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demonstrate how they can be employed to incorporate risk aversion in dynamic
programming and to develop risk averse Hamilton–Jacobi–Bellman equations.

Cont et al. [7] point out the importance of estimating risk measures in a robust
way. In this context, Gneiting [13] proves that the Average Value-at-Risk, the most
important risk measure in theory and practice, is not elicitable, that is, it is not
possible to describe the risk measure as minimizer. More generally, Ziegel [39] proves
that the only elicitable spectral risk measure is the (trivial) expectation. Bellini et
al. [4] finally provide a proof that only expectiles constitute elicitable risk measures.

Expectiles have been introduced earlier in Newey and Powell [18] as

(1.1) eα(X) := argmin
x∈R

E ℓα(X − x),

where X is a R-valued random variable, α ∈ (0, 1) and the scoring function (loss
function) is1

(1.2) ℓα(x) := α · x2+ + (1− α)(−x)2+ =

{
α · x2 if x ≥ 0,

(1− α)x2 if x ≤ 0.

The characterization as a minimizer in the definition (1.1) applies for X ∈ L2.
The first order condition (cf. (1.3) below) is an equivalent characterization of the
expectile, which applies – more generally – for X ∈ L1 ⊃ L2.

Definition 1.1 (Expectiles, cf. [18]). For X ∈ L1 and a risk level α ∈ [0, 1], the
expectiles of a random variable X is the unique solution of the equation

(1.3) α E(X − x)+ = (1− α)E(x−X)+,

where x ∈ R.

Remark 1.2. In an alternative way, replacing the objective in (1.1) by E
(
ℓα(X −

x)− ℓα(X − x0)
)
for some fixed x0 ∈ R extends the definition to X ∈ L1 as well, so

that expectiles are well-defined for X ∈ L1, even as minimizers.

For α = 1/2, the expectile is the expectation, e1/2(X) = EX. It follows from
symmetry of the loss function ℓα (i.e., ℓα(x) = ℓ1−α(−x)) that

(1.4) eα(X) = −e1−α(−X),

so that the expectile involves both tails, the lower and the upper tail of the distribu-
tion of the random variable X. For X ∈ L∞, the expectile approaches the essential
supremum for increasing risk level, eα(X) → ess supX as α → 1.2 More generally,
we have the monotone behavior

(1.5) EX ≤ eα(X) ≤ eα′(X) ≤ ess supX

for 1/2 ≤ α ≤ α′ ≤ 1.

1x+ := max(0, x)
2The essential supremum of X is the smallest number c ∈ R so that X ≤ c a.s.
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Outline of the paper. In the following Section 2 we elaborate that expectiles con-
stitute a risk measure, and we provide tight relations to other risk measures. Next,
we introduce conditional risk functionals in Section 3. These are important for risk
management in discrete and in continuous time. In continuous time (Section 4),
we consider the risk-averse generator, which turns out to be a non-linear differen-
tial operator. We finally employ expectiles for dynamic optimization problems in
Section 5 and conclude in Section 6.

2. Elicitable risk measures

The expectile eα(·) is a risk measure as introduced in Artzner et al. [3]. That is,
the mapping X 7→ eα(X), provided that α ≥ 1/2, satisfies the following four axioms
formulated for (convex) risk measures R : Y → R, where Y is an appropriate linear
space of R-valued random variables (for example Y = L1(P )) on the probability
space (Ω,F , P ):

(i) R(X) ≤ R(Y ) for all X ≤ Y almost everywhere,
(ii) R(X + Y ) ≤ R(X) +R(Y ) for all X, Y ∈ Y ,
(iii) R(λX) = λR(X) for all λ > 0, and
(iv) R(c+X) = c+R(X) for all c ∈ R.

The expectile is a risk functional satisfying the Axioms (i)–(iv) above (Appendix 7
presents a brief proof for the subadditivity (ii), while the other assertions are evi-
dent). Further, the expectile eα(·) is the only risk measure which can be expressed
as a minimizer – as in (1.1) – in addition. We will elaborate below that the expectile
is not a spectral risk measure. The natural space (cf. Pichler [27]) of expectiles is
Y = L1, cf. also the discussion in Section 1 above. In what follows – unless stated
differently – we will always assume that Y = L1.

Explicit expressions for the expectiles are available only in exceptional cases. For
the uniform distribution in the interval [0, 1], U ∼ U [0, 1], e.g., the expectile is

eα(U) =
α−
√

α(1−α)

2α−1 .
To extend expectiles to a risk measure in continuous time employing the Wiener

process (Brownian motion), we shall frequently need the expectile of the normal
distribution, for which at least the following series expansion is available.

Example 2.1. An explicit expression for the expectile of normally distributed ran-
dom variables, X ∼ N (µ, σ2), is not available. It holds that

(2.1) eα(X) = µ+ σ

√
8

π

(
α− 1

2

)
+ σ

8
√
2

√
π
3

(
α− 1

2

)3
+O

(
α− 1

2

)5
.

