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We review a few of them without intentions of being exhaustive. Papers studying
utility maximization problems with partial information include among others: [32],
[2], [8], [22], [24], [36], [30], [23], [33], [31], [29]. Most of these works attempted to
solve the problem through the dynamical programming principle, introducing a fil-
ter and obtaining the Hamilton-Jacobi-Bellman (HJB) partial differential equation.
An important challenge in this approach is then to prove the existence of a classical
solution of the HJB equation and characterize optimal strategies through it. This
task is solved for special linear dynamics and quadratic cost structure through the
solution of a Riccati differential equation. It is also possible to rely on the solution
of a BSDEs, as has been done by e.g., [22], [36], [30]. Still another approach with
minimal restrictions on the underlying dynamic of asset prices, different from HJB,
is presented by [29] who study the problem through the insights of convex duality
and the projection of density processes of martingale measures.

The natural question of quantifying the loss in expected utility due to partial
information has only been investigated by a few authors including [8], [36], [30],
and [23]. Surprisingly, there are non trivial examples where there is no loss in
optimal expected utility despite maximizing under restricted information. However,
a precise formulation of this loss, characterized in explicit form in terms of the
coefficients of the model, is still a loose end. For the long-term portfolio management
presented in this paper, there is an interesting connection between optimal growth
rate and risk-sensitivy control. In fact, some of the papers cited below studied finite
horizon problems as an intermediate step to solve an asymptotic problem in which
the horizon goes to infinity.

The risk-sensitivity formulation for infinite horizon utility maximization was in-
troduced by [4] and [13]. Further developed by [14, 15]. Infinite horizon problems
under partial information has been studied among other authors by [32, 23, 33].
The goal of [23] is to solve the maximization of the asymptotic probability of ter-
minal wealth remaining above a threshold. By duality considerations they study
an ergodic risk-sensitivity stochastic control problem. They find a condition under
which there is no loss in the optimal growth rate under partial information; see their
Proposition 7.2, part 2(ii). Their approach strongly depends on the convergence of
a time dependent differential Riccati equation to an algebraic equation that does
not depend on time. This is a special form of an important and recurrent topic,
the convergence, in a specific sense, of a dynamical programming equation in finite
horizon to an infinite horizon counterpart for a so-called ergodic equation in infinite
horizon. Such an equation has been considered in the papers [35], [26], [27], [15],
[11], [3].

A drawdown constraint requires that the value process of a strategy has to remain
above a fraction of its current maximum. Drawdown constraints were first consid-
ered by [19] and has become quite popular due to its financial appeal as an effective
risk control. A generalization to a multi-asset framework with a simplified proof was
provided by [9]. Their approach advances a key concept in the solution, now known
as Azema-Yor semimartingale processes; see [5]. The relevance in the problem of
expected utility maximization under drawdown constraints has been systematically
developed in [37] and [7]. The use of the dynamic programming principle to solve
problems of portfolio selection under drawdown constraints has been considered,
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among others, by [25], [1], [39], [20], [21], [6], [10]. The only paper we are aware
that also considers partial information with drawdown constraints is [18]. In this
work the authors consider a discrete-time framework in a finite horizon. Starting
with dynamical programming techniques, they investigate numerical approxima-
tions by deep learning considerations. Another formulation to portfolio selection
under drawdown constraints that explicitly consider the estimation of parameters
can be found in [34].

The contributions of the present paper are as follows. The main goal is to max-
imize the long-run growth rate of expected utility of wealth for an investor with
partial information about the evolution of asset prices and drawdown constraint.
We solve this problem for a model with stochastic economic factors explicitly af-
fecting the mean return of stocks, providing explicit solutions for both, the optimal
investment strategy and the critical growth rate. These results require the study
of the finite horizon problem as well as the asymptotic analysis as the time hori-
zon converges to infinity. The solution of the problem with drawdown constraints
is based in the theory of Azema-Yor processes, taking advantage of the bijection
between the set of strategies satisfying this constraint and those satisfying a non
bankruptcy constraint. Our contributions rely heavily on previous results developed
in [33], [37].

The structure of the present paper is organized as follows. In Section 2 we present
our model, which is basically a Markovian asset price model with invertible volatility
matrix, where the asset prices are driven by a multi dimensional Wiener process
and the mean return rate processes depends on stochastic factors, and hence it is
adapted to a larger filtration. Section 3 is devoted to a fairly detailed study of
the optimal investment problem in the special cases of finite horizon and partial
observation. The asymptotic limit as time goes to infinity are presented in Section
4. Finally, once the preliminary results have been established, in Section 5 we
present our main theorem, showing how a complex problem can be solved, given
the proper perspective.

2. The optimal certainty equivalent under partial information in
finite horizon: No drawdown constraints

We consider a market whose evolution runs in the time interval [0, T ] and in which
a non-risky asset S0 is available together with m risky assets S = (S1, . . . , Sm).
There are n factor processes X = (X1, X2, . . . , Xn) influencing the performance of
the market. They evolve on a filtered probability space (Ω,F ,F,P) supporting an
Rd Brownian motion W according with the dynamics given by

dX1

dX2

...
dXn

 =


β1(X)
β2(X)

...
βn(X)

 dt+


λ1,1(X) . . . λ1,d(X)
λ2,1(X) . . . λ2,d(X)

