ij(u)}j∈S
defines a partition of [0, 1] for each i ∈ S. The size of

∆ij(u) stands for the probability that the object moves

from class i to class j when the agent selects the action

u ∈ U.

9 end

10 for i ∈ S do
11 for n = 1, ..., NMN

i (t) do
12 generate υ ∼ U(0, 1);

13 wi
n(t)← υ

14 end

15 end

16 w⃗(t)←
(
w1(t), ..., ws(t)

)
; ▷ since

s∑
i=1

NMN
i (t) = N, then

w⃗(t) ∈ [0, 1]N.

17 for j ∈ S do

18 MN
j (t+ 1)← 1

N

s∑
i=1

NMN
i (t)∑

n=1

I∆ij(u)

(
wi
n(t)

)
19 end

20 end

Theorem 2.2. Let Assumption 2.1 hold. For all w⃗ ∈ RN , the mapping (m⃗, u) 7→
GN

ρ (m⃗, u, w⃗) defined in (2.3)-(2.4) is continuous θ-a.s.

Proof. The fact that m⃗ 7→ GN
ρ (m⃗, ·, ·) is continuous follows from (2.3) and (2.4).

Now take a converging sequence uk → u as k →∞. Since by Assumption 2.1(i), U
is a compact set, we know that u ∈ U . Moreover, Assumption 2.1(ii) yields that,
for all i, j ∈ S,

(2.5) Ψij(uk)→ Ψij(u) as k →∞,



768 J. D. LÓPEZ-BARRIENTOS, J. M. MENDOZA MADRID, AND P. F. GONZÁLEZ-VEGA

where Ψij is the function defined in line 7 in Algorithm 1. This fact, and line 8 in
Algorithm 1 enable us to assert that

∆ij(uk) = [Ψij(uk),Ψi,j+1(uk)]→ [Ψij(u),Ψi,j+1(u)] = ∆ij(u) as k →∞.

Let w ∈ ]Ψij(u),Ψi,j+1(u)[. Then, (2.5) yields that there exist K1,K2 ∈ N such
that w < Ψi,j+1(uk) for all k > K1 and w > Ψij(uk) for all k > K2. Hence,
I]Ψij(uk),Ψi,j+1(uk)[(w) = 1 for all k > K = max(K1,K2). Hence∣∣∣I]Ψij(uk),Ψi,j+1(uk)[(w)− I]Ψij(u),Ψi,j+1(u)[(w)

∣∣∣ = 0 for all k > K.

Observe that ∆ij(u) \ ]Ψij(u),Ψi,j+1(u)[ = {Ψij(u),Ψi,j+1(u)} =: ∂∆ij(u) is a
finite set. Therefore, u 7→ I∆ij(u)(w) is continuous for all i, j ∈ S and for all

w ∈ [0, 1] \ ∪j∈S∂∆ij(u). This fact, together with (2.3) and (2.4) imply that

(m,u) 7→ GN
ρ (m,u, ·) is continuous θ-almost surely. This completes the proof. □

To complete the description of the model, we define a cost function c : P(S)×U →
R that depends on the proportion of the objects and the action selected by the agent.
Once the agent has selected her/his/its action u, she/he/it incurs in the one-stage

cost c
(
M⃗N , u

)
. Now we give the hypotheses we use for this function.

Assumption 2.3. The one-stage cost function c has the following features.

(i) For some constant Lc, and all m⃗, m⃗′ ∈ P(S),

sup
u,u′∈U

|c(m⃗, u)− c(m⃗′, u′)| ≤ Lc‖m⃗− m⃗′‖∞.

That is, the one-stage cost function is uniformly Lipschitz in the state ar-
gument.

(ii) The one-stage cost function is lower semi-continuous on P(S)×U . That is,
for each λ ∈ R, the set {(m⃗, u) ∈ P(S) × U : c(m⃗, u) ≤ λ} ⊆ P(S) × U is
closed.

Remark 2.4. The finiteness of the state space S implies that P(S) is compact.
Thus, Assumption 2.3(i) yields the existence of a constant R > 0 such that

sup
(m⃗,u)∈P(S)×U

|c(m⃗, u)| ≤ R.

Moreover, this condition, along with Assumption 2.3(ii) imply that for each λ > 0,
the set {(m⃗, u) ∈ P(S) × U : c(m⃗, u) ≤ λ} ⊆ P(S) × U is compact. That is, the
one-stage cost function is inf-compact on P(S)× U .

3. Formulation of the controlled N-object Markov model

Now we define the discrete-time Markov decision process associated with the
N -object system previously introduced (in short, N -MDP), through the following
elements:

(3.1) MN :=
(
PN (S), U,GN

ρ , θ, c
)
.