Proof. The general assertion derives from the standard normal distribution. De-

noting the density of the standard normal distribution by φ(t) = 1√
2π
e−t2/2 and by

Φ(x) =
∫ x
−∞ φ(t) dt its antiderivative, it holds that

E(X − t)+ =

∫ ∞

t
(x− t)φ(x) dx = φ(t)− t

(
1− Φ(t)

)
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and

E(t−X)+ =

∫ t

−∞
(t− x)φ(x) dx = tΦ(t) + φ(t),

which follows readily by employing the identity φ′(x) = −xφ(x). Based on (1.3)
define now

f(α, e) := α ·
(
φ(e)− e

(
1− Φ(e)

))
− (1− α) ·

(
eΦ(e) + φ(e)

)
(2.2)

= (2α− 1)
(
φ(e) + eΦ(e)

)
− α e

so that the expectile eα of the normally distributed random variable X satisfies
f(α, eα) = 0 for every α ∈ (0, 1). We now apply the implicit function theorem.

As e1/2(X) = EX = 0 for the normal distribution it holds that f(1/2, e1/2) = 0.

Further, the partial derivatives of f at (α, e) are fα(1/2, 0) =
√

2
π and fe(α, e) = −1

2

so that the first term in assertion (2.1) follows with the implicit function theorem.

The coefficient for the next term
(
α − 1/2

)2
is zero, because the function (2.2) is

odd with respect to the center 1/2, as the normal distribution is symmetric, cf. (1.4).
The remaining coefficient is found by differentiating the function (2.2) further. We
omit the rather technical computations here, as our further results build on the first
two terms only. □
Example 2.2. For a log-normal random variable X with logX ∼ N (µ, σ2), the
expectiles are

eα(X) = eµ+
σ2

2 +
(
eσ

2 − 1
)
e2µ+σ2

(
α− 1

2

)
4
√
e
(
2Φ(1/2)− 1

)
+O

(
α− 1

2

)2
.

Proof. As above, the proof again relies on explicitly available expressions

E(X − t)+ =

∫ ∞

log t

(
ex − t

)
φ(x) dx =

√
eΦ(1− log t)− tΦ(− log t)

and

E(t−X)+ =

∫ log t

−∞

(
t− ex

)
φ(x) dx =

√
eΦ(1− log t)−

√
e+ tΦ(log t).

The statement follows again by the implicit function theorem. □
2.1. Tight comparison with important risk measures. In what follows, we
shall compare expectiles with important risk measures and give the tightest-possible
estimates and the smallest spectral risk measure enveloping the expectiles.

The Average Value-at-Risk is the smallest convex envelope of the Value-at-Risk
(cf. Föllmer and Schied [12]). The Average Value-at-Risk can be stated in the
equivalent forms (cf. Pflug [24])

AV@Rα(X) :=
1

1− α

∫ 1

α
F−1
X (α)dα

= min

{
q +

1

1− α
E(X − q)+ : q ∈ R

}
,(2.3)

where

V@Rα(X) := F−1
X (α) := inf

{
x : P (X ≤ x) ≥ α

}
(2.4)
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is the Value-at-risk.
The Average Value-at-risk is the fundamental building block in the Kusoka rep-

resentation (cf. Kusuoka [16]) and the most important risk functional in actuarial
practice. Notice as well that the Average Value-at-Risk is the minimum objec-
tive of an optimization problem (problem (2.3)), while the expectile in (1.1) is the
minimizer of an optimization problem.

Remark 2.3 (Quantiles). Similarly to the expectile, the Value-at-Risk defined
in (2.4) is a minimizer of an optimization problem, specifically the problem

min
q∈R

E ℓ̃α(X − q)

with scoring function

ℓ̃α(x) :=

{
−(1− α)x if x ≤ 0,

α · x if x ≥ 0
=
(
α− 1

2

)
x+

1

2
|x| ,

well-known from quantile regression. Indeed, the first order condition is 0 =
∂
∂q E ℓα(X − q) = αE1{X>q} − (1 − α)E1{X≤q} = α − P (X ≤ q) and hence the

assertion. However, by violating (ii) above, the Value-at-Risk is not a convex risk
functional.

Definition 2.4 (Spectral risk measure, cf. Acerbi and Simonetti [2], Acerbi [1]).

Let σ : [0, 1)→ R≥0 be a non-negative, non-decreasing function with
∫ 1
0 σ(u) du = 1.

Then

Rσ(X) =

∫ 1

0
F−1
X (α)σ(α) dα, X ∈ Y ,

is a risk measure. Rσ is called a the spectral risk measure and the function σ is
called the spectrum of Rσ.

The expectiles are not a spectral risk measure themselves. But for every expectile,
there is a smallest spectral risk measure.

Proposition 2.5 (Enveloping risk measure). If Rσ(X) is any spectral risk measure
with

(2.5) eα(X) ≤ Rσ(X)

for every random variable X ∈ Y, then eα(X) ≤ sα(X) ≤ Rσ(X) for all X, where

(2.6) sα(X) :=

∫ 1

0
F−1
X (u)

α(1− α)(
α− u(2α− 1)

)2 du;
that is, sα is the smallest spectral risk measure larger than eα.

Proof. Above all, sα(·) is a spectral risk functional, as u 7→ α(1−α)(
α−u(2α−1)

)2 is a non-

negative, increasing function and
∫ 1
0

α(1−α)(
α−u(2α−1)

)2 du = 1.