...
λn,1(X) . . . λn,d(X)




dW 1

dW 2

...
dW d

 ,(2.1)

with initial condition X0 = x0. The bond price S0 is assumed to satisfy the ordinary
differential equation:

dS0 = S0r(X)dt, S0
0 = s0,
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and the risky assets S = (S1, . . . , Sm) are assumed to be governed by the stochastic
differential equation

dS1

S1

dS2

S2

...
dSm

Sm

 =


α1(X)
α2(X)

...
αm(X)

 dt+


σ1,1(X) . . . σ1,d(X)
σ2,1(X) . . . σ2,d(X)

...
σm,1(X) . . . σm,d(X)




dW 1

dW 2

...
dW d

 .(2.2)

In this paper we consider the linear model, taking r(x) = r, α(x) = a + Ax,
σ(x) = Σ, β(x) = b + Bx and λ(x) = Λ, for matrices A ∈ Rm×n, Σ ∈ Rm×d,
B ∈ Rn×n and Λ ∈ Rn×d. We present the case when the factor process {Xt} is
not directly observed and its values have to be estimated observing the prices of
risky assets {Si}. The information generated by the stock prices is the filtration
G := {Gt} set at time t by the σ− algebra Gt := σ{Su, u ≤ t}. An investor
trades in the market using Rm−valued G progressively measurable self-financing
strategies π = {πi}, for i = 1, . . . ,m, representing the proportion of wealth invested
in asset i, and the rest of the wealth is invested in the asset S0. Hence, defining
π0 := 1−

∑m
i=1 π

i we obtain the proportion invested in the reference asset S0. For
a self-financing investment strategy π = (π1, . . . , πm), its wealth process V = V π

satisfies the equation

(2.3)
dV

V
= rπ0dt+ π · dS

S
= rπ0dt+

m∑
i=1

πidS
i

Si
.

We assume, without loss of generality, that the initial capital is fixed at V0 = 1. Ad-

missible investment strategies π must satisfy the integrability condition
∫ T
0 ∥πt∥2 dt <

∞, P− a.s., among other technical conditions required below.

Our optimization problem concerns the study of the exponential growth rate of
the certainty equivalent for a power utility. However, we have to deal with partial
information under which decisions are taken. Concerning this point, the transforma-
tion of the optimization problem into one completely observed requires the solution
of a filtering problem for the estimate X̂t := E[Xt | Gt], which evolves linearly under
a new Brownian motion. This requires that we linearize the (observable) dynamics
of the risky price process {St}0≤t≤T , defining ξit := logSi

t , which evolves as

dξt = (δ +AXt)dt+Σ dWt,

with δ = (δi), δi = ai − 1
2(Θ)ii, where

(2.4) Θ := ΣΣ∗;

throughout we always assume that Θ > 0. Observe that the conditional distribution
of Xt given Gt has normal distribution with mean X̂ and conditional covariance
matrix Π given by

X̂t := E[Xt | Gt](2.5)

Πt := E[(Xt − X̂t)(Xt − X̂t)
∗|Gt].(2.6)
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Now we are interested in describing the evolution of the Kalman filter X̂t, in
terms of the innovation process I defined by

(2.7) It :=

∫ t

0
Θ−1/2[dξu − (δ +AX̂u)du], I0 = 0,

which is a G−Brownian motion under P; see [3]. Then, the Kalman filter X̂ is the
unique solution of the linear SDE:

(2.8)

{
dX̂t = β(X̂t)dt+ Λ̃dIt

with initial condition X̂0 = x0.

Let us define

(2.9) Λ̃t := Λ̃(Πt) := (ΠtA
∗ + ΛΣ∗)(Θ)−1/2,

where the covariance matrix Πt is the unique non-negative definite symmetric solu-
tion of the matrix Riccati equation (see Fleming and Rishel [17]):

(2.10) Π̇t + (ΠtA
∗ + ΛΣ∗)Θ−1(AΠt +ΣΛ)− ΛΛ∗ −BΠt −ΠtB

∗ = 0, Π0 = 0.

Thus, the dynamics of the log prices process ξt can be written in terms of the
estimate Kalman filter and the innovation process as

dξt = (δ +AX̂t)dt+Θ1/2 dIt, ξ0 = lnS0.

We can write dSi

Si in term of dξi as

dSi

Si
= dξi +

1

2
d
⟨
ξi
⟩
= dξi +

1

2
Θi,idt.

Hence, we can rewrite the dynamics (2.3) of the value process V in terms of the
innovation process I by

(2.11)
dV

V
= (rπ0 + π∗α(X̂))dt+ π∗Θ1/2 dI.

Notice that this SDE is written in terms of completely observed processes, in com-
parison with (2.3).

3. The optimal certainty equivalent as a risk sensitivity problem

We focus in the power utility function

U(x) =
1

p
xp, with p < 0.

For a random variable Z, the certainty equivalent of Z with respect to U is

CE(Z) := U−1(E[U(Z)]) = E
1
p [Zp].

Let the process Mπ,p be defined by

(3.1) Mπ,p
t := exp

{
p

∫ t

0
π∗
sΘ

1
2dIs −

1

2
p2

∫ t

0
π∗
sΘπsds

}
,
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where I is the innovation process defined above in (2.7). The set A(T ) consists of
those investment strategies π such that {Mπ,p

t }0≤t≤T , is a genuine martingale. Our
first goal is to characterize the value function

(3.2) ζT (p, x0, 0) := max
π∈A(T )

log CE(V π
T ),

by a dynamical programming PDE from which an optimal strategy π̂ can be de-
termined. The notation for ζ deserves a clarification. Dependence on x0 is due to
the initial condition on the factor process. We have introduced an extra argument
evaluated at zero in order to incorporate latter in the same notation a parameter for
drawdown constraints, the value zero corresponds to a condition of no bankruptcy.
It is well known from Fleming and Sheu [14] that the problem can be transformed
into a risk sensitivity control problem. Indeed, let us review following Fleming and
Soner [16, Chapter VI] how this transformation is achieved.

