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a nonlinear map h : Rd 7→ Rd given its noisy measurements. Specifically, it is the
iteration

(2.1) x(n+ 1) = x(n) + a(n)(h(x(n)) +M(n+ 1)), n ≥ 0,

where {M(n)} is a martingale difference sequence with respect to the increasing
σ-fields

Fn := σ(x(0),M(m),m ≤ n), n ≥ 0,

representing measurement noise, and {a(n)} is a stepsize sequence satisfying

(2.2) a(n) ≥ 0 ∀ n ≥ 0,
∑
n

a(n) = ∞,
∑
n

a(n)2 < ∞.

Typical assumptions imposed are: h is Lipschitz and {M(n)} satisfies, for some
K > 0,

(2.3) sup
n

E
[
‖M(n)‖4

]
< ∞ and E

[
‖M(n+ 1)‖2|Fn

]
≤ K

(
1 + ‖x(n)‖2

)
.

While the initial contributions analyzed (2.1) using probabilistic techniques, another
approach developed since the 70’s [11, 19, 18, 2, 3] treats (2.1) as a noisy Euler
scheme for the ODE (for ‘Ordinary Differential Equation ’)

(2.4) ẋ(t) = h(x(t)).

Under suitable conditions, one can show that {x(n)} a.s. (:= almost surely with
respect to the underlying probability measure) tracks the asymptotic behavior of
(2.4) as n ↑ ∞. The argument goes as follows. (See [8], Chapter 2, for details).

Define the ‘algorithmic time scale’ t(n), n ≥ 0, by: t(0) := 0, t(n) :=
∑n−1

m=0 a(m).
Then by (2.2), t(n) ↑ ∞. Define x̄(t), t ≥ 0, by: x̄(t(n)) := x(n) ∀n with linear
interpolation on each interval [t(n), t(n + 1)], so that it is a continuous piecewise
linear curve. Fix T > 0 and for n ≥ 0, definem(n) := min{k : t(k)−t(n) ≥ t(n)+T}.
On the interval [t(n), t(m(n))], define the ODE

ẏn(t) = h(yn(t)), t ∈ [t(n), t(m(n))], yn(t(n)) = x(n).

If one can establish a.s. boundedness of the iterates, i.e., supn ‖x(n)‖ < ∞ a.s. (this
usually needs a separate proof), then (2.3) and the square-summability of {a(n)}
ensures that the {Fn}-martingale

∑n−1
m=1 a(m)M(m+1) converges a.s. (Proposition

VII.2.3(c), p. 149, of [20]). This and the fact a(n) → 0 implied by (2.2) together
imply, via the Gronwall inequality, that

(2.5) lim
n↑∞

max
t∈[t(n),t(m(n))]

‖x̄(t)− yn(t)‖ → 0 a.s.

Here the martingale convergence and vanishing stepsize lead to the vanishing of
errors due to noise and discretization, respectively. A similar argument works for
T < 0. This in turn leads to the following characterization of the asymptotic
behavior of {x(n)} due to Benaim [2, 3].

Theorem 2.1. Almost surely, x(n) → a nonempty compact connected internally
chain transitive invariant set of (2.4).
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See ibid. or Chapter 2 of [8] for details. A more general situation is that of a
stochastic recursive inclusion, i.e., the iteration

(2.6) x(n+ 1) = x(n) + a(n)(z(n) +M(n+ 1)), z(n) ∈ H(x(n)) n ≥ 0,

where H : x ∈ Rd 7→ H(x) ⊂ Rd is a set-valued map and {M(n)} is as above. We
assume that x 7→ H(x) is a nonempty compact and convex valued map which is
upper semicontinuous (i.e., its graph {(x, z) : z ∈ H(x)} is closed) and satisfies the
linear growth condition

max
z∈H(x)

‖z‖ ≤ K ′(1 + ‖x‖)

for some K ′ > 0. Then one looks at a differential inclusion limit instead of an o.d.e.
This differential inclusion is

(2.7) ẋ(t) ∈ H(x(t)).