Bellini et al. [4, Proposition 9] provide the Kusuoka representation

(2.7) eα(X) = max
γ∈[1/β,1]

γ EX + (1− γ)AV@Rβ− 1
γ

β−1

(X)
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Figure 1. The function Σα and Σ̃γ , exemplified for α = 70% and
γ = 60%

for expectiles, where β = α
1−α . Define the functions Σγ(u) := γ(1 − u) + (1 −

γ)min

(
1, 1−u

1−
β− 1

γ
β−1

)
and Σ(u) := α(1−u)

α−u(2α−1) . Both functions coincide at u = 0, u = 1

and u = α(1+γ)−1
(2α−1)γ ; indeed Σγ(0) = Σ(0) = 1, Σγ(1) = Σ(1) = 0 and

(2.8) Σ

(
α(1 + γ)− 1

(2α− 1)γ

)
= Σγ

(
α(1 + γ)− 1

(2α− 1)γ

)
=

α(1− γ)

2α− 1
.

As Σγ is piece wise linear and Σ concave, it follows that Σγ(u) ≤ Σ(u) for all
u ∈ [0, 1]. With integration by parts it follows further that

γ EX + (1− γ)AV@Rβ− 1
γ

β−1

(X) = −
∫ 1

0
F−1
X (u) dΣγ(u)

= − F−1
X (u)Σγ(u)

∣∣1
u=0

+

∫ 1

0
Σγ(u) dF

−1
X (u)

≤ − F−1
X (u)Σ(u)

∣∣1
u=0

+

∫ 1

0
Σ(u) dF−1

X (u)(2.9)

= −
∫ 1

0
F−1
X (u) dΣ(u)

= sα(X)

and thus eα ≤ sα. The assertion follows, as for every u ∈ (0, 1) there is γ ∈(
1−α
α , 1

)
(γ = 1−α

u(1−2α)+α) so that Σγ(u) = Σ(u) by (2.8) above (cf. Figure 1 for

illustration). □

We have the following comparison with the Average Value-at-Risk. The compar-
ison is sharp in the sense that the risk rates cannot be improved.
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Corollary 2.6. For every random variable X ∈ L1 it holds that

e 1
2−α

(X) ≤ AV@Rα(X), α ∈ [0, 1],(2.10)

and
α

3α− 1
EX +

2α− 1

3α− 1
AV@R2− 1

α
(X) ≤ eα(X) ≤ AV@R2− 1

α
(X)(2.11)

for every α ∈ [1/2, 1].
For non-negative random variables (X ≥ 0 a.s.) we further have

AV@Rα(X) ≤ 1

1− α
e 1

2−α
(X)(2.12)

and

eα(X) ≤ α

1− α
EX.(2.13)

The risk rates in the preceding equations (2.10)–(2.13) are optimal, they cannot be
improved.

Remark 2.7. The preceding corollary might give the impression that eα is ‘weak’
in the sense that it attains smaller values than the average value at risk and is
comparable to the risk neutral expectation. However, it holds that eα(X) → 1 for
α → 1, as follows readily from (1.3). Further, we have that the Average Value-at-
Risk is a lower bound for the expectiles in view of (2.12), so that expectiles are at
least as ‘strong’ as the Average Value-at-Risk.

Proof of Corollary 2.6. Employing the notation of the proof of Proposition 2.5 and

Σα(u) := min
(
1, 1−u

1
α
−1

)
, we have that Σ(u) ≤ Σα(u). As in the proof above we con-

clude that Rα(X) ≤ AV@Rα(X) and with (2.5) that (2.10). The inequality (2.10)
is tight, as Σ′

γ(1) −−−→
γ→1

Σ′(1).

As for the remaining inequality choose γ = α
3α−1 in (2.7), and replace α by 1

2−α

in (2.11) to obtain (2.10).

The inequality min
(
1, 1−u

1−α

)
≤ 1

1−αΣγ(u) is evident for every u ∈ [0, 1], and the

remaining assertion (2.12) follows by the same reasoning as above. However, for
inequality (2.9) to hold true it is essential that X ≥ 0 a.s.

Hölder’s inequality, applied to (2.6), gives

EX ≤ sα(X) ≤
∫ 1

0
F−1
X (u) du · max

u∈[0,1]

α(1− α)(
α− u(2α− 1)

)2 = EX · α

1− α

and thus (2.13). □

3. Conditional and Dynamic Risk Measure

Risk functionals – as discussed above – are employed to assess the risk of a random
outcome. For this reason, they have the economic interpretation of an insurance
premium, while the random outcome is the random insurance benefit (the random
variable). While the premium is known beforehand, the insurance benefit (the
random outcome) is not, it is revealed later.
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Conditional risk measures are employed in risk management over time, they ad-
dress stochastic processes instead of random variables. Nested risk measures, which
are compositions of risk functionals over time, enjoy the economic interpretation of
risk premiums for insurance on a rolling horizon basis. For a discussion of nested
risk functionals we may refer to Cheridito and Kupper [6], Riedel [31], Shapiro [37],
Ruszczyński and Shapiro [33] and Pichler and Schlotter [28].

3.1. The conditional expectile. Definition 1.1 allows extending the expectile to
conditional expectiles, which are conditioned on some σ-algebra. This constitutes
a major building block to extend the definition of expectiles from random variables
to stochastic processes.

Definition 3.1 (Conditional expectiles). Let X ∈ L1 be a random variable and
G be a sub σ-algebra of F , G ⊂ F and α a G-measureable variable with values in
[0, 1]. The G-measureable random variable Z satisfying

(3.1) α · E
((
X − Z

)
+
| G
)
= (1− α) · E

((
Z −X

)
+
| G
)

a.s.

is called the conditional expectile (i.e., the conditional version of (1.3)) and denoted
Z = eα(X | G). As usual for the conditional expectation, we shall also write
eG(X) := e(X | G) and eY=y(X) := e(X | Y = y) for the conditional expectile and
its versions.