For an admissible π, let Qπ,p be the probability measure defined by EQπ,p [X] =
E[XMπ,p

T ] where X is a bounded FT -measurable function. The process Iπ,p defined
by

dIπ,p := dI − pΘ
1
2πdt,

is a Qπ,p-Brownian motion by Girsanov’s transformation theorem. Now we consider
the expected utility E[V p

T ] of terminal wealth and express it in the following form:

E[V p
T ] =E[exp{p lnVT }] = V p

0 E
[
exp

{
p

∫ T

0
{rπ0

t + π∗
tα(X̂t)}dt(3.3)

+p

∫ T

0
π∗
tΘ

1
2 dIt −

p

2

∫ T

0
π∗
tΘπt dt

}]
=Eπ

p

[
exp

{
p

∫ T

0
lp(X̂t, πt)dt

}]
.

Here lp(x, π) := rπ0 + π∗α(x) + 1
2(p − 1)π∗Θπ and Eπ

p [·] is expected value with
respect to the probability measure Qπ,p. Hence,

ζT (p, x, 0) = max
π∈A(T )

1

p
logE[(V π

T )p](3.4)

= max
π∈A(T )

1

p
logEπ

p

[
exp

{
p

∫ T

0
lp(X̂t, πt)dt

}]
.

For our goal of characterizing the value function ζT and determining an optimal
strategy π̂ through a dynamical programming PDE we introduce notation prelimi-
naries in the next section.

3.1. Preliminaries for the dynamical programming equation. For a function
f : [0, T ]× Rn → R we use the notation

Df :=


∂f
∂x1
∂f
∂x2
...
∂f
∂xn


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For a vector v = (v1, . . . , vn)
∗ the expression (Df)∗v means

(Df)∗v =
n∑

i=1

∂f

∂xn
vi.

For the matrix of second order derivatives we use the notation

D2f :=


∂f

∂x1∂x1
. . . ∂f

∂x1∂xn
∂f

∂x2∂x1
. . . ∂f

∂x2∂xn
...
∂f

∂xn∂x1
. . . ∂f

∂xn∂xn

 .

For matrices M = (Mi,j)i,j and N = (Ni,j)i,j of dimension n× n we define tr(NM)
as in [16, IV (3.1)]. Hence, the expression tr(D2f M) means

tr(D2fM) :=
n∑

i,j=1

∂f

∂xi∂xj
Mi,j .

For the verification Theorem 3.2 below we consider the following construction.
Define the smooth function g : [0, T ] × Rn × R → R by g(t, x, y) := yf(t, x). Note

that under Qπ,p the Kalman filter X̂ follows the dynamics

(3.5) dX̂t = B(X̂t, π)dt+ Λ̃dIπ,pt , X̂0 = x0

where

B(x, π) := β(x) + pΛ̃Θ
1
2π.

We will make constant use of the matrix product Λ̃Λ̃∗ (see (2.9) for its definition)
and therefore we introduce the notation:

(3.6) Υ := Λ̃Λ̃∗.

Observe that this is a matrix-valued stochastic process, depending on the covari-
ance matrix Πt at time t. The process Y is defined as the solution of dYt =
Ytpl

p(X̂t, πt)dt. An application of Itô’s formula to Gt := g(t, X̂t, Yt) leads to

(3.7)
1

Yt
dGt =

[
∂f

∂t
+ plpf + (Df)∗B +

1

2
tr(D2f Υ)

]
dt+ dNt,

where dNt = (Df)∗Λ̃dIπ,p. Hence we introduce the operator

F[f ](·, ·, π) := ∂f

∂t
+ plp(·, π)f + (Df)∗B(·, π) + 1

2
tr(D2f Υ).(3.8)

3.2. Minimizing the Hamiltonian. Now we solve

inf
π∈Rm

{plp(·, π)f + (Df)∗B(·, π)} .

Recall that we defined Θ := ΣΣ∗ in equation (2.4). Also recall that lp(x, π) =
rπ0 + π∗α(x) + 1

2(p− 1)π∗Θπ = r + π∗ (α(x)− r1m) + 1
2(p− 1)π∗Θπ. The critical

point π̂ must satisfy the first order condition

f {p (α− r1m)∗ + p(p− 1)π̂∗Θ}+ p(Df)∗Λ̃Θ
1
2 = 0.
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Hence

(3.9) π̂ =
1

1− p
Θ−1

{
1

f
Θ

1
2 Λ̃∗Df + (α− r1m)

}
.

The expression infπ∈Rm {plp(·, π)f + (Df)∗B(·, π)} is then equal to

plp(x, π̂)f(t, x) + (Df(t, x))∗B = rpf +
p

1− p
(Df)∗Λ̃Θ− 1

2 (α− r1m) + (Df)∗β

+
1

2

p

1− p

{
1

f
(Df)∗ΥDf + f(α− r1m)∗Θ−1(α− r1m)

}
.

The operator (3.8) returns a function that depends on (t, x, π). Evaluated at π̂
it takes the form

F[f ](·, ·, π̂) = ∂f

∂t
+ rpf +

1

2
tr(D2f Υ)(3.10)

+
1

2

p

1− p

{
1

f
(Df)∗ΥDf + f(α− r1m)∗Θ−1(α− r1m)

}
+ (Df)∗

{
p

1− p
Λ̃Θ− 1

2 (α− r1m) + β

}
.

