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tropical kernels [4].

Another very related field is the problem of estimation. Its “duality” with control
theory has been studied extensively since the seminal paper by [16], but the word
dual is unfortunately often abusively used, and does not always correspond to rig-
orous dual spaces in a mathematical sense or to dual min-max/max-min problems.
We refer to [14, Chapter 15] for a formalization of this duality in discrete-time and
to [19, Chapter 3] for valuable insights in continuous-time. Unlike in control theory,
kernels have been known in estimation problems since the origin of the field. In-
deed reproducing kernels are the covariances of stochastic processes in this context
[24, 6], and, in the Gaussian case, summarize all the information. In this Bayesian
field of Gaussian process regression, kernels are ubiquitous, forming the determinis-
tic counterpart of the stochastic processes [25, 17]. This regression framework was
in particular applied to stochastic differential equations [see 28, for an introduction
and recent review] in close relation with Kalman filtering. Nevertheless, to the best
of our knowledge, the reproducing kernel Hilbert spaces (RKHSs) associated with
the continuous-time Gaussian processes stemming from linear stochastic differential
equations (SDEs) have not been written explicitly.

Main results. To achieve the identification of the RKHSs, we extensively use
the more recent theory of operator-valued kernels [see 9, and references therein]. We
prove that the linear SDEs define two vector-valued RKHSs over the time interval:
one, forward, for the reconstructible trajectories, and one, backward, for the infor-
mation vectors. The values of the trajectory kernel coincide with the covariance of
the minimal estimation error, and thus with the Kalman filter and Rauch-Tung-
Striebel Smoother. For the information kernel, the connection is with the Gramian
of observability. We provide new closed-form expressions for the covariance kernels
of these Markovian Gaussian processes. By drawing upon the connection between
covariance and RKHSs, we also generalize the kernel formulas obtained previously
for optimal control and define two dual deterministic optimization problems asso-
ciated with the smoothing task. Since we work in an estimation context, extensive
care was taken to provide minimal invertibility requirements on the matrices in-
volved. To simplify a little, we limit ourselves to finite-dimensional systems, but
generalization to infinite-dimensional systems (i.e. nonstationnary spatiotemporal
Gaussian processes, [29, 20]) can be done in the spirit of [3].

Related work. For discrete-time differential equations, the benefits and limita-
tions of kernel regression, defined over the time axis, were discussed in [31]. This
contrasts with the wider use of kernels, defined over observation and state spaces,
as off-the-shelf tools for estimation as in [18]. Our setting is closer to the former,
with all our kernels defined over time. Characterization of Markovian Gaussian
processes by the form of their kernel was recalled in [23, Chapter 3.2] and [6, Ex-
ample 2, p58], and further studied in [12]. The formulas for the covariance kernel
of a linear SDE over the state variable but without an observation process were
given in [28, Section 6.4, p.89]. Up to our knowledge, while every linear SDE leads
to a Markovian Gaussian process, the converse is not known in the general case.
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Concerning duality, [19] summarizes the traditional input-output viewpoint, with
the duality appearing through the adjoint of the map sending the initial condition
to the output. [19] then delves into a promising duality framework for the nonlinear
setting. We adopt a different viewpoint here, kernel-based, focusing on covariances
and Hilbert spaces of trajectories.

The paper is structured as follows. The filtering and smoothing settings and their
linear estimators are presented in Section 2 and related to a general perturbed two-
point boundary value problem. Section 3 gives the formulas of the Green kernels for
this problem, based on impulse-response. In Section 4, these kernels are shown to
be the reproducing kernels of two functional spaces, of controlled trajectories and
of information vectors respectively, and two dual optimization problems defined. In
Section 5, for completeness, we rederive various known formulas for the Kalman filter
and RTS smoothing. The results are finally summarized in Section 6 and compared
to those previously obtained by the authors in optimal control. We provide in the
Appendix implementable formulas to compute the kernels based on the Hamiltonian
matrix.