The solution of the problem (3.1) exists and is unique for the same reasons as for
the usual expectile, and eα(X | G) ∈ L1, as

(
eα(X | G)−X

)
+
and E

((
X − eα(X |

G)
)
+
| G
)
exist in (3.1).

Remark 3.2. Based on the properties of the conditional expectation (cf. Section 2),
we have the following properties of the conditional expectile.

(i) eGα(X) ≤ eGα(Y ) a.e. for all X ≤ Y almost everywhere,
(ii) eGα(X + Y ) ≤ eGα(X) + eGα(Y ) a.e.,
(iii) eGα(λX) = λ eGα(X) for all λ > 0 and λ which is G-measurable,
(iv) eGα(c+X) = c+ eGα(X) for all R-valued c measurable with respect to G.

In what follows, we shall consider the conditional expectile for a single σ-algebra
first and discuss regression. Next, we consider filtrations F = (Ft)t∈T , typically
generated by a stochastic process X = (Xt)t∈T .

3.2. Conditional expectiles in stochastic optimization and regression. Sto-
chastic optimization and most typical problems in machine learning (as the training
of neural networks) as well as specific problems in inverse problems (cf. Lu and
Pereverzev [17]) consider the problem

minimize f0(x) := E f(x, ξ)(3.2)

subject to x ∈ X ,

where the objective is a risk neutral expectation, f : X × Rm → R is a function,
X ⊂ Rd is closed and ξ is a random variable with values in Rm. Sample average
approximation builds on independent realizations ξi of identically distributed ran-
dom variable ξ, i = 1, . . . , to solve (3.2) in real world applications. To this end, the
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empirical version

f̂n(x) :=
1

n

n∑
i=1

f(x, ξi)

is considered instead of the expectation E f(x, ξ) in (3.2) for varying x ∈ X .
We consider the measure points (observations) X ∈ X to be random (with mea-

sure P ) as well and intend to ‘learn’ the function f0 based on observations

(3.3)
(
Xi, f(Xi, ξi)

)
, i = 1, . . . , n,

where (Xi, ξi) are revealed jointly (cf. Dentcheva and Lin [9] for further motivation
in stochastic optimization and an alternative approach); even more generally, we
consider the iid observations

(3.4) (Xi, fi), i = 1, . . . n,

which is (3.3) with fi := f(Xi, ξi).
To model (3.4), let ρ be the probability measure of the joint distribution (X, f)

and denote the marginal measure by P (A) := ρ(A×R). Then there exists a regular
conditional probability kernel (cf. Kallenberg [14]) so that

(3.5) ρ(A×B) =

∫
A
ρ(f ∈ B|x)P (dx).

The bivariate measure ρ in (3.5) is not an artifact. Indeed, denote the conditional
measures of f given X by the Markov kernel ρ : X × B(R) → [0, 1], that is, ρ(f ∈
A | X = x) = ρ(x,A), then (X, f) jointly follow the composed measure (3.5),

(X, f) ∼ ρ,

and hence both approaches are equivalent.
For a random vector (X, f) ∈ Rd × R with law ρ set

(3.6) f0(x) := E(f | X = x);

this definition notably corresponds to

f0(x) = E(f(X, ξ) | X = x)

in the setting (3.3) above. For this reason, the stochastic optimization problem (3.2)
is equivalent to3

(3.7) ess inf
x∈X

E(f | X = x),

where (X, f) is a random variable with law ρ, provided that suppP = X , where

suppP :=
⋂{

A : A is closed and P (A) = 1
}

is the support.4

3The essential infimumess inf(f | X) is the largest random variable g, measurable with respect
to σ(X) (the σ-algebra generated by X), so that g ≤ f , cf. Föllmer and Schied [12, Definition A.34].
Measurability is the crucial difference in comparison to the (unconditional) essential supremum in
Footnote 2.

4Cf. Rüschendorf [32] for the support of the marginal measure P .
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Note, however, that not every random vector (X, f) can be recast as in (3.3) for
a function f and a random ξ. For this reason, the problem formulation (3.7) is more
general than the genuine problem (3.2).

3.3. Risk assessment with conditional expectiles. To incorporate risk in the
assessment, consider the conditional expectation (3.6) and define

fα(x) := eα(f | X = x),

where e
σ(X)
α is the conditional expectile introduced in Section 3.1 above. Based

on (1.5), we have that

fα(x) ≥ f0(x), for α ≥ 1/2, x ∈ X .

The function fα intentionally overestimates (overrates) the risk-free assessment f0
and the surplus fα − f0 is the amount attributed to risk aversion.

To solve the risk averse version of the stochastic optimization problem (3.7),

minimize eα(f | X = x)

subject to x ∈ X ,

just find an estimator for êα for eα first and then solve

minimize êα(x)

subject to x ∈ X .

The substitute êα(·) is chosen in an adequate space of functions. Dentcheva and Lin
[9] consider the Nadaraya–Watson kernel estimator to solve the problem. Here, we
exploit the problem by using reproducing kernel Hilbert spaces (RKHS) with kernel
function k, where we may refer to Berlinet and Thomas-Agnan [5] for details.