3.3. Logarithmic transform and Riccati equation. Let k be defined by f =
eck for a constant c. One can compute that Df = cfDk and D2f = f(cD2k +
c2Dk(Dk)∗). Then (3.10) takes the form

1

cf
F[f ](·, ·, π̂) = ∂k

∂t
+ r

p

c
+

1

2
c

1

1− p
Dk∗ΥDk +

1

2
tr(D2k Υ)(3.11)

+
1

2

1

c

p

1− p
(α− r1m)∗Θ−1(α− r1m)

+ (Dk)∗
{

p

1− p
Λ̃Θ− 1

2 (α− r1m) + β

}
.

Remark 3.1. If the reader wants to take the opportunity to verify (3.11), then
the following elementary detail provides the main simplification. Note that for x a
n× 1-dim vector and M a n×n matrix x∗Mx = tr(xx∗M). Hence, tr[DkDk∗ Υ] =
Dk∗ΥDk.

The choice c = p is the one that simplifies the most in (3.11) and is also the one
that links to the value function in (3.2). Hence, we define

L[k] :=
∂k

∂t
+

1

2

p

1− p
Dk∗ΥDk +

1

2
tr(D2k Υ)(3.12)

+
1

2

1

1− p
(α− r1m)∗Θ−1(α− r1m) + r

+ (Dk)∗
{

p

1− p
Λ̃Θ− 1

2 (α− r1m) + β

}
.

We propose a solution of the equation

(3.13) L[k] = 0
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in the form k(t, x) = x∗Q(t)x + 2q(t)∗x +m(t) where Q is a n × n-dim symmetric
matrix, q is a n × 1-dim vector and m is a function in R. Then Dk = 2Qx + 2q,
D2k = 2Q, and the equation (3.13) reduces to

(3.14) x∗Mx+Nx+R = 0,

where {
M := Q̇+ 2 p

1−pQΥQ+ 2Q
{

p
1−p Λ̃Θ

− 1
2A+B

}
+ 1

2
1

1−pA
∗Θ−1A,

with terminal condition Q(T ) = 0,
(3.15)


N := q̇∗ +

(
p

1−p ã
∗Θ− 1

2 Λ̃∗ + 2p
1−pq

∗Υ+ b∗
)
Q

+
(

1
2(1−p) ã

∗Θ−1 + p
1−pq

∗Λ̃Θ− 1
2

)
A+ q∗B,

with terminal condition q(T ) = 0,

(3.16)


R := ṁ+ r + tr[QΥ] + 2 p

1−pq
∗Υq + 1

2
1

1−p ã
∗Θ−1ã

+2q∗
(

p
1−p Λ̃Θ

− 1
2 ã+ b

)
.

with terminal condition m(T ) = 0.

(3.17)

Hence, the solution k is reduced to solve first a matrix Riccati differential equation
for Q, and then get a solution q for the linear differential equation, and finally m
is found by integration. Note that x∗Mx = 1

2x
∗(M +M∗)x, and then it suffices to

verify that 1
2x

∗(M +M∗)x = 0 for each x. The requirement 1
2(M +M∗) = 0 yields

the following Riccati equation where Q is the unknown, assumed to be symmetric

Q̇+2
p

1− p
QΥQ+Q

{
p

1− p
Λ̃Θ− 1

2A+B

}
+

{
p

1− p
Λ̃Θ− 1

2A+B

}∗
Q(3.18)

+
1

2

1

1− p
A∗Θ−1A = 0.

The equation (3.18) has a unique solution due to well known results; see [38] and
[28].

3.4. The optimal feedback π̂ revisited. We defined the (optimal) feedback π̂
in (3.9). Considering that ln f = pk and 1

fDf = 2p(Qx+ q), we obtain the explicit

form

π̂(x) =
1

1− p
Θ−1

{
2pΘ

1
2 Λ̃∗(Qx+ q) + (α(x)− r1m)

}
.(3.19)

In particular, we obtain that π̂ is linear with respect to x. Hence, there exists a
constant K > 0 such that

∥π̂(x)∥ ≤ K ∥x∥+K.

This linear growth of π̂ is necessary in order to show that {π̂(X̂t)} belongs to the
set of admissible strategies A(T ); see the verification Theorem 3.2.
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3.5. Verification theorem in finite horizon. In order to apply the dynamical
programming principle we introduce a dynamic version of the value function ζT in
(3.4). It is given by

(3.20) ζT (p, x, 0, t) = max
π∈A(T )

1

p
logEπ

p

[
exp

{
p

∫ T

t
lp(X̂s, πs)ds

}
| X̂t = x

]
.

Our goal is to characterize the function ζT as the solution of a dynamical program-
ming equation. In the next result we proceed as in the proof of [16, Theorem VI.8.1]

by considering an additional state component dYs = pYsl
p(X̂s, πs)ds.

Theorem 3.2. The function ζT is of the form ζ(p, x, 0, t) = k(p, x, t) where k is

the unique solution of (3.13). The strategy π̂(X̂) determined by the system (3.5)
and (3.19) is optimal.