This model describes the evolution of the system. At the time t ∈ N0, the agent

observes the state m⃗ = M⃗N (t) ∈ PN (S), and then chooses an action u = u(t) ∈ U .
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As a consequence, the agent incurs in a cost c(m⃗, u), and the system evolves to a

new state m⃗′ = M⃗N (t+ 1) ∈ B according to the transition law

Qρ(B|m⃗, u) := P
(
M⃗N (t+ 1) ∈ B|M⃗N (t) = m⃗, u(t) = u

)
=

∫
[0,1]N

IB
(
GN

ρ (m⃗, u, w⃗)
)
θ(dw⃗),

(3.2)

with GN
ρ as in (2.3)-(2.4). Then, the process repeats itself and the one-stage costs

for the agent are accumulated by means of an expected cost criterion. The ultimate
goal of the central agent is to minimize the expected average cost referred to in
Definition 3.6 below.

The control policies are the actions taken by the central agent. We define them
by letting HN

0 := PN (S), now, for t = 1, 2, ..., we denote the space of histories up to
time t as

HN
t :=

(
PN (S)× U × R× RN

)t × PN (S).

With this in mind, we let hN0 :=
(
M⃗N (0)

)
∈ HN

0 ,

hN1 :=
(
M⃗N (0), u(0), M⃗N (1)

)
∈ HN

1 ,

and in general, for t = 1, 2, ..., we define

hNt :=
(
hNt−1, u(t− 1), M⃗N (t)

)
∈ HN

t .

Recall subsection 1.1. Let us denote the Borel σ-algebra of U as B(U). Further,
let P(U) represent the family of all probability measures on U endowed with the
topology of weak convergence. For technical reasons, we will consider the so-called
randomized control policies defined as follows.

Definition 3.1. We will say that a randomized control policiy is a sequence πN :=(
πN
t : t ∈ N0

)
of stochastic kernels πN

t on U given HN
t . That is:

(a): for each hNt ∈ HN
t , and t ∈ N0, π

N
t (·|hNt ) is a probability measure on U ,

so that πN
t (U |hNt ) = 1 for all hNt ∈ HN

t , and t ∈ N0;
(b): for each D ∈ B(U) and t ≥ 0, πN

t (D|·, ·) is a Borel function on HN
t ; and

(c): for each B ∈ B(U), hNt ∈ HN
t , the mapping t 7→ πN

t (B|hNt ) is Borel-
measurable.

The symbol ΠN denotes the set of admissible control policies.

Let Ω′ := (PN (S)× U)∞, and F ′ be a σ-algebra of events of Ω′. If πN ∈ ΠN is

a randomized control policy and M⃗(0) = m⃗ ∈ PN (S) is an initial state of the sto-

chastic process
(
M⃗(t) : t = 0, 1, ...

)
, the theorem of Ionescu-Tulcea (see [4, Chapter

5.4], [13, Proposition C.10 and Remark C.11] and [24, Proposition V.1.1]) yields the

existence of a unique probability measure PπN

m⃗ on (Ω′,F ′) such that, for all t ∈ N0,

• PπN

m⃗ (m⃗ ∈ B) = δm⃗(B), B ∈ B (PN (S)),

• PπN

m⃗

(
u(t) ∈ C|hNt

)
= πN

t

(
C|hNt

)
for C ∈ B(U),
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• a Markov-like property holds:

PπN

m⃗

(
M⃗(t+ 1) ∈ B|hNt , u(t)

)
= Qρ

(
B|M⃗(t), u(t)

)
=

∫
[0,1]N

IB
[
GN

ρ

(
M⃗(t), u(t), w⃗

)]
θ(dw⃗) for B ∈ B (PN (S)) ,

where Qρ is as in (3.2).

The stochastic process
(
Ω′,F ′,PπN

m⃗ ,
(
M⃗(t)

))
is a discrete-time Markov control pro-

cess. We will refer to the probability measure PπN

m⃗ as the strategic probability mea-
sure, in the fashion of [7]. See the paragraph about the canonical construction in
[13, p.15-16], Remark 2.3 in [18], the first three lines on [19, p.65], Remark 2.4 in
[17] and Remark 2 in [20].

Definition 3.2. (i) Let F be the class of all measurable functions f : P(S) →
U , and FN := F|PN (S) be the restriction of F over PN (S). A policy πN ∈ ΠN

is said to be a (deterministic) Markov policy for the N -MDP MN if there
exists a sequence

(
fN
t : t ∈ N0

)
⊆ FN such that, for all t ∈ N0 and hNt ∈ HN

t ,

we have that πN
t (·|hNt ) = δfN

t (M⃗N (t))(·). In this case, πN =
(
fN
t : t ∈ N0

)
.

The symbol ΠN
M stands for the class of all Markov policies in the model

MN .
(ii) If there exists a sequence (ft : t ∈ N0) ⊆ F such that, for all t ∈ N0 and hNt ∈

HN
t , we have that πt(·|hNt ) = δft(M⃗N (t))(·), then the set of (deterministic)

Markov policies is denoted as ΠM . In other words, ΠM is the class of
sequences in F.

(iii) If in (ii), fN
t ≡ fN for some fN ∈ F and all t ∈ N0, then πN is a stationary

policy. By abusing the notation, we denote the set of stationary policies as
F (and FN ).

The next result is a consequence of Theorem 2.2 and the dominated convergence
theorem. It matches Assumption 3.18(c) in [16] and Assumption 3.1(c) in [28].