Following the pioneering work of Benaim, Hofbauer and Sorin [4, 5], which, among
other things, establish a counterpart of Theorem 2.1 for this case, this iteration
has been extensively studied in literature, some of it motivated by applications to
reinforcement learning [7, 13, 14, 22, 23, 27, 28, 29]. The aforementioned extension
of Theorem 2.1 is as follows.

Theorem 2.2. Almost surely, x̄(·) asymptotically tracks a solution of (2.7) in
the sense that (2.5) holds with yn(·) := a solution of (2.7) on [t(n), t(m(n))] with
yn(t(n)) = x(n) ∀n. Furthermore, x(n) → a nonempty compact connected inter-
nally chain transitive invariant set of (2.4).

Here, an invariant set is a set of points x such that some solution of (2.7) passing
through x remains in the set for all time.

A special case of interest is (2.4) when the map h is discontinuous and the usual
theory for well-posedness of (2.4) does not apply. The standard approach (see [21]
and its references) has been to treat (2.4) as a special case of (2.7) by setting
z(n) = h(x(n)) and

H(x) = Kh(x) := ∩δ>0co ({h(y) : ‖y − x‖ < δ}) .

Any trajectory thereof is known as a Krasovskii solution to (2.4) [17], one of the
many solution concepts for differential equations driven by discontinuous vector
fields. (See [10] for a recent survey of the various solution concepts and their inter-
relationships.)

3. Main results

We assume throughout that

(3.1) sup
n

‖x(n)‖ < ∞ a.s.

We shall denote by P(S) the Polish space of probability measures on a Polish space
S with the Prohorov topology. Cb(S) will denote the space of bounded continuous
functions S 7→ R.
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We present two results in this section. The first is the observation that if the
laws of (x(n),M(n + 1)) are Lebesgue-continuous, then we may replace the com-
monly used Krasovskii solution by the more restrictive Filippov solution [15] for the
limiting differential equation. This is facilitated by a remarkable result from [9].

The second result is in the spirit of another remarkable piece of work [7] that char-
acterizes the limiting behavior of suitably averaged ‘occupation measures’ µ(dxdz|t)
defined below, as n → ∞. While [7] uses classical analytic tools such as Young mea-
sures and concepts from topological dynamics, we take a control theoretic view based
on relaxed controls and Stockbridge’s extension of Echeverria’s theorem [12] to con-
trolled martingale problems [25]. (See [6] for a further extension and [1], Chapter
6, for a detailed exposition.) In addition to recovering variants of the results of [7],
this also gives some additional insights.

3.1. Filippov solution. Let N denote the collection of Lebesgue-null sets in Rd.
A Fillipov solution to (2.4) replaces Kh(x) above by

Fh(x) := ∩N∈N ∩δ>0 co ({h(y) : ‖y − x‖ < δ}\N) .

That is, we consider the differential inclusion limit given by

(3.2) ẋ(t) ∈ Fh(x(t)).

The elimination of sets of zero Lebesgue measure does matter. Consider, e.g., the
following example.

Example 1: Consider the two dimensional case where h : R2 7→ R2 is given by

h(x, y) = [1,−1], y > 0,

= [1, 1], y < 0,

= [−1, 0], y = 0.

One can easily see that the Filippov solution will be

ẋ(t) = 1,

ẏ(t) = −1, y > 0,

= 1, y < 0,

= 0, y = 0.

In particular, letting [x, y] denote a generic vector in R2, we have for y(t) = 0,
d
dt [x(t), y(t)] = [1, 0] 6= [−1, 0]. A Krasovskii solution would only tell us that for

y(t) = 0, d
dt [x(t), y(t)] ∈ co

(
[1,−1], [1, 1], [−1, 0]

)
.

Assume that:

(†) The laws of (x(n),M(n + 1)) are absolutely continuous with respect to the
Lebesgue measure for all n.

This holds, e.g., if the law of x(0) and regular conditional law of M(n+ 1) given
x(n) is absolutely continuous w.r.t. the Lebesgue measure for all n (‘a.s.’ in the
latter case). Our first main result is:
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Theorem 3.1. The {x(n)} generated by (2.1) with a discontinuous h will asymp-
totically track a Filippov solution of (3.2), a.s.

Proof. We use the following result from [9].