Proof. There exists a solution to the Riccati equation (3.18) and (3.16)-(3.17) see
e.g., [17, Theorem IV.5.2]. Then, the equation L[k] = 0 in (3.13) has the solution
k(t, x) = x∗Q(t)x + 2q(t)∗x + m(t) with terminal condition k(x, T ) = 0. Hence,
the function f := epk is a solution to F[f ](·, ·, π̂) = 0 with terminal condition
f(x, T ) = 1, where F is defined in (3.8). Indeed, F and L are connected by the
logarithmic transformation; see (3.11). The claim of the theorem will be proved
after we verify that

k = max
π∈A(T )

1

p
logEπ

p

[
exp

{
p

∫ T

t
lp(X̂s, πs)ds

}
| X̂t = x

]
.

Equivalently

(3.21) f = min
π∈A(T )

Eπ
p

[
exp

{
p

∫ T

t
lp(X̂s, πs)ds

}
| X̂t = x

]
.

We start with the inequality ≤) in (3.21). Take an admissible control π and

consider an additional state component dYs = pYsl
p(X̂s, π)ds in the interval [t, T ]

with initial condition Yt = y, for y > 0, where X̂ satisfies (3.5). Further, we define
the function

f̃(x, y, t) := yf(x, t), y > 0.

Apply Itô’s formula for s ∈ [t, T ]

f̃(X̂s, Ys, s) = f̃(x, y, t) +

∫ s

t
YuF[f ](·, ·, π)du+

1

2

∫ s

t
YuDf∗Λ̃dIπ,pu .

Then, for an initial condition y > 0

f̃(X̂s, Ys, s) = yf(x, t) +

∫ s

t
YuF[f ](·, ·, π)du+

1

2

∫ s

t
YuDf∗Λ̃dIπ,pu

≥ yf(x, t) +
1

2

∫ s

t
YuDf∗Λ̃dIπ,pu .

We assume without loss of generality that
∫ s
t YuDf∗Λ̃dIπ,pu is a Qπ

p -martingale by a
localization argument as in the proof of Fleming and Soner [16, Lemma IV.3.1]. As
a consequence

Eπ
p [YT ] = Eπ

p [f̃(X̂T , YT , T )] ≥ yf(x, t).
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The desired inequality ≤) in (3.21) follows taking y = 1 and the infimum over
admissible π. For the converse inequality, we must verify that for the feedback π̂,
the process M π̂,p is a martingale. In this case the inequality in the previous display

is an equality since the integral
∫ T
t YuDf∗Λ̃dIπ,pu is a Qπ̂

p supermartingale. It can be

shown that M π̂,p is a martingale with similar arguments as in [3, Lemma 4.1.1]. □

4. Solving the infinite time horizon problem

Next we look at the investor’s optimal certainty equivalent rate, reviewing the so-
lution of the problem of maximizing the exponential rate of growth of the expected
utility of terminal wealth, under power utility function, as T → ∞ in (3.2). Let

ζ∞(p, x0, 0) := max
π∈A

lim sup
T→∞

1

T
log CE(V π

T )(4.1)

= max
π∈A

lim sup
T→∞

1

Tp
logE

[
(V π

T )p |X̂0 = x0

]
= max

π∈A
lim sup
T→∞

1

Tp
logEπ

p

[
exp

{
p

∫ T

0
lp(X̂t, πt)dt

}
|X̂0 = x0

]
.

We define A as the set of investment strategies π in the interval [0,∞) such
that π ∈ A(T ) for each positive T ; this set describes the set of admissible strategies
throughout this section. The above value function can be interpreted as the optimal
long-term relative growth rate of a partially observed risk-sensitivity control problem
[3], and its analysis is based on the previous results for the finite horizon case.

Remark 4.1. Long-term growth rate of the expected utility U of wealth can be
studied maximizing

lim sup
T→∞

1

T
logE[U(V π

T )].

Defining log x = − log(−x), for x < 0, this criterion is equivalent to the one defined
in (4.1) modulus some multiplicative positive factor for the power utility function.
This critical rate shall be analyzed in the next section introducing drawdown re-
strictions in the wealth process V π.

One of the main difficulties to adapt known results on this regard to our frame-
work is that the diffusion coefficient of the dynamics of the Kalman filter Λ̃ in (3.5)
depends on the information up to time t through the covariance matrix Πt; see
(2.9). Indeed, from the finite-time dynamic programming equation (3.10), we can
write formally the PDE satisfied by (ρ(p),W ) as

ρ(p) =
1

2
tr(D2W (Λ̂Λ̂∗)) +

p

2
(DW )∗Λ̂Λ̂∗DW

+ inf
π∈Rm

{lp(·, π) + (DW )∗B(·, π)}

=
1

2
tr(D2W (Λ̂Λ̂∗)) +

1

2

1

1− p
(α− r1m)∗Θ−1(α− r1m) + r

+
p

2(1− p)
(DW )∗Λ̂Λ̂∗DW + (Dk)∗

{
p

1− p
Λ̂Θ− 1

2 (α− r1m) + β

}
,

(4.2)
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where the second equality is obtained substituting the value of π̂ where the infimum
is achieved, which is given by

(4.3) π̂(x) =
1

1− p
Θ−1

{
pΘ

1
2 Λ̂∗DW (x) + (α(x)− r1m)

}
.

Notice that the sign of the nonlinear term in (4.2) depends explicitly on p and then

will influence the drift term of X̂ in (3.5).
Here ρ(p) ∈ R and the function W are unknowns and explicit formulas for them

would be expected, following similar arguments given for the finite horizon case,
since the control set is the Euclidean space Rm and the dynamics involved are
linear with a quadratic exponential-type structure. Then, we are tempt to consider
a quadratic form for W , i.e.