Proposition 3.3. Under Assumption 2.1, the transition law Qρ(·|·, ·) is weakly
continuous on PN (S)× U. That is, the mapping

(m⃗, u) 7→
∫
P(S)

v(y)Qρ(dy|m⃗, u)

is continuous for each continuous and bounded function v.

Proof. Note that, by Algorithm 1 and (3.2), for each bounded and continuous func-
tion v : P(S)→ R,∫

P(S)
v(y)Qρ(dy|m⃗, u) =

∫
[0,1]N

v
[
GN

ρ (m⃗, u, w⃗)
]
θ (dw⃗) .

Let (m⃗k) ⊂ PN (S) and (uk) ⊂ U be a couple of sequences such that ‖m⃗k − m⃗‖∞ → 0
and dU (uk, u)→ 0 as k →∞, for (m⃗, u) ∈ PN (S)× U . Since v is a continuous and
bounded function, the dominated convergence theorem and Theorem 2.2 yield that

lim
k→∞

∫
[0,1]N

v
[
GN

ρ (m⃗k, uk, w⃗)
]
θ (dw⃗) =

∫
[0,1]N

v
[
GN

ρ (m⃗, u, w⃗)
]
θ (dw⃗) .
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This completes the proof. □

Assumption 2.1(i) and Proposition 3.3 correspond to assumptions (W1)-(W2) in
[7]. This fact enables us to use [7, Lemma 1] and thus assert that the set of strategic

probability measures P :=
{
PπN

m⃗ : πN ∈ ΠN
}
is a compact subset of P(Ω′) endowed

with the topology of weak convergence. Moreover, the functional P 7→
∫
Ω′ vdP is

lower semi-continuous on P for every bounded from below and lower semi-continuous
function v on Ω′.

3.1. Discounted and ergodic optimalities in the N-MDP. In the former sub-
section we presented the system of our interest. Now we present the criteria we will
study.

For each control policy πN ∈ ΠN and initial state M⃗N (0) = m⃗ ∈ PN (S), define
the expected α-discounted cost as

(3.3) V N
(
πN , m⃗;α

)
:= EπN

m⃗

[ ∞∑
t=0

αtc
(
M⃗N (t), u(t)

)]
,

where the so-called discount factor α is in the interval ]0, 1[, and EπN

m⃗ [·] stands for
the conditional expectation operator with respect to the probability measure PπN

m⃗

when the agent chooses the control policy πN given M⃗N (0) = m⃗. Analogously, for

each control policy πN ∈ ΠN and initial state M⃗N (0) = m⃗ ∈ PN (S), we define the
expected average cost as

(3.4) JN
(
πN , m⃗

)
:= lim sup

T→∞

1

T
EπN

m⃗

[
T−1∑
t=0

c
(
M⃗N (t), u(t)

)]
.

In view of Assumption 2.1(i), Remark 2.4, Proposition 3.3, we can quote [7, Lemma
2] to claim that both the expected α-discounted and average costs from (3.3) and
(3.4), respectively, are lower semi-continuous in

(
πN , m⃗

)
∈ ΠN × P(S). (In fact,

Lemma 2 in [7] proves only that (3.3) is lower semi-continuous with respect to the

strategic probability measure PπN

m⃗ ∈ P . However, the proof that also (3.4) is lower

semi-continuous with respect to PπN

m⃗ ∈ P can be obtained from the same result,
and Abelian Theorem 1.1.)

Definition 3.4. We say that πN
∗ ∈ ΠN is an optimal control policy for the N -MDP

MN under the expected α-discounted cost criterion (3.3) if

V N
∗ (m⃗;α) := inf

πN∈ΠN
V N

(
πN , m⃗;α

)
= V N

(
πN
∗ , m⃗;α

)
for m⃗ ∈ PN (S).

(3.5)

We call V N
∗ (·;α) the expected α-discounted optimal value function for the N -MDP

MN .

The following is a very important result, which we borrow from Theorem 3.21(d)
in [16] (see also Theorem 4.2.3 in [13]).
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Proposition 3.5. Let Assumptions 2.1 and 2.3 hold, and let π∗ ∈ FN be an optimal
control policy with respect to the Markov strategies, i.e.,

(3.6) V N (π∗, m⃗;α) ≤ V N (π, m⃗;α) for all π ∈ ΠN
M , m⃗ ∈ PN (S).

Then π∗ is an optimal control policy with respect to all control policies. That is,
(3.6) holds.

By virtue of Proposition 3.5, we analyze only stationary control policies.
Now we introduce the definition of the average value function. It is analogous to

Definition 3.4.

Definition 3.6. We say that πN
∗ ∈ ΠN is an optimal control policy for the N -MDP

MN under the expected average cost criterion (3.4) if

(3.7) JN
∗ (m⃗) := inf

πN∈ΠN
JN
(
πN , m⃗

)
= JN

(
πN
∗ , m⃗

)
for m⃗ ∈ PN (S).

We call JN
∗ (·) the expected average optimal value function for the N -MDPMN .