Lemma 3.2. Let f : Rd 7→ Rd be measurable and locally bounded. Then,

(1) for a.e. (:= almost everywhere with respect to the Lebesgue measure) x,
f(x) ∈ Ff (x) and Ff (·) is the smallest closed convex valued upper semicon-
tinuous set valued map for which this holds, and,

(2) there exists a measurable f̃ = f a.e. such that Ff (x) = Kf̃ (x) ∀x ∈ Rd.

See Prop. 2, pp. 231-234, [9], for a proof. In fact, it is easy to see that if one
considers the convolutions f δ := f ∗φδ where φδ, δ > 0, are smooth approximations
to the Dirac measure at the origin that are supported in the ball of radius δ > 0
centered at the origin, then f = limδ↓0 f

δ at all Lebesgue points of f [16], and
therefore f(x) ∈ Ff (x) at all Lebesgue points of f .

By the above lemma, there exists a measurable h̃ : Rd 7→ Rd such that h̃ = h
a.e. and Fh(·) = Kh̃(·). Thus the iteration

x̃(n+ 1) = x̃(n) + a(n)(h̃(x(n)) +M(n+ 1)), n ≥ 0,

with x̃(0) = x(0) a.s., can be shown to satisfy x̃(n) = x(n) a.s. by induction, in view
of (†). But by standard theory for stochastic recursive inclusions (see, e.g., [4] or
Chapter 5 of [8]), {x̃(n)} asymptotically track a.s. the differential inclusion

ẋ(t) ∈ Kh̃(x(t)) = Fh(x(t)),

in view of the foregoing. Then so does {x(n)}. The claim follows. □

3.2. Limiting empirical measures. In this section we take a control theoretic
view of (2.7). Let fi : Rd 7→ R, i ≥ 1, be a countable family of bounded twice con-
tinuously differentiable functions that has bounded first and second partial deriva-
tives, chosen such that it forms a convergence determining class for P(Rd). Note
that for each i ≥ 1,

ξi(n) :=
n−1∑
m=0

a(m)〈∇fi,M(m+ 1)〉, n ≥ 1,

is a square-integrable martingale w.r.t. {Fn}.

Lemma 3.3. ξi(n) converges a.s. as n → ∞, ∀i.

Proof. By (3.1), the quadratic variation process {〈ξ〉n} of {ξi(n)} satisfies

〈ξi〉n ≤ Ki

n−1∑
m=0

a(m)2E
[
‖M(m+ 1)‖2|Fm

]
≤ KiK

∑
n

a(n)2(1 + ‖x(n)‖2) < ∞ a.s.

for a suitable bound Ki on ‖∇fi(·)‖ and K as in (2.3). By Proposition VII.2.3(c),
p. 149, of [20], ξi(n) converges a.s. □

Likewise, we have:

Lemma 3.4.
∑

n a(n)
2‖M(n+ 1)‖2 < ∞ a.s.
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Proof. Let

Z(n) :=
n−1∑
m=0

a(n)2
(
‖M(m+ 1)‖2 − E

[
‖M(m+ 1)‖2|Fm

])
, n ≥ 1.

By our assumption (2.3), supnE
∥∥M(n)‖4

]
< ∞. From this and (2.2), it follows

that the quadratic variation process 〈Z〉n of {Zn} is uniformly bounded in mean
square and therefore, is bounded a.s. In turn, this and Proposition VII.2.3(c), p.
149, of [20], imply that Z(n) converges a.s. as n ↑ ∞. Since

n−1∑
m=0

a(n)2E
[
‖M(m+ 1)‖2|Fm

]
≤ K

n−1∑
m=0

a(n)2
(
1 + ‖x(m)‖2

)
< ∞

a.s. (where K > 0 is as in (2.3)), the claim follows. □

Next, let B,D be closed convex subsets of Rd. We define U := the space of mea-
surable maps [0,∞) 7→ P(B×D) with the coarsest topology that renders continuous
the maps

µ(dxdy|·) ∈ U 7→
∫ t

s
g(y)

∫
B×D

f(x, u)µ(dxdu|y)dy,

f ∈ C(B ×D), g ∈ L2[s, t], t > s ≥ 0.