(4.4) W (x) = x∗Q̂x+ 2q̂∗x,

with Q̂ a symmetric n×n matrix and q̂ ∈ Rn. This argument has been developed for
the completely observed version of our problem by Fleming and Shue [13, Theorem
3.5].

However, formalize the previous equation is an open question, as far as we know,
since there are several technical issues involved. One of the most relevant consists in
defining properly matrix Λ̂ in (4.2). These important features were first investigated
by Nagai and Peng in their fundamental work [33], and next we quote some results
obtained by them. Observe that, in the finite horizon problem, the HJB equation
depends on matrix Λ̃ := Λ̃(Πt), which is the linear transformation of variance matrix

Πt defined as Λ̃(Πt) = (ΠtA
∗+ΛΣ∗)Θ−1/2, and Πt is the unique solution of the ODE

(2.10). For the model under consideration, in which the diffusion coefficient matrix

of the Kalman filter X̂t turns out to be Λ̃ (see (2.8)), it is natural to analyze first
the asymptotic limit of Πt as T − t → ∞, in order to adapt the approach followed
for solving the finite horizon problem. Under the condition that the matrix

(4.5) B − ΛΣ∗Θ−1A

is stable, Nagai and Peng [33, Lemma 4.1] proved that Πt converges exponentially
fast to Π̄ ≥ 0, and the limit matrix is the unique solution of the algebraic Riccati
equation:

(B − ΛΣ∗Θ−1A)Π̄ + Π̄(B − ΛΣ∗Θ−1A)∗ − Π̄A∗Θ−1AΠ̄

+ Λ(Im+n − Σ∗Θ−1Σ)Λ∗ = 0.

The attractor Π̄ allow us to describe asymptotic limits for the funtions involved in
the description of the finite time value function k, and now we present the analogous
versions of equations (3.15)-(3.17). First, we define Λ̂ := Λ̂(Π̄) := (Π̄A∗+ΛΣ∗)Θ−1/2

and Υ̂ := Λ̂Λ̂∗. Let
˙̄Q+ 2p

1−pQ̄Υ̂Q̄+ Q̄
{

p
1−p Λ̂Θ

− 1
2A+B

}
+
{

p
1−p Λ̂Θ

− 1
2A+B

}∗
Q̄

+ 1
2(1−p)A

∗Θ−1A = 0,

with final condition Q̄(T ) = 0.

Since we are interested in the long-time behaviour of this equation, its asymptotic
limit Q̂, as T − t goes to infinity, corresponds to the unique nonnegative definite
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solution of the algebraic Riccati equation

2p

1− p
Q̂Υ̂Q̂+ Q̂

{
p

1− p
Λ̂Θ− 1

2A+B

}
(4.6)

+

{
p

1− p
Λ̂Θ− 1

2A+B

}∗
Q̂+

1

2(1− p)
A∗Θ−1A = 0.

Moreover,

(4.7)
p

1− p
Λ̂Θ− 1

2A+B +
2p

1− p
Υ̂Q̂

is a stable matrix.

Remark 4.2. Existence and uniqueness of solution of the algebraic Riccati equation
(4.6) has been rarely analyzed explicitly in the literature, and its solution depends
on the sign of the parameter p and condition (4.5). Arguments to prove uniqueness

are based on ergodic properties of the linear diffusion X̂t when the candidate for
being optimal control π̂ in (4.3) is applied; see [13, Lemma 3.3] for the completely
observed case.

In order to describe the steady limit of the analogous equation (3.16), substituting

first in that equation Λ̃(Πt) by Λ̂(Π̄), and writing
˙̄q∗ +

(
p

1−pa
∗Θ− 1

2 Λ̂∗ + b∗ + 2p
1−p q̄

∗Υ̂
)
Q̂

+
(

1
2(1−p)a

∗Θ−1 + p
1−p q̄

∗Λ̂Θ− 1
2

)
A+ q̄∗B = 0,

with terminal condition q̄(T ) = 0.

Then, as T − t goes to infinity and t → ∞, q̄ converges to q̂, which solves(
p

1− p
a∗Θ− 1

2 Λ̂∗ + b∗ +
2p

1− p
q̂∗Υ̂

)
Q̂(4.8)

+

(
1

2(1− p)
a∗Θ−1 +

p

1− p
q̂∗Λ̂Θ− 1

2

)
A+ q̂∗B = 0.

Finally, the asymptotic limit as T − t → ∞ of ṁ in (3.17) is

(4.9) ρ(p) :=
1

2
tr[Q̂Υ̂] +

2p

1− p
q̂∗Υ̂q̂+

1

2(1− p)
a∗Θ−1a+

2p

1− p
q̂∗Λ̂Θ− 1

2a+ q̂∗b+ r.

We expect to have an explicit solution to the optimal investment policy, analogous
to the one described in (3.9) for the finite horizon problem. The following results
summarize some conclusions in that direction. The first one is obtained substituting
the form proposed for ρ(p) andW , and following the arguments given in [38] together
with (4.7).

Proposition 4.3. Let W be defined as in (4.4) with Q̂ and q̂ as in (4.6) and (4.8),
respectively. Then, (ρ(p),W ) solves equation (4.4), with ρ(p) given by (4.9).