The expected α-discounted and the expected average cost criteria from Defini-
tions 3.4 and 3.6 are related by the Abelian Theorem 1.1 (see for instance, the
discussion immediately after Lemma 5.3.1 in [13] and Remark 2.1 in [28]). Indeed,

take ct := EπN

m⃗ c
(
M⃗(t), u(t)

)
and observe that, by linearity, the third inequality in

the Abelian Theorem 1.1, (3.3) and (3.4) give

lim sup
α↑1

(1− α)V N
(
πN , m⃗;α

)
≤ JN

(
πN , m⃗

)
for all πN ∈ ΠN , m⃗ ∈ PN (S).

Thus, from (3.5),

lim sup
α↑1

(1− α)V N
∗ (m⃗;α) ≤ JN

(
πN , m⃗

)
for all πN ∈ ΠN , m⃗ ∈ PN (S).

Which in turn, since πN ∈ ΠN was arbitrary, by Definition 3.6 implies that

(3.8) lim sup
α↑1

(1− α)V N
∗ (m⃗;α) ≤ JN

∗ (m⃗) for all m⃗ ∈ PN (S).

(See also Lemma 5.7(b) in [15].) This means that the product of (1 − α) with the
expected α-discounted optimal value function for the N -MDP is a lower bound of
the expected average optimal value function for the N -MDP, when α is close to the
unit.

We begin by characterizing the optimal control policies for the expected α-
discounted cost criterion and the corresponding value function for the N -MDPMN

by means of the following result (see Proposition 2.4 in [18], Theorem 3.3 in [28]).

Proposition 3.7. Let m⃗ ∈ PN (S), α be the discount factor referred to in (3.3),
and Assumptions 2.1 and 2.3 hold. Then:

(i) The expected α-discounted optimal value function for the N -MDPMN (3.5)
satisfies the dynamic programming equation:

(3.9) V N
∗ (m⃗;α) = min

u∈U

[
c(m⃗, u) + α

∫
[0,1]N

V N
∗
(
GN

ρ (m⃗, u, w⃗) ;α
)
θ(dw⃗)

]
.

Moreover
∣∣V N

∗ (m⃗;α)
∣∣ ≤ R

1−α .
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(ii) There exists fN
∗ ∈ FN such that fN

∗ (m⃗) ∈ U attains the minimum in (3.9).
That is,

V N
∗ (m⃗;α) = c

(
m⃗, fN

∗
)
+ α

∫
[0,1]N

V N
∗
(
GN

ρ

(
m⃗, fN

∗ , w⃗
)
;α
)
θ(dw⃗).

In fact, the stationary policy πN
∗ =

(
fN
∗
)
∈ ΠN

M is α-discounted optimal for
the control model MN .

Definition 3.8. Let µN
α := inf

m⃗∈P(S)
V N
∗ (m⃗;α), and JN

∗ := lim sup
α↑1

(1 − α)µN
α ; and

define the relative discounted value function as:

rNα (m⃗) := V N
∗ (m⃗;α)− µN

α , for each α ∈]0, 1[.

It is straightforward that we can re-state (3.9) as

(1− α)µN
α + rNα (m) = min

u∈U

[
c(m⃗, u) + α

∫
[0,1]N

rα
(
GN

ρ (m⃗, u, w⃗)
)
θ(dw⃗)

]
.

One would hope that, letting α ↑ 1 in the former equation, we could obtain

JN
∗ + rN (m⃗) = min

u∈U

[
c(m⃗, u) +

∫
[0,1]N

rN
(
GN

ρ (m⃗, u, w⃗)
)
θ(dw⃗)

]
for some rN (·). Asserting this is very difficult in general. However, the following
hypothesis will enable us to state Proposition 3.10 (which is the next best thing).

Assumption 3.9. Let infm⃗∈PN (S) J
N
∗ (m⃗) be a finite-valued constant, and rN (·) :=

lim infα↑1r
N
α (·) be a finite-valued function.

The first part of Assumption 3.9 and (3.8) enable us to avoid the trivial case where
the expected optimal value functions for the N -MDP from (3.5) and (3.7) fail to
exist. We use the second part of Assumption 3.9 to define the lower semi-continuous
envelope of rN (·) as

(3.10) rN∗ (m⃗) := sup
s>0

inf
ℓ⃗∈Bs(m⃗)

rN (ℓ⃗) for all m⃗ ∈ PN (S),

where Bs(m⃗) stands for the open ball with center m⃗ ∈ PN (S) and radius s > 0.
The following result is a consequence of the Abelian Theorem 1.1 and of Propo-

sition 3.3. The details can be consulted in Theorem 4.5 in [28] (see also Theorem
5.9 in [15], Theorem 3.31 in [16] and Theorem 4 in [8]). One of the hypotheses of
[28, Theorem 4.5] is the weak continuity of the transition probability of the model
MN , which holds by virtue of Proposition 3.3. Another assumption made in [28,
Theorem 4.5] is the inf-compactness of the one-stage cost function c, which holds
by virtue of Remark 2.4.