This is a compact metrizable topology, hence U is Polish (See, e.g., pp. 71-73 of [8]).
In fact this is a special case of the standard topology for relaxed (or ‘chattering’)
controls introduced by L. C. Young that later led to the more general notion of
‘Young measures’ in calculus of variations [30].

Let Φ := a zero probability set outside which (3.1) holds and the conclusions of
Lemmas 3.3 and 3.4 hold. Define a P((Rd)2)-valued process µ(dxdz|t), t ∈ [0,∞),
by

µ(dxdz|t) := δ(x(n),z(n))(dxdz), t(n) ≤ t < t(n+ 1), n ≥ 0,

where {t(n)} are defined as in the preceding section and δ(x′,z′)(dxdz) denotes the

Dirac measure at (x′, z′). Fix a sample point in Φc. Choose B,D ⊂ Rd such that
(x(n), h(x(n))) ∈ B×D ∀n. This is possible by (3.1) and the linear growth condition
on Fh(·). Define µ̌(dxdz|·) ∈ U by:∫

f(x, z)µ̌(dxdz|t) := 1

t

∫ t

0

∫
f(x, z)µ(dxdz|s)ds

for twice continuously differentiable f ∈ Cb(B ×D) with bounded first and second
partial derivatives. In particular,

1

t(n)

∫ t(n)

0

∫
〈∇fi(x), z〉µ(dxdz|t)dt =

∑n−1
k=0 a(k)〈∇fi(x(k)), z(k)〉∑n−1

k=0 a(k)
.

Note that we work with a fixed sample path and therefore the sets B,D, though
sample path dependent, are fixed.

Theorem 3.5. For the chosen sample path, any limit point of µ(dxdz|t + ·) in U
as t ↑ ∞ is of the form µ∗(dxdz) such that,
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(1) µ∗ is supported on the graph of Kh(·) and if (†) holds, on the graph of Fh(·),
and,

(2) there exists a stationary process (X(·), Z(·)) satisfying Ẋ(t) = Z(t) for which
the marginal law of (X(t), Z(t)) is µ∗ for all t. Furthermore, one may view
the control Z(·) as corresponding to a stationary Markov relaxed control
v(X(·)) for some measurable v : x ∈ Rd 7→ P(Kh(x)), (v : x ∈ Rd 7→
P(Fh(x)) if (†) holds), i.e., v(Xt) is the law of Zt for all t ≥ 0.

Proof. Recall from the preceding section the definitions of t(n), n ≥ 0, and x̄(·).
Since t(n) → ∞ and t(n+1)− t(n) → 0, it suffices to consider a subsequence along
{t(n)} as n ↑ ∞. For i ≥ 1,

fi(x̄(t(n))− fi(x̄(0)) =

n−1∑
k=0

(fi(x̄(t(k + 1))− fi(x̄(t(k))))

=
n−1∑
k=0

a(k)〈∇fi(x(k)), z(k)〉

+
n−1∑
k=0

a(k)〈∇fi(x(k)),M(k + 1)〉+
n−1∑
k=0

ζ(k)

by Taylor formula, where ‖ζ(k)‖ ≤ Ca(k)2
(
1 + ‖M(k + 1)‖2

)
for some constant

C > 0. By our choice of the sample path, the conclusion of Lemma 3.3 applies and
the second term is bounded. Likewise by Lemma 3.4, so is the third term. Then
dividing both sides by t(n) and letting n ↑ ∞, we have t(n) ↑ ∞ and therefore

1

n

n−1∑
k=0

a(k)〈∇fi(x(k)), z(k)〉 =
1

t(n)

∫ t(n)

0

∫
〈∇fi(x), z〉dµ(dxdz|t)dt → 0.

Suppose µ∗(dxdz) is a limit point of µ̌(dxdz|t) as t → ∞. Then by passing to the
limit along an appropriate subsequence, we have∫

〈∇fi(x), z〉µ∗(dxdz) = 0 ∀i.