The main merit of the previous result is to show that there is a connection between
the solution of the ergodic HJB equation (4.2) and the long-run optimal investment
problem through a verification result, analogous to the finite horizon case studied
in the previous section. A natural approach consists in approximating the infinite
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horizon problem through the finite solution, taking advantage of the analytical and
explicit solution provided by the theory of the Riccati differential equation. Its
asymptotic behavior requires some balance between the quadratic coefficient and
the independent coefficient in (4.6), as shown below in (4.10). This approach was
implemented successfully by Nagai and Peng [33, Theorem 6.1].

Proposition 4.4. Assume that

(4.10) Q̂Υ̂Q̂ <
1

4p2
A∗Θ−1A.

Then, ρ(p) corresponds to the value function ζ∞(p, x0, 0) and

π̂t =
1

1− p
Θ−1

{
pΘ

1
2 Λ̂∗DW (X̂t) +

(
α(X̂t)− r1m

)}
=

1

1− p
Θ−1

{
[A+ 2pΘ− 1

2 Λ̂∗Q̂]X̂t + {2pΘ
1
2 Λ̂∗q̂∗ + a− r1m}

}
(4.11)

is an optimal feedback investment strategy, obtained from (4.3), where X̂t follows
the dynamics described by the linear SDE (3.5).

5. Solution to our maximization problem under partial information
and drawdown constraints

In this section we solve the problem of maximizing the exponential growth rate
as the horizon T goes to infinity in (3.4) in which information is restricted to the
filtration G generated by asset prices and in which the wealth process of admissible
strategies satisfy a condition known as drawdown constraint. One of the first works
solving a portfolio selection problem with drawdown constraints is [19]. The solu-
tion to this class of problems involves elements of singular control in the sense that
the corresponding dynamical programming equation takes the form of a variational
inequality; see e.g., [10]. Here, however, we follow an alternative approach taking
advantage of the explicit form of the optimal growth rate as well as the optimal
investment strategy found in the previous section. Instead of following a direct ap-
proach of incorporating the drawdown constraint into the dynamical programming
equation, we consider the correspondence of value functions of problems with and
without constraints as presented in [7] and [37], which are based on the Azema-Yor
semimartingale processes systematically studied by [5] and from which we give be-
low the necessary preliminaries.

Fix κ ∈ [0, 1). By Aκ we denote the family of admissible strategies π ∈ A such
that almost surely

(5.1) Ṽt > κṼ ∗
t , for t ∈ [0,∞),

where Ṽ := V π

S0 is the discounted wealth process of π and we use the notation of

the maximum to date of process Ṽ :

Ṽ ∗
t := sup

0≤s≤t
Ṽs.
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Throughout we are concerned with a portfolio management problem where the
goal is to exceed the performance of a fraction of the last-record maximum of the
discounted wealth process at any time. The value function of our problem is then

ζ∞(p, x, κ) := max
π∈Aκ

lim sup
T→∞

1

T
log CE(V π

T )

= max
π∈Aκ

lim sup
T→∞

1

Tp
logEπ

p

[
exp

{
p

∫ T

0
lp(X̂t, πt)dt

}
| X̂0 = x

]
.

The exponent p ∈ (−∞, 0) which defines the utility function becomes a fixed risk-
sensitivity parameter and the investor’s portfolio benchmark is represented as a
constraint that capital cannot drop below a fraction κ of the last recorded maximum;
see (5.1). Note that ζ∞(p, x, 0) is the classical problem on infinite horizon, with
bankruptcy restriction, and without drawdown constraint.

Remark 5.1. The observant reader will notice that utility is being assessed from
non discounted portfolios while the drawdown constraint is formulated for dis-
counted portfolios. It is also possible to assess utility from discounted portfolios.
However, dealing with the optimization problem under drawdown constraints for-
mulated directly on non discounted portfolios is a more subtle topic. Indeed, to a
large extent it is an open problem; see e.g., [7, Remark 4.8 ] and [37, Remark 2.3].

There are two well known techniques to deal with the drawdown constraint,
one based on Lagrange multipliers and optimal control theory, and the approach
based on the study of the Azema-Yor semimartingale processes. As we mentioned
before, we focus in this last one. The problem is to characterize the value function
ζ∞(p, x, κ) by a dynamical programming PDE from which an optimal strategy π̂
can be determined. Its solution is presented in Theorem 5.3 below. Before that,
we give a few necessary preliminaries on the Azema-Yor semimartingale processes.
The key observation consists in noting that there is a bijection between wealth
processes associated to portfolios π ∈ A and those associated with elements of Aκ.
Hence, each discounted wealth process Ṽ π, with π ∈ A, can be transformed into
κ
Ṽ π := MF,κ(Ṽ π), where

(5.2) MF,κ(Ṽ π
t ) := F (Zt)− F ′(Zt)(Zt − Ṽ π

t ), with Z := (Ṽ π)∗.

Here F ′ is a locally bounded function and F (z) = F (z0) +
∫ z
z0
F ′(u)du. For the

drawdown function w(v) = κv, the election of F is given by F (v) = v1−κ; see [7,

Example 3.3] with v0 = 1. Moreover, given Ṽ π, for π ∈ A, its transformation into

Ṽ π,κ := MF,κ(Ṽ π) corresponds to a process satisfying the drawdown constraint
(5.1); cf. [7, Proposition 3.2].