Proposition 3.10. If Assumptions 2.1, 2.3 and 3.9 hold then

(i) The expected ergodic optimal value function for the N -MDP MN (3.7) is
such that

(3.11) JN
∗ + rN∗ (m⃗) ≥ min

u∈U

[
c(m⃗, u) +

∫
[0,1]N

rN∗
(
GN

ρ (m⃗, u, w⃗)
)
θ(dw⃗)

]
,
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where rN (·) is as in (3.10).
(ii) There exists fN

∗ ∈ FN such that fN
∗ (m⃗) ∈ U attains the minimum in (3.11).

That is,

min
u∈U

[
c(m⃗, u) +

∫
[0,1]N

rN∗
(
GN

ρ (m⃗, u, w⃗)
)
θ(dw⃗)

]

= c
(
m⃗, fN

∗
)
+

∫
[0,1]N

rN
(
GN

ρ

(
m, fN

∗ , w⃗
))

θ(dw⃗)

(3.12)

for m⃗ ∈ PN (S). In fact, the stationary policy πN
∗ =

(
fN
∗
)
∈ ΠN

M is an
optimal control policy for the N -MDPMN under the expected average cost
criterion (3.4) and JN

∗ = JN
∗ (m⃗) = JN

(
πN
∗ , m⃗

)
for all m⃗ ∈ P(S).

Proposition 3.10 represents a possibility to study ergodic optimality in systems
with interacting objects. However, as is the case of the problem studied in [18],
from a practical standpoint, its applicability is severely constrained because N is
too large, and there is no information so as to the functional form of the density
ρ. In fact, in order to examine (3.12), it is necessary to solve a multiple integral of
dimension N , and the dynamics of the system depends on the unidentified density
ρ.

4. A deterministic control model

Recall the model from (3.1) and consider instead the deterministic modelM =
(P(S), U,Gρ, c), where Gρ : P(S) × U → P(S) is a Lipschitz-continuous function
with Lipschitz constant LG (that is implicitly dependent on ρ). That is

(4.1)
∥∥Gρ(m⃗, u)−Gρ(m⃗

′, u′)
∥∥
∞ ≤ LGmax

(∥∥m⃗− m⃗′∥∥
∞ , dU (u, u

′)
)
,

for m⃗, m⃗′ ∈ P(S) and u, u′ ∈ U . We will refer toM as the mean-field control model
and use Proposition 3.5 to consider that the set of control policies for the modelM
is ΠM . With this in mind, recall (2.2) and let

m⃗(t+ 1) := Gρ (m⃗(t), u(t)) ,

with the initial condition m⃗ = m⃗(0) ∈ P(S).
Now define the total discounted cost for the mean-field model as

v(π, m⃗;α) =
∞∑
t=0

αtc(m⃗(t), u(t)).

Proposition 3.2 in [18] asserts the existence of a control policy π∗ ∈ ΠM such
that the so-called mean-field value function under the total discounted criterion
v∗(m⃗;α) := infπ∈ΠM

v(π, m⃗;α) for m⃗ ∈ P(S) satisfies

(4.2) v∗(m⃗;α) = inf
u∈U

[c(m⃗, u) + αv∗ (Gρ(m⃗, u);α)] for m⃗ ∈ P(S).

Next define the average cost for the mean-field model M as

j(π, m⃗) := lim sup
T→∞

1

T

T−1∑
t=0

c (m⃗(t), u(t)) .



AN ABELIAN THEOREM FOR A MEAN-FIELD MDP WITH UNKNOWN LAW 775

Section 5.4 in [15] proves that it is possible to use the Abelian Theorem 1.1 to prove
the existence of a stationary policy π∗ = (f∗) ∈ ΠM such that f∗ ∈ F such that the
average optimal value function for the mean-field model M j(m⃗) := infπ∈Π j(π, m⃗)
is attained for m⃗ ∈ P(S) (provided that j(m⃗) <∞ for all m⃗ ∈ P(S)). We summarize
this procedure for we will need it in the sequel.

For each α ∈]0, 1[, we define

µα := inf
m⃗∈P(S)

v∗(m⃗;α),

the relative discounted value function

rα(m⃗) := v∗(m⃗;α)− µα,

and jα := (1− α)µα. Rewrite (4.2) as

jα + rα(m⃗) = inf
u∈U

[c(m⃗, u) + αrα(Gρ(m⃗, u))]

Observe that the third inequality in the Abelian Theorem 1.1 yields that

(4.3) j∗ := lim sup
α↑1

jα ≤ inf
m⃗∈P(S)

j(m⃗).

Now we quote Theorem 5.9 in [15], which is somewhat of a deterministic analog of
our Proposition 3.10 (see also Remark 2.60 in [16]).

Proposition 4.1. Let Assumptions 2.1 and 2.3 hold, and the function Gρ be as
in (4.1). Furthermore, let infm⃗∈PN (S) j(m⃗) be a finite-valued constant, and r(·) :=
lim infα↑1 rα(·) be a finite-valued function.