2. Kalman filtering and RTS smoothing in continuous time

2.1. Statement of the problem. We follow the presentation of [5, Chapter 7].
We consider on a probability space (Ω,A, P ) a filtration F t and two independent
standard Wiener spaces w(t), b(t) with values in Rp and Rm, and respective covari-
ances Q and R in the sense that the following correlation formulas hold

(2.1) E[w(s)w(t)∗] =
∫ min(s,t)

t0
Q(τ)dτ, E[b(s)b(t)∗] =

∫ min(s,t)

t0
R(τ)dτ

where w(t)∗ ∈ Rp,∗ denotes the transpose and in whichQ(·) ∈ L1([t0, T ], L(Rd,∗;Rd)),
R(·) ∈ L2([t0, T ],L(Rm,∗;Rm)) and, for some r > 0, R(·) ≽ r Id a.e. The processes
are assumed to be adapted to the filtration F t. We observe a dynamic system with
partial information. The dynamic system is characterized by its state x(t) ∈ Rn,
which evolves according to the model

(2.2) dx(t) = (F (t)x(t) + f(t))dt+G(t)dw(t), x(t0) = x0 + ξ, ξ ∼ N (0,Π0)

in which F (·) ∈ L1([t0, T ],L(Rn;Rn)), G(·) ∈ L2([t0, T ],L(Rd;Rn)) and f(·) ∈
L1([t0, T ],Rn) are fixed deterministic functions, which are known, and x0 ∈ Rn,
is a deterministic known vector. The random variable ξ has values in Rn, and is
assumed Gaussian with zero mean and covariance matrix Π0 such that ξ, w(·),
b(·) are mutually independent. Note that we require R to be invertible but do not
require it for Q or Π0. The state x(t) is not observed, we have instead a continuous-
time observation process y(t) with values in Rm, related to x(t) by the following
relation1

(2.3) dy(t) = (H(t)x(t) + h(t))dt+ db(t), y(t0) = y0

1A discrete-time observation process y(ti) = H(ti)x(ti) + εi could easily be considered, without
changing formalism, with the same operator H and independent Gaussian noises εi ∼ N (0, Ri).
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in which H(·) ∈ L2([t0, T ],L(Rn;Rm)), h(·) ∈ L1([t0, T ],Rm). At any final time
T , the available information is the trajectory (y(t))t∈[t0,T ] and we want to estimate
the value of x(s) for s ∈ [t0, T ]. When s < T , the best estimate is called the RTS
smoother, and when s = T , it is the Kalman filter.

2.2. Best estimate. From (2.2) and (2.3), we deduce that the processes x(t) and
y(t) are Gaussian, with mean x̄(t) and ȳ(t) given by the equations

dx̄

dt
(t) = F (t)x̄(t) + f(t), x̄(t0) = x0,(2.4)

dȳ

dt
(t) = H(t)x̄(t) + h(t), ȳ(t0) = y0.(2.5)

We introduce the processes x̃(t) and ỹ(t) with zero mean, x̃(t) := x(t) − x̄(t),
ỹ(t) := y(t) − ȳ(t). They are solutions of the SDEs

dx̃(t) = F (t)x̃(t)dt+G(t)dw(t), x̃(t0) = ξ,(2.6)
dỹ(t) = H(t)x̃(t)dt+ db(t), ỹ(t0) = 0.(2.7)

The formal problem is to estimate x(s) with the σ-algebra YT = σ(y(τ), 0 ≤ τ ≤ T ).
For the minimum mean square estimator, the solution is well-known [23], it is the
conditional expectation:
(2.8) x̂(s|T ) = E[x(s)|YT ].
The random variable x̂(s|T ), for s < T , is the RTS smoother estimate, while x̂(T |T )
is the Kalman filter estimate. However the expression (2.8) is not operational and
we need more implementable formulas. The most important element we want to
exploit is that, thanks to the fact that the processes x(·) and y(·) are Gaussian, the
conditional expectation coincides with the best unbiased linear estimate, a.k.a. the
minimum variance linear estimator. A linear unbiased estimate is characterized by
an operator S(t) ∈ L(Rm;Rn). We estimate x(s) by the minimum variance linear
estimator xS(s|T ) defined by the formula, related to Wiener filtering,

(2.9) xS(s|T ) := x̄(s) +
∫ T

t0
Ss(t|T )dỹ(t)

which is obviously unbiased. The estimation error ϵS(s|T ) thus satisfies

(2.10) ϵS(s|T ) := x(s) − xS(s|T ) = x̃(s) −
∫ T

t0
Ss(t|T )dỹ(t).