Definition 3.3. For a kernel function k : X × X → R, the RKHS space Hk is

the completion of the functions f(x) =
∑ℓ

i=1wi k(x, xi) with respect to the inner
product

〈k(·, xi) | k(·, xj)〉 = k(xi, xj), i, j = 1, . . . , ℓ,

where xi and xj ∈ X .
The regularized problem is

(3.8) minimize
1

n

n∑
i=1

ℓα
(
êα(Xi)− fi

)
+ λ‖êα‖2k,

where êα(·) ∈ Hk. It follows from the generalized representer theorem (cf. Schölkopf
et al. [36]), that the function eα is given by

eα(·) =
1

n

n∑
i=1

wi k(·, Xi),

that is, the supporting points are exactly the points Xi, i = 1, . . . , n, where mea-
surements fi, i = 1, . . . , n, are available. It might be convenient in some situations
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Algorithm 1. Newton-like iteration to solve (3.8).
Input: Measurements (fi, Xi), i = 1, . . . n, and support points x̃j ,

j = 1, . . . , ñ.
Output: The weights wj , j = 1, . . . , ñ, of the function

(3.9) êα(·) =
1

ñ

ñ∑
j=1

wjk(·, x̃j)

minimizing (3.8).
Set

Kij := k(Xi, x̃j)

for i = 1, . . . n and j = 1, . . . ñ, and

K̃ij := k(x̃i, x̃j)

for i, j = 1, . . . , ñ.
while change of the weights w encountered do

for i = 1 to n do

update Aii ←

{
α if fi ≤ 1

ñ

∑ñ
j=1wj k(Xi, x̃j),

1− α else

end
update

w ← w−
( λ

ñ2
K̃ +

1

n2ñ
K⊤AK

)−1
(3.10)

·
( λ

ñ2
K̃w +

1

n2ñ
K⊤AKw − 1

nñ
K⊤Af

)
end
Result: The best approximating function (3.9).

to find the best approximation located at the points x̃j , j = 1, . . . , ñ, that is, the
function

êα(·) =
1

ñ

ñ∑
j=1

wjk(·, x̃j),

for fewer or special design points x̃j , j = 1, . . . , ñ. We describe the equations for
this generalized problem.



752 R. LAKSHMANAN AND A. PICHLER

The first order conditions of problem (3.8) for the weights wj , j = 1, . . . , ñ, are

0 =
1

n

n∑
i=1

2 ·

 1

ñ

ñ∑
j′=1

wj′k(Xi, x̃j′)− fi


·
{

α if fi ≤ êα(Xi)
1− α if fi ≥ êα(Xi)

}
· 1
ñ
k(x̃j , Xi) +

+ 2
λ

ñ2

ñ∑
j=1

wjk(x̃i, x̃j).(3.11)

Define K̃ :=
(
k(x̃ℓ, x̃j)

)n
ℓ,j=1

, K :=
(
k(Xi, x̃j)

)n,ñ
i=1,j=1

and

A(w) := diag
(
ai(w), i = 1, . . . , n

)
with entries

ai(w) =

{
α if fi ≤ 1

ñ

∑n
j=1wjk(Xi, x̃j),

1− α if fi ≥ 1
ñ

∑n
j=1wjk(Xi, x̃j)

on the diagonal. Then the equations (3.11) rewrite as(
λ

ñ2
K̃ +

1

n2ñ
K⊤A(w)K

)
w =

1

nñ
K⊤A(w)f.

This equation is not linear in w, as A(w) depends in a nonlinear way on w. However,
the problem can be solved by inverting the matrix to obtain a fixed point equation.
With that, the equation can be iterated, and the algorithm converges after finitely
many iterations, cf. (3.10) in Algorithm 1. Figure 2 displays a typical result of
expectile regression. Farooq and Steinwart [10] is a starting point in investigating
convergence properties of the expectile regression problem.

Remark 3.4. Note that the inverted matrix in (3.10) is the derivative of the right-
hand side with respect to w, as A is constant for small changes in w. For this
reason, the iteration in Algorithm 1 is a Newton iteration in essence, although the
function (1.2) is not differentiable. As A(w) is constant for small variations of w,
thus (3.10) vanishes locally.

4. Risk aversion in stochastic processes

The considerations on the expectile in the preceding sections are based on random
variables. The conditional variant in the expectile regression is achieved with a
single σ-algebra. In what follows, we generalize the expectile for stochastic processes
– in a discrete time setting first, and then in continuous time.

4.1. Nested expectile in discrete time. Consider a stochastic process X =
(Xti)

n
i=0 in discrete time, where 0 =: t0 < t1 < · · · < tn = T . For a dissection in

time consider the increments

XT = Xt0 + (Xt1 −Xt0) + · · ·+ (Xtn −Xtn−1).
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Figure 2. The expectile ê90%(·) based on n = 1000 observations
overestimates the conditional expectation

The stochastic process X is adapted to the filtration F , that is, Xt is measurable
for every Ft, t ≥ 0, so most often we just may choose Fti := σ(Xtj : j ≤ i). As well,
we shall denote the sequence of σ-algebras by Ft0 : tn .

In what follows, we shall associate a certain risk for the time period ∆t := ti+1−ti
to come. For convenience in the presentation in what follows, we introduce the
rescaled version of the expectile as

ẽβ(·) := e 1+
√
β

2

(·)

(i.e., α − 1
2 =

√
β
2 ). The main reason for the rescaling is that e1/2(X) = EX,

while AV@R0(X) = EX, e.g. To ensure consistent parametrizations with other
risk measures, we rescale the risk level so that ẽ0(X) = EX is associated with the
risk-free assessment, while ẽ1(X) = ess supX is the total risk averse assessment.
The varying dynamic (

√
β instead of β) turns out to be the natural choice in the

continues time situation addressed below.