Then, there exists a finite-valued lower semi-continuous and bounded below func-
tion r∗ with r∗(·) ≤ r(·) such that the pair (j∗, r∗) satisfies the average control
mean-field optimality inequality:

(4.4) j∗ + r∗(m⃗) ≥ inf
u∈U

[c(m⃗, u) + r∗ (Gρ (m⃗, u))] .

In fact, there exists f∗ ∈ F such that f∗(m⃗) ∈ U attains the minimum in (4.4). That
is,

(4.5) inf
u∈U

[c(m⃗, u) + r∗ (Gρ (m⃗, u))] = c (m⃗, f∗) + r∗ (Gρ (m⃗, f∗))

for m⃗ ∈ P(S). Hence, the policy π∗ = (f∗) ∈ ΠM , such that f ∈ F, is optimal.

Remark 4.2. The inequalities (4.4)-(4.5) give that j∗ ≥ j(π∗, m⃗) for all m⃗ ∈ P(S).
Indeed, let m⃗f∗(t + 1) := Gρ (m⃗(t), f∗) be the dynamic of M under the policy
π∗ = (f∗) ∈ ΠM , for f∗ ∈ F. By virtue of (4.4)-(4.5), we can assert that

j∗ ≥ c (m⃗(t), f∗) + r∗ (Gρ (m⃗(t), f∗))− r∗ (m⃗(t))

= c (m⃗(t), f∗) + r∗

(
m⃗f∗(t+ 1)

)
− r∗ (m⃗(t)) .

Therefore

Tj∗ ≥
T−1∑
t=0

[
c (m⃗(t), f∗) + r∗

(
m⃗f∗(t+ 1)

)
− r∗ (m⃗(t))

]
=

T−1∑
t=0

c (m⃗(t), f∗) + r∗

(
m⃗f∗(T )

)
− r∗ (m⃗(0)) .



776 J. D. LÓPEZ-BARRIENTOS, J. M. MENDOZA MADRID, AND P. F. GONZÁLEZ-VEGA

Multiplying both sides by 1/T and letting T → ∞ give that j∗ ≥ j(π∗, m⃗). The
reverse inequality is given by (4.3), which implies that j∗ = infm⃗∈P(S) j(m⃗).

Since the unknown density function ρ is very important to characterize the opti-
mal policies, we need to estimate it to actually obtain average optimal policies and
values. We aim for this next.

4.1. Estimation procedure in the Mean-Field model. Our approach is a mod-
ified version of the one presented in [18]. To this end, consider the unknown density

ρ referred to in (2.1) and let ρk(·) := ρk(·; ξ̃0, ..., ξ̃k−1) be an estimator of ρ such
that, as k →∞, ∫

R
|ρk(z)− ρ(z)|dz → 0 a.s.,(4.6)

sup
(m⃗,u)∈P(S)×U

‖Gρk(m⃗, u)−Gρ(m⃗, u)‖∞ → 0 a.s.(4.7)

where ξ̃0, ..., ξ̃k−1 are independent observations of the random variable with density
ρ. By virtue of (4.7) and the dominated convergence theorem, it is straightforward
that, for all π ∈ ΠM ,

Eπ
m⃗

[
sup

(x⃗,u)∈P(S)×U
‖Gρk(x⃗, u)−Gρ(x⃗, u)‖∞

]
→ 0 as k →∞.

We use this certainty as a termination criterion in Algorithm 2.
Recall the notation used in Remark 4.2 for the dynamic of M under the policy

πk = (fk ∈ F) ∈ ΠM , and replace Gρ by Gρk to obtain m⃗fk(t+1) := Gρk (m⃗(t), fk).
Provided that the pair (j∗, r∗) satisfies the average control mean-field optimality
inequality (4.4), Algorithm 2 is our implementation of the classic Howard’s policy
iteration procedure that obtains an optimal policy (f∗) ⊂ F for the mean-field model
M and a pair (j∗, r∗) that satisfies (4.4). Section 2.4 in [16] presents it for discrete-
time control problems under the discounted cost criterion, while Remark 2.4 in [14]
states the stochastic version of the algorithm for MDPs under the long-run cost
criterion.

Remark 4.3. (1) Line 1 in Algorithm 2 is the so-called initialization phase of
the policy iteration algorithm. Then, the algorithm goes into the loop from
lines 4-7. Lines 4 and 5 stand for the phase of policy evaluation, while line
6 improves (reduces) the value of jk. Indeed, from lines 4-6, it is clear that

jk + rk ≥ jk+1 + rk+1.

(2) By the feature we imposed on jk at line 4, it is straightforward that the
function sought by line 5 is such that

rk

(
m⃗fk(t)

)
≤ rk

(
m⃗fk(0)

)
+

t−1∑
s=0

[
jk − c

(
m⃗fk(s), fk

)]
≤ rk

(
m⃗fk(0)

)
+

1− εt

1− ε

≤ rk

(
m⃗fk(0)

)
+

1

1− ε
.
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Algorithm 2: The policy iteration algorithm

Data: Estimated densities (ρk(·)) that meet (4.7) and tolerance level
0 < ε < 1.