Then the first claim follows from Theorem 2.2 and Theorem 3.1. By Theorem 4.7
of [25], there exists a stationary process (X(·), Z(·)) such that Ẋ(t) = Z(t) ∀t and
the marginal of (X(t), Z(t)) is µ∗ for all t. This implies the first part of the second
claim. The second part of the second claim follows from Corollary 2.1 of [6], see
also Corollary 6.3.7, p. 230, of [1]. □

Remark 3.6. Note that the control being a stationary relaxed Markov process does
not imply that the state process itself is time-homogeneous Markov, or even Markov,
in this case. This is due to nonuniqueness of solutions: for some t > 0, we can take
some solution up to t and then choose the regular conditional law of the process
after t from the set of solution measures initiated at X(t) as a non-trivial function
of the entire trajectory up to time t. This yields a non-Markov solution. More
generally, one can follow the recipe of Section 12.3 of [26] to generate non-Markov
solutions.



652 V. S. BORKAR AND D. A. SHAH

References

[1] A. Arapostathis, V. S. Borkar and M. K. Ghosh, Ergodic Control of Diffusion Processes, 2012,
Cambridge University Press.

[2] M. Benaim, A dynamical system approach to stochastic approximations, SIAM Journal on
Control and Optimization 34 (1996), 437–472.
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[12] P. Echeverŕıa, A criterion for invariant measures of Markov processes, Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 61 (1982), 1–16.

[13] M. Faure and G. Roth, Stochastic approximations of set-valued dynamical systems: Conver-
gence with positive probability to an attractor, Mathematics of Operations Research 35 (2010),
624–640.

[14] M. Faure and G. Roth, Ergodic properties of weak asymptotic pseudotrajectories for set-valued
dynamical systems, Stochastics and Dynamics 13 (2013), 1250011.

[15] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic,
2010.

[16] J. Jost, Postmodern Analysis, 3rd ed., Springer, 2006.
[17] N. N. Krasovskii and A. I. Subotin, Game-theoretical Control Problems, Springer Verlag, 1988.
[18] L. Ljung, Analysis of recursive stochastic algorithms, IEEE Transactions on Automatic Control

22 (1977), 551–575.
[19] S. M. Meerkov, Simplified description of slow random walks II, Automation and Remote Con-

trol 33 (1972), 403–414.
[20] J. Neveu, Discrete Parameter Martingales, North Holland, 1975.
[21] N. Nguyen and G. Yin, Stochastic approximation with discontinuous dynamics, differential

inclusions, and applications, The Annals of Applied Probability 33 (2023), 780–823.
[22] A. Ramaswamy and S. Bhatnagar, Stochastic recursive inclusion in two timescales with an

application to the Lagrangian dual problem, Stochastics 88 (2016), 1173–1187.
[23] A. Ramaswamy and S. Bhatnagar,A generalization of the Borkar-Meyn theorem for stochastic

recursive inclusions, Mathematics of Operations Research 42 (2017), 648–661.
[24] H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical

Statistics (1951), 400–407.
[25] R. H. Stockbridge, Time-average control of martingale problems: existence of a stationary

solution, The Annals of Probability (1990), 190–205.
[26] D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer Verlag,

1979.
[27] V. G. Yaji and S. Bhatnagar, Stochastic recursive inclusions with non-additive iterate-

dependent Markov noise, Stochastics 90 (2018), 330–363.



REMARKS ON DIFFERENTIAL INCLUSION LIMITS OF STOCHASTIC APPROXIMATION 653

[28] V. G. Yaji and S. Bhatnagar, Analysis of stochastic approximation schemes with set-valued
maps in the absence of a stability guarantee and their stabilization, IEEE Transactions on
Automatic Control 65 (2019), 1100–1115.

[29] V. G. Yaji and S. Bhatnagar,Stochastic recursive inclusions in two timescales with nonadditive
iterate-dependent Markov noise, Mathematics of Operations Research 45 (2020), 1405–1444.

[30] L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, W. B.
Saunders, 1969.

Manuscript received March 7 2023

revised April 27 2023

Vivek S. Borkar
Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai
400076, India

E-mail address : borkar.vs@gmail.com

Dhruv A. Shah
Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai
400076, India

E-mail address : 190020039@iitb.ac.in