Definition 4.1 (Nested expectile). Let
(
Ω,F = (Fti)

n
i=1, P

)
be a filtered probabil-

ity space and β : {t0, . . . , tn} → [0, 1] be stochastic process adapted to the filtration
F = (Fti)

n
i=1. The nested expectile of the process with respect to the filtration

Ft0:tn , denoted ẽ
Ft0:tn

β(·) , is

ẽ
Ft0:tn

β(·) (X) := X0+ẽF0

β(t0,Xt0 )·(t1−t0)

(
Xt1 −Xt0 + . . .

. . .+ ẽ
Ftn−1

β(tn−1,Xtn−1 )·(tn−tn−1)
(XT −Xtn−1)

)
,
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or slightly more explicitly

ẽ
Ft0:tn

β(·) (X) = X0+ẽF0

β(t0,Xt0 )·(t1−t0)

(
Xt1 −Xt0+

· · ·+ ẽ
Ftn−2

β(tn−2,Xtn−2 )·(tn−1−tn−2)

(
Xtn−1 −Xtn−2

+ ẽ
Ftn−1

β(tn−1,Xtn−1 )·(tn−tn−1)
(XT −Xtn−1)

))
.

Nested risk measures have been considered by Philpott et al. [26], Philpott and
de Matos [25], e.g. In discrete time, fundamental properties of the Average Value-at-
Risk have been elaborated by Xin and Shapiro [38], although for deterministic risk
rates only and for random variables instead of stochastic processes. The definition
above is dynamic, as the risk rate β is an adapted process itself. Note that the risk
rate at time t may be chosen to reflect the history of observations up to t, it may
depend on {ti ≤ t : i = 1, . . . , n}.

We consider the following example, which prepares for the Wiener process.

Example 4.2 (Random walk, cf. Pichler and Schlotter [30]). Consider a random
walk process starting at X0 with independent Markovian increments

(4.1) Xti+1 −Xti ∼ N (0, ti+1 − ti)

and constant risk rate β(t, x) = β. With (4.1) and the asymptotic formula (4.1) for
the normal distribution, we have that

Xt1 + ẽ
Ft1
β (Xt2 −Xt1) = Xt1 +

√
ti+1 − ti

√
2

π

√
β(ti+1 − ti) + o

(
tt+1 − ti

)
= Xt1 +

√
2β

π
(ti+1 − ti) + o

(
tt+1 − ti

)
.(4.2)

Nesting these expressions as in Definition 4.1 gives the explicit expression

(4.3) ẽ
Ft0:T

β(·) (X) = X0 +

√
2β

π
T + o(T ),

where T is the terminal time, while

ẽ
Ft0:T

0 (X) = X0

for the risk rate β = 0. The amount attributed to the risk averse assessment in (4.3)
thus accumulates linearly with time.

Remark 4.3 (Tower property). We emphasize as well that Definition 4.1 explicitly
involves time, the risk β(ti) · (ti+1− ti) is associated to the time interval starting at
ti and ending at ti+1. With a further point in between, ti+1/2, the components of
the risk functionals above are

ẽF0

β(ti)·(ti+1/2−ti)

(
Xti+1/2

−Xti + ẽ
Ft

i+1/2

β(ti+1/2)·(ti+1−ti+1/2)

(
Xti+1 −Xti+1/2

))
instead of

ẽF0

β(ti)·(ti+1−ti)

(
Xti+1 −Xti

)
.

With that, the risk rates accumulate over time: accumulated risk rates are β(ti)(ti+1/2−
ti) + β(ti+1/2)(ti+1 − ti−1/2) in the first case. This amount indeed coincides with
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β(ti)(ti+1 − ti) (this is the risk rate in the second case), provided that β(ti) =
β(ti+1/2), i.e., the risk assessment does not vary over time.

For the expectation, the corresponding property is the tower property, that is,
E
(
EX | G)

)
= EX.

4.2. The nested expectile in continuous time. In order to assign risk to a
stochastic process in continuous time, we consider the nested formulation introduced
above for decreasing time-steps.

Definition 4.4 (Nested expectile). Let X = (Xt)t≤T be a stochastic process
adapted to F = (Ft)t≤T and β = (βt)t≤T be càdlàg (i.e., right continuous, with
left limits) and adapted. With the nested expectile defined in Definition 4.1, the
nested expectile is

(4.4) ẽFβ (X) = lim
max∆t→0

ẽ
Ft0:tn

βt0:tn
(X),

provided that the limit with respect to decreasing mesh sizes max∆t := maxni=1 ti+1−
ti exists.

Example 4.5 (State independent risk rates). Example 4.2 generalizes for a state
independent, but time dependent Riemann integrable risk rate β(x, t) = β(t). As
above, we obtain that

Xt1 + ẽ
Ft1
β (Xt2 −Xt1) = Xt1 +

√
2β(ti)

π
(ti+1 − ti) + o

(
tt+1 − ti

)
and thus

ẽ
Ft0:T

β(·) (X) = X0 +

√
2

π

∫ T

0

√
β(t) dt

for ∆t→ 0, as β is Riemann integrable. Again, this is an explicit expression for the
total risk aversion of the entire random walk process with increments (4.1).