Result: Triplet (j∗, r∗, (f∗)) that meets (4.4).
1 k ← 0;

2 Select (fk) ⊂ F;
3 do
4 Find a constant jk such that

∣∣jk − c
(
m⃗fk(t), fk

)∣∣ < εt for all t ≥ 0;

5 Find a lower semi-continuous function rk : P(S)→ R such that

jk + rk(m⃗) ≥ c(m⃗, fk) + rk (Gρk(m⃗, fk)) for all m⃗ ∈ P(S); ▷ Note that,

in particular, jk + rk(m⃗) ≥ inf
u∈U

[c(m⃗, u) + rk (Gρk(m⃗, u))].

6 Find (fk+1) ⊂ F such that

c(m⃗, fk+1) + rk (Gρk(m⃗, fk+1)) = inf
u∈U

[c(m⃗, u) + rk (Gρk(m⃗, u))];

7 k ← k + 1;

8 while |jk−1 − jk| ≥ ε or sup
(m⃗,u)∈P(S)×U

∥∥Gρk(m⃗, u)−Gρk−1
(m⃗, u)

∥∥
∞ ≥ ε;

9 return (jk, rk, (fk));

This implies that the sequence (rk) generated by Algorithm 2 is bounded.
This fact will be used in the proof of Lemma 4.5 below.

(3) The procedure leaves the loop only if the termination criteria from line 8
are eventually met. That is, if the approximations jk to j∗ in (4.4); and Gρk
to Gρ in (4.7) are good enough.

Our next result is a consequence of Proposition 4.1. It ensures that Algorithm 2
converges, that is jk ↓ j∗ as k →∞.

Proposition 4.4. Let Assumptions 2.1 and 2.3 hold, the function Gρ be as in

(4.1), j∗ = infm⃗∈PN (S) j(m⃗) < ∞, and r∗(m⃗) := sups>0 inf ℓ⃗∈Bs(m⃗)
r(ℓ⃗) for all m⃗ ∈

PN (S) < ∞ (that is, r∗ < ∞ is the lower semi-continuous envelope of r(·) =
lim infα↑1 rα(·)). Let (jk, rk) be as in Algorithm 2. Then:

(i) If there exists k ∈ N for which

|jk+1 − jk| < ε, and(4.8)

sup
(m⃗,u)∈P(S)×U

∥∥Gρk+1
(m⃗, u)−Gρk(m⃗, u)

∥∥
∞ < ε for all ε > 0,(4.9)

then j∗ ≡ jk and r∗(·) = rk(·) satisfy (4.4) and fk is an optimal control.
(ii) As k →∞, jk ↓ j∗.
(iii) The sequence of functions (rk) generated by Algorithm 2 is such that, for all

m⃗ ∈ P(S), t = 0, 1, ... and f ∈ F,

Ef
m⃗ |rk (m⃗(t))− r∗ (m⃗(t))| → 0 as k →∞.

To prove Proposition 4.4, we need the following ancillary result.
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Lemma 4.5. Let (rk) be the sequence of functions generated by Algorithm 2; and
Assumptions 2.1 and 2.3 hold. Then, there is a measurable function r∗ : P(S)→ R
and a subsequence (kι) ≡ (ι) of (k) such that rι → r∗ as ι→∞.

Proof. By Remark 4.3(2), it is straightforward that every member of the sequence
(rk) generated by Algorithm 2 is bounded in L∞ (P(S),B (P(S)) , ν), where ν is any
σ-finite measure (for instance, Lebesgue’s measure). Now, Banach-Alaoglu theorem
for separable spaces (see, for instance, Theorem 5.1 in [3]) yields the result. □

Now we are ready to prove Proposition 4.4.

Proof of Proposition 4.4. (i) Let (rι) be the subsequence of functions generated
by Algorithm 2 referred to by Lemma 4.5, and (fι) be the corresponding
subsequence. By [26, Proposition 12.2] (or [13, Proposition D.7]), we can
assert the existence of an accumulation point f∗ of the latter. That is, for
each m⃗ ∈ P(S), there exists a subsequence (ικ) of (ι) such that

(4.10) lim
κ→∞

fικ(m⃗) = f∗(m⃗).

Now fix an arbitrary m⃗ ∈ P(S) and let ικ as in (4.10). Replace k by ικ in
lines 4-5 of Algorithm 2, use (4.8) and (4.9); and let κ→∞ to see that

j∗ + r∗(m⃗) ≥ c (m⃗, f∗) + r (Gρ(m⃗, f∗)) .

(ii) This is a consequence of part (i) and Remark 4.2.
(iii) Lemma 4.5 and the dominated convergence theorem yield the desired out-

come.
This completes the proof. □

4.2. Performance analysis. We complete this paper by analyzing how well the
policies found by Algorithm 2 perform in the original model MN . We adapt [18,
Assumption 5.1] to our context (sufficient conditions to ensure that it holds are
given in Theorem 1 in [20]).