The objective is to find Ŝs(·|T ) minimizing the covariance matrix of the error

(2.11) Ŝs(·|T ) ∈ argmin
S(·|T )

ΓS(s|T ) = E[ϵS(s|T )(ϵS(s|T ))∗].

This minimization must be interpreted in the sense of the operator norm of positive
matrices. The fact that this problem has a solution is a fundamental result of
Kalman smoothing and filtering theory. In this work we obtain a new expression
for the optimal operator Ŝs(·|T ) by finding a closed-form formula for the following
proper covariance function,
(2.12) K(s, t|T ) = E[ϵŜs

(s|T )(ϵŜt
(t|T ))∗] ∈ L(Rn,∗,Rn)
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We show below in Corollary 3.2 that Ŝs(t|T ) = K(s, t|T )H∗(t)R−1(t). From a
Gaussian process perspective, K can be interpreted as the posterior covariance
given ỹ with the prior (2.1) over x(·). The fact that covariances K are also re-
producing kernels is well-known since [24]. [6, Chapter 2] summarized the deep
relations between positive semidefinite kernels and stochastic processes, albeit only
in the real-valued case. [17] also reviewed the connections between kernel methods
and Gaussian processes. We meet here a similar relation to the classical “duality”
between estimation and control in the Linear-Quadratic-Gaussian setting, which
we will come back to in Sections 2.3 and 4.4. The kernels have a “dual” nature,
both deterministic, as Green functions of differential equations, and stochastic, as
covariances of second order processes.

2.3. A detour through estimators. In this section only, we consider infinite-
dimensional operators to give the high-level idea before introducing the various
quantities studied in the next sections. We will proceed formally, following the in-
troduction of [5, Chapter 4.5] on finite-dimensional best estimators and the short
presentation of [6, Chapter 2.4] of Hilbert spaces generated by a process with finite
second order moments. For such a process X = (Xt)t∈[t0,T ], we write CX its covari-
ance operator. For simplicity, we consider only zero-mean processes X,Y and only
quantities having finite second order moments. Setting T = [t0, T ], the (Bayesian)
minimum mean square estimator (MMSE) is defined as

(MMSE) min
X̂∈L2(Ω×T ,Rn),Φ meas., X̂=Φ(Y )

E((X − X̂)>(X − X̂)).

where Φ is a measurable function from L2(Ω×T ,Rm) to L2(Ω×T ,Rn), whence X̂
belongs to the space N̄ (Y ) of nonlinear functionals of Y . The linear MMSE, which
coincides with the minimum variance linear estimator (MVLE), instead restricts
the search space to the space L̄(Y ) of linear functionals of the process Y

(MVLE) min
X̂∈L2(Ω×T ,Rn),S∈L(L2(Ω×T ,Rm),L2(Ω×T ,Rn)), X̂=SY

E((X − X̂)>(X − X̂)).

Gaussian process regression for real-valued x, i.e. n = 1, further restricts the search
space, by introducing the canonical congruence ψY between the process Y and its
RKHS HY , i.e. the linear isomorphism satisfying ψY (v>Yt)(s) = E[YsY >

t ]v for all
v ∈ Rm,

(GP-reg) min
X̂∈L2(Ω×T ,Rn), g∈HY , X̂=ψ−1

Y (g)
E((X − X̂)>(X − X̂)).

By convex duality, introducing a process Λ which acts as a Lagrange multiplier, the
dual problem of (MVLE) can be written as

max
Λ∈L2(Ω×T ,Rn,∗)

min
X̂∈L2(Ω×T ,Rn),

S∈L(L2(Ω×T ,Rm),L2(Ω×T ,Rn))

E((X − X̂)>(X − X̂)) + 2
〈
Λ, X̂ − SY

〉
L2(Ω×T ,Rn)

.