Definition 4.6 (Risk generator). Let (Xt)t≥0 be a stochastic process adapted to
the filtration σ(X) and β(t, x) be a risk rate. The risk generator is

Gβf(x, t) := lim
h→0

ẽ
σ(X)
β(t,Xt)

(
f(Xt+h)|Xt = x

)
− f(x)

h
,

provided that the limit exists.

Note, that G is an operator, which maps the (smooth) function f to Gβf , which
is a function again. In contrast to the risk-neutral generator, the risk generator Gβ
is possibly not linear, as we will see in what follows.

Proposition 4.7. Let Xt follow the stochastic differential equation

(4.5) dXt = µ(t,Xt) dt+ σ(t,Xt) dWt

with respect to the Wiener process (Brownian motion) (Wt)t≥0 and the functions µ
and σ be Lipschitz, i.e., |µ(t, x) − µ(t, y)| + |σ(t, x) − σ(t, y)| ≤ K|x − y| so that
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strong solutions of (4.5) exist. For a smooth function f , the risk generator is

Gβf(t, x) =
∂f(t, x)

∂t
+ µ(t, x) · ∂f(t, x)

∂x
+

1

2
σ(t, x)2 · ∂

2f(t, x)

∂x2

+

√
2

π
β(t, x) ·

∣∣∣∣σ(x, t) · ∂f(t, x)∂x

∣∣∣∣ .(4.6)

Proof. The proof follows Øksendal [19, Section 7.3] (another valuable reference is
Karatzas and Shreve [15]).

Consider the stochastic process Yt := f(t,Xt). From Ito’s rule we deduce that

Yt+∆t = Yt +

∫ t+∆t

t

(∂f
∂t

(s,Xs) + µ(s,Xs)
∂f

∂x
(s,Xs)

+
1

2
σ(s,Xs)

2∂
2f

∂x2
(s,Xs)

)
ds

+

∫ t+∆t

t
σ(s,Xs)

∂f

∂x
(s,Xs)dWs,

where the second part is a martingale with increments following the Wiener process.
Following the proof of the Ito formula in Øksendal [19, p. 46ff], the functions µ and
σ are approximated by the constants µ(s,Xs) ≈ µ(t,Xt) and σ(s,Xs) ≈ σ(t,Xt)
for s ∈ [t, t+∆t) so that

Yt+∆t − Yt =

(
∂f

∂t
(t,Xt) + µ(t,Xt)

∂f

∂x
(t,Xt) +

1

2
σ(t,Xt)

2∂
2f

∂x2
(t,Xt)

)
∆t

+ σ(t,Xt)
∂f

∂x
(t,Xt) ·

(
Wt+∆t −Wt

)
.

Yt+∆t − Yt is a normally distributed random variable with mean

Yt +

(
∂f

∂t
(t,Xt) + µ(t,Xt)

∂f

∂x
(t,Xt) +

1

2
σ(t,Xt)

2∂
2f

∂x2
(t,Xt)

)
∆t

and variance (
σ(t,Xt)

∂f

∂x
(t,Xt)

)2

∆t.

We deduce from (2.1) that

ẽXt
β·∆t(Yt+∆t)− Yt =

(
∂f

∂t
(t,Xt) + µ(t,Xt)

∂f

∂x
(t,Xt)

+
1

2
σ(t,Xt)

2∂
2f

∂x2
(t,Xt)

)
∆t

+

∣∣∣∣σ(t,Xt)
∂f

∂x
(t,Xt)

∣∣∣∣√∆t ·
√

8

π

(
1 +

√
β(t, x)∆t

2
− 1

2

)
.

Now, by the definition of the risk generator (4.4), we get the assertion. □

Remark 4.8. The drift (4.2) in Example 4.2 now turns out to be a specific case of
the general relation revealed by (4.6), both reveal the same pattern: any risk averse
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assessment adds the additional drift term√
2

π
β(t, x) ·

∣∣∣∣σ(x, t) · ∂f(t, x)∂x

∣∣∣∣ .
For the absolute value | · | in the expression, the additional drift term cannot be
negative and always points in one direction, the direction of risk. This is in line with
risk aversion, as deviations in the different directions are associated with profits and
(for the other direction) losses. Further, the coefficient β models the amount of local
risk aversion.

The behavior (4.6) has been found with other risk measures as well, for example
for the Entropic Value-at-Risk, cf. Pichler and Schlotter [30]. For this reason, various
results from the literature extend to the nested expectile.

5. The risk averse control problem

While the classical theory on dynamic optimization builds on the risk-neutral ex-
pectation (cf. Fleming and Soner [11]), we take risk into consideration to the optimal
control problem and derive a risk averse variant of the Hamilton–Jacobi–Bellman
equation. In what follows we derive the governing equations formally by adapting
the presentation from Pichler and Schlotter [30] for expectiles.

Consider the stochastic differential equation

(5.1) dXu
t = µ

(
t,Xu

t , u(t,X
u
t )
)
dt+ σ

(
t,Xu

t , u(t,X
u
t )
)
dWt

driven by an adapted control policy u(t,Xt), where u is a measurable function. It
is the objective to minimize the risk-averse expectation of the accumulated costs,∫ T

t
c
(
s,Xs, u(s,Xs)

)
ds+Ψ

(
XT

)
,

where Ψ(·) is a terminal cost. Recall that the nested expectiles accumulate costs
and risk so that it is the objective to minimize the value function

V u(t, x) := ẽ
σ(X)
β(·)

(∫ T

t

(
s,Xu

s , u(s,X
u
s )
)
ds+Ψ

(
Xu

T

)∣∣∣∣Xu
t = x

)
among all policies u ∈ U chosen in a suitable set, where Xu

t solves the stochastic
differential equation (5.1) for the policy u.