Assumption 4.6. Let m⃗ := M⃗N (0) = m⃗(0) for all N ∈ N. For each m⃗(t) ∈ P(S),
M⃗N (t) ∈ PN (S); T ∈ N and ε > 0 there exist positive constants K and λ such that

sup
π∈ΠM

Pπ
m⃗

(
sup

0≤t≤T

∥∥∥M⃗N (t)− m⃗(t)
∥∥∥
∞
≥ γT (ε)

)
≤ KT e−λNε2 ,

where γT (ε) is a finite-valued o(ε) function.

Now we establish our final result.

Theorem 4.7. If Assumptions 2.1, 2.3, 3.9 and 4.6 hold, then

sup
φ∈ΠM

Eφ
m⃗

∣∣JN
∗ − j∗

∣∣→ 0 as N →∞.

Proof. Note that, for all α ∈]0, 1[,
sup

φ∈ΠM

Eφ
m⃗

∣∣JN
∗ − j∗

∣∣ ≤ sup
φ∈ΠM

Eφ
m⃗ |(1− α)v∗ (m⃗;α)− j∗|

+ sup
φ∈ΠM

Eφ
m⃗

∣∣∣JN
∗ − (1− α)V N

∗

(
M⃗N ;α

)∣∣∣
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+ sup
φ∈ΠM

Eφ
m⃗

∣∣∣(1− α)V N
∗

(
M⃗N ;α

)
− (1− α)v∗ (m⃗;α)

∣∣∣ .
Since the choice of α is abritrary, we can use Proposition 3.10 to see that

(4.11) lim sup
α↑1

(1− α)v∗ (m⃗;α) = j∗.

So that the first term in the right-hand side of the inequality above nullifies. Anal-
ogously, Proposition 4.1 gives us that

(4.12) lim sup
α↑1

(1− α)V N
∗

(
M⃗ ;α

)
= JN

∗ .

So, the second term in the right-hand side of the inequality tends to zero as α ↑ 1.
Now let K(T ) := LT

g max
(
Lg, sup(u,u′)∈U×U d(u, u′)

)
for all T . Theorem 5.3(a) in

[18] ensures that

sup
φ∈ΠM

Eφ
m⃗

∣∣(1− α)V N
∗ (m;α)− (1− α)v∗(m;α)

∣∣
≤ 2RαT + Lc

(
1− αT

) (
KT e−λNε2(1 +K(T )) + γT (ε)

)
→ 2RαT + Lc

(
1− αT

)
γT (ε) as N →∞.

The finiteness of the function γT (·) quoted in Assumption 4.6 enables us to assert
that

sup
φ∈ΠM

Eφ
m⃗

∣∣(1− α)V N
∗ (m⃗;α)− (1− α)v∗(m⃗;α)

∣∣→ 0 as T →∞.

for all 0 < α < 1. Finally, take the suprema in ΠM and use (4.11) and (4.12) to
complete the proof. □

5. Concluding remarks

This paper represents an extension of the results presented in [18] to analyze
the ergodic cost criterion by means of the vanishing discount technique spawned
by the Abelian Theorem 1.1, which can be traced back to Hardy’s work (see [12]).
One of the main difficulties that we tackled was that the discrete-time deterministic
version of the optimal control problem under the ergodic crtierion remains an open
problem, so we took advantage of the particularities of the problem at hand to
provide a framework where we could find optimal policies in the space of stationary
Markovian policies. To this end, we based our developments on the valuable survey
[15] and the results presented in Chapter 2 in [16].

The potential applications of the theory presented here include the study of mar-
ket shares in different industries, such as insurance companies, financial markets,
and commercial models, where the central controller is uncertain about the exact
form of the density function of the noise affecting the behavior of the interacting
objects (people, market-makers, consumers). The main strength of the extension
studied here is that it overcomes the fact that the discounted cost criterion empha-
sizes the weight of early stages and puts little attention on the later phases of the
horizon.

Open problems for further studies are:
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• How do we compute the estimation of ρ that meets (4.6)? A possibility
is the use of a discrete-time version of the principle of estimation control
presented in [6], or the games against nature approach used in [19] and [21].
• Is it possible to define zero-sum (as those studied in [20]) and nonzero-sum
games between an oligopoly under the ergodic cost criterion? Moreover, can
we establish stable cooperations among the agents and along the horizon,
in the fashion of [9]?
• Finally, can we obtain control policies that attain optimality under the aver-
age cost criterion for multiple players in finite time? We believe a possibility
in this direction is to work on a discrete-time version of [5]and [23].

Acknowledgement

The authors are truly indebted to the anonymous reviewer appointed by Professor
Alexander Zaslavski. His/her thorough reading of the versions of our manuscript,
and his/her valuable questions, remarks and suggestions made it possible to produce
this version of our work. We also sincerely thank professor Onésimo Hernández-
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[21] H. Jasso-Fuentes and J. D. López-Barrientos, On the use of stochastic differential games
against nature to ergodic control problems with unknown parameters, International Journal
of Control 88 (2015), 897–909.

[22] J.-Y. Le Boudec and D. McDonald and J. Mundinger, A generic mean field convergence result
for systems of interacting objects, in: 4th Int. Conf. Quantitative Evaluation of Systems, IEEE,
Edinburgh, 2007.
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