Now, there is a relation between the value functions ζ∞(p, x0, κ) and ζ∞(p(1 −
κ), x0, 0) formulated in Theorem 5.2 of [7] since we are considering power utili-
ties. Summarizing, in order to be able to solve the partially observed portfolio
optimization problem with drawdown restrictions it is sufficient to solve a portfolio
optimization with non bankrupcy restrictions using as state variables the Kalman
filter X̂t in the evolution of the portfolio process associated with admissible strate-
gies, and a power utility function with parameter γ := p(1 − κ). Having these
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conclusions in mind, we proceed to solve first the finite horizon risk-sensitivity con-
trol problem arising from this formulation, and then pass to the limit when T goes
to infinity. This will allow us to determine the optimal strategies for the investment
strategies, and then proceed to get the explicit form of the investment portfolio π∗

for the original problem with drawdown constraints.
A general form of the Azema-Yor process is analyzed deeply in [5] . The trans-

formation given by Azema-Yor processes allows to characterize portfolios satisfying
the constraint (5.1). The process defined in (5.2) can also be written as

(5.3)
d
κ
Ṽ π

κ
Ṽ π

=

κ
Ṽ π − κ(

κ
Ṽ π)∗

κ
Ṽ π

dṼ π

Ṽ π
,

see the Proposition 2.2 and Corollary 2.4 in [5]. A process with dynamic (5.3)
satisfies the constraint (5.1). Let

R(v, v∗) :=
(1− κ) v

v∗

κ+ (1− κ) v
v∗

.

We have a further expression of
κ
Ṽ π in terms of R:

(5.4)
d
κ
Ṽ π

κ
Ṽ π

= R(Ṽ π, (Ṽ π)∗)
dṼ π

Ṽ π
.

In combination with equation (2.11) we can express the dynamic (5.3) in terms of
the Kalman filter as

d
κ
Ṽ π

κ
Ṽ π

= R(Ṽ π, (Ṽ π)∗)π ·
(
dξ +

1

2
Θdt

)
(5.5)

= R(Ṽ π, (Ṽ π)∗)π ·
(
α(X̂)dt+Θ1/2dI

)
.

Hence, for a G-adapted strategy π the solution to the dynamic (5.5) defines a
wealth process that satisfies the drawdown constraint and is expressed in terms of
observables in our problem, namely G-adapted processes.

Remark 5.2. We defined in equation (2.3) the wealth process, also called value
process, of a strategy of proportions π = (π1, . . . , πd) as

dV

V
= π̄

dS̄

S̄
= rπ0dt+ π · dS

S
= rπ0dt+

m∑
i=1

πidS
i

Si
, V0 = 1,

where S̄ = (S0, S1, . . . , Sm) and π̄ = (π0, π1, . . . , πd.) We recall that in this
dynamic, πi is the proportion in monetary units allocated to the asset Si and
π0 = 1 −

∑m
i=1 π

i . In the proof of Theorem 5.3 below, we require to move from
proportions allocated to each asset to the corresponding proportion on discounted
assets, and here we recall the elementary and necessary preliminary. Let us denote

by S̃i the discounted price S̃i = Si

S0 of the i asset and by Ṽ = V
S0 the discounted

value of a wealth process. One easily verifies that the discounted process Ṽ shares

the same proportions as V in that dṼ
Ṽ

= π dS̃
S̃
.
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Theorem 5.3. Assume the condition (4.10) of Proposition 4.4. The value function
ζ∞ does not depend on x, hence for x0 ∈ Rn we have ζ∞(p, x, κ) = ζ∞(p, x0, κ). It
satisfies ζ∞(p, x0, κ) = (1− κ)ζ∞(γ, x0, 0) + κr, where γ := p(1− κ).

There exists a quadratic function W (x) = x∗Q̂x+ 2q̂∗x such that
(ζ∞(γ, x0, 0),W ) is a solution to the ergodic equation

ζ∞(γ, x0, 0) =
1

2
tr(D2W (Λ̂Λ̂∗)) +

γ

2(1− γ)
(DW )∗Λ̂Λ̂∗DW

+
1

2

1

1− γ
(α− r1m)∗Θ−1(α− r1m) + r

+ (Dk)∗
{

γ

1− γ
Λ̂Θ− 1

2 (α− r1m) + β

}
.

Let π̂ be defined in (4.11) of Proposition 4.4 with p replaced by γ. Let V satisfy
dV
V = π̂ dS

S . Let Ṽ := V
S0 . An optimal strategy is given by

π̌t := R(Ṽt, Ṽ
∗
t )π̂.

Proof. Our function ζ∞(p, x0, κ) is in the notation of [7, equation (5.1)] equal to

|p|CERwκ

H(p) with wκ(x) = κx and H(p)(x) = 1
px

p. Note that we have written the

function ζ∞(p, x0, κ) as depending on a fixed x0, indeed it is independent on the
initial condition of the factor process. Hence, we have that

|p|ζ∞(p, x0, κ) = |p|(1− κ)ζ∞(p(1− κ), x0, 0) + |p|κr,
due to [7, Theorem 5.2 and Remark 5.4]. From this follows the first part of the
Theorem concerning the relationship of ζ∞(p, x0, κ) and ζ∞(γ, x0, 0).

The solution of ζ∞(γ, x0, 0) is given by π̂ defined in (4.11) as we have proved in
Proposition 4.4. Moreover, the value process V defined by dV

V = π̌ dS
S is an element of

Aκ by the general properties of Azema-Yor processes presented before the statement
of the Theorem. It is optimal for ζ∞(p, x0, κ) again due to [7, Theorem 5.2], part 2.

Note that the coefficient R(Ṽ , Ṽ ∗) is positive and bounded by 1 − κ, and then
the structural properties used to verify that π̂ is admissible remain valid to prove
that π̌ belongs to Aκ. □
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