Proposition 5.1. The value function

V (t, x) := inf
u(·)∈U

V u(t, x),

solves the differential equation

(5.2)
∂V

∂t
(t, x) = Hβ

(
t, x,

∂V

∂x
,
∂2V

∂x2

)
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with terminal condition V (T, x) = Ψ(x), where

Hβ(t, x, g, A) := sup
u∈U

{
−c(t, x, u)− g · µ(t, x, u)

− 1

2
Aσ(t, x, u)2 −

√
2

π
β(t, x) ·

∣∣g · σ(t, x, u)∣∣}(5.3)

is the Hamiltonian, cf. Fleming and Soner [11, Section IV, (3.2)].

To accept the assertion recall that

1

h
ẽ
σ(X)
β(·)

(∫ t+h

t
c
(
s,Xu

s , u(s,X
u
s )
)
ds+ V (t+ h,Xt+h)− V (t, x)

∣∣∣∣Xu
t = x

)
−−−→
h→0

c(t, x, u) + GβV (t, x)

by the definition of the risk generator. While the left-hand side vanishes by the
dynamic programming principle for the optimal policy, it follows for the right-hand
side that

0 = inf
u∈U

c(t, x, u) + GβV (t, x).

With Proposition 4.7, this leads to the equation (5.2) with Hamiltonian (5.3).

The fundamental equation (5.2) is the Hamilton–Jacobi–Bellman (HJB) partial
differential equation. It is essential to observe that the HJB equation has the addi-
tional term √

2

π
β(t, x) ·

∣∣∣∣σ(t, x, u)∂V∂x
∣∣∣∣

involving the gradient; the total gradient in the Hamiltonian (5.2) thus comes with
the coefficient

µ(t, x, u) +

√
2

π
β(t, x) · σ(t, x, u) · sign

(
σ(t, x, u)

∂V

∂x

)
.

That is, risk aversion increases the trend µ by the amount +
√

2
πβ(t, x) · σ(t, x, u),

while letting the volatility σ of the process unaffected.
In typical situations, ∂V

∂x does not change its sign. For this reason, the classical
theory on viscosity solutions on existence of solutions of (5.2) applies directly, with-
out modifications. As well, explicit solutions of specific equations are known. In
these situations, the explicit results can be adapted to the risk averse situation, cf.
Pichler and Schlotter [29] for applications from financial mathematics.

6. Summary

This paper exploits the unique properties of expectiles in stochastic and in dy-
namic optimization. We start by giving tight comparisons with common risk mea-
sures first. Next, we define the conditional expectile. The conditional expectile
can be nested to extend the scope of risk functionals (risk measures) to stochastic
processes in discrete and in continuous time. For the random walk process or sto-
chastic processes driven by a stochastic differential equation, explicit evaluations of
the nested risk functional are available.
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The risk generator is defined in analogy to the generator for stochastic processes.
The risk generator involves an additional term which is caused by risk. With that,
the risk generator is a non-linear differential operator. The aspect of risk augments
the Hamiltonian via an additional term, which is responsible for risk only and the
risk averse Hamilton–Jacobi–Bellman equations thus derive accordingly.
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[32] L. Rüschendorf, Mathematische Statistik, Springer Berlin Heidelberg, 2014.
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7. Appendix

The function x 7→ (1− α)E(x−X)+ − αE(X − x)+ has slope

(1− α)P (X ≤ x) + αP (X ≥ x) = α+ (1− 2α)P (X ≤ x)

≥ αP (X ≤ x) + (1− 2α)P (X ≤ x)

= (1− α)P (X ≤ x)

≥ 0

and is therefore strictly increasing for every α ∈ (0, 1) in the support of X so that
the expectile is unique. Further, the slope is so that the function is convex for
α ≤ 1/2 and concave for α ≥ 1/2.

Denote by xα (yα, resp.) the expectile for X (Y , resp.), i.e.,

αE(X − xα)+ = (1− α)E(xα −X)+ and

αE(Y − yα)+ = (1− α)E(yα − Y )+.

With x+ − (−x)+ = x we have further(
α− 1

2

)
E(X − xα)+ −

(1
2
− α

)
E(xα −X)+ =

1

2
E(X − xα) and(

α− 1

2

)
E(Y − yα)+ − (

1

2
− α)E(yα − Y )+ =

1

2
E(Y − yα).

For α ≥ 1/2 we obtain by convexity of the function x 7→ x+ that(
α− 1

2

)
E(X + Y − xα − yα)+ ≤

(
α− 1

2

)
E(X − xα) +

(
α− 1

2

)
E(Y − yα)

=
1

2
E(X − xα) +

(1
2
− α

)
E(xα −X)+

+
1

2
E(Y − yα) + (

1

2
− α)E(yα − Y )+

≤ 1

2
E(X − xα) +

1

2
E(Y − yα)

+
(1
2
− α

)
E(xα + yα −X − Y )+.

It follows that

αE(X + Y − xα − yα)+ ≤ (1− α)E(xα + yα −X − Y )+.

The assertion follows by monotonicity again.
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