Minimizing over S imposes Λ ∈ L̄(Y )⊥, the orthogonal space of L̄(Y ) in L2(Ω ×
T ,Rn). Minimizing over X̂ gives X̂> = X> − Λ̂ so

(MVLE-dual) min
Λ∈L(Y )⊥

E((X> − Λ)>(X> − Λ)).
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This covector or adjoint process does not exist in the Gaussian process framework
because the duality is not taken in L2 but in HY , seen as self-adjoint. For such
orthogonal spaces to appear, one has to work in a larger space than HY , such as
L2. Similarly, in optimal control, working in the space of absolutely continuous
trajectories leads to defining a covector function. Working in the RKHS of linearly
controlled trajectories as in [1] bypasses the need of such covector.2

Coming back to (MVLE), the first order optimality condition writes as the or-
thogonality criterion E((X − X̂)Y >) = 0 which gives that Ŝ = CXY C−1

Y if CY is
invertible. If Y = HX + Z, with invertible CZ = R, then CY has an inverse and,
setting Cϵ = CX − CX̂,Ŝ , further assuming CX to be invertible and using the Wood-
bury identity, we obtain that Ŝ = CϵH>R−1. We note also that for any deterministic
λ̄(·) ∈ L2([t0, T ],Rn,∗), Ŝ also minimizes

min
X̂∈L2(Ω×T ,Rn),S∈L(L2(Ω×T ,Rm),L2(Ω×T ,Rn)), X̂=SY

E(‖λ̄(·)>(X − X̂)‖2
L2).

Defining the deterministic v(·) = S>λ̄(·), Ŝ minimizes a “control” problem over v,
with a specific rewriting for Y = HX + Z,

(MVLE-det) min
S∈L(L2(T ,Rm),L2(T ,Rn)),

v(·)=S>λ̄(·)

〈λ̄(·),CX λ̄(·)〉
L2 +〈v(·),CY v(·)〉L2 −2〈λ̄(·),CXY v(·)〉

L2︸ ︷︷ ︸
〈λ̄(·)−H>v(·),CX(λ̄(·)−H>v(·))〉

L2 +〈v(·),Rv(·)〉L2

.

Another approach would have been to consider a Bayesian posterior estimate when
considering jointly Gaussian processes X,Y . However, as recalled in [17, p.9 and
16], Bayes’ rule is more involved in infinite dimensions and the likelihood may be
degenerate as, for CX non-invertible, X does not have a density w.r.t. the Lebesgue
measure. However, for invertible joint covariance CX,Y , we have that CY and Cϵ =
CX−CXY C−1

Y CY X are invertible. Nevertheless, for continuous-time observations, the
absence of a Lebesgue measure requires extensive care [10], leading to a less common
viewpoint on reproducing kernels in relation with Gaussian measures and Cameron-
Martin spaces [22, Definition 2.3.4]. We bypass these difficulties by expressing the
maximum log-likelihood estimator for a realization y(·) of Y as its resulting least

2Note also that the theory of Gaussian processes (GPs), despite being a subfield of Bayesian
statistics, does not require to manipulate a proper likelihood function to solve a regression prob-
lem. Uncannily we can draw another parallel with linear-quadratic (LQ) optimal control, where
introducing the value function is not necessary to derive the solution. In a nutshell, the GP (resp.
kernel) approach to estimation (resp. control) in the Gaussian (resp. LQ) case does not involve a
larger space of functions to work in, but restricts the analysis to the space generated by the process
(resp. RKHS). In our context, we will see that one can formally move from stochastic Bayesian GPs
to deterministic frequentist kernels by replacing the Brownian noise dw(t) by a control u(t)dt. This
formal change is related to moving from Itô to Stratonovitch calculus and allows to derive exact
properties of the stochastic system such as set invariance based on the deterministic counterpart
[11], introducing a Stratonovitch drift in case of nonlinear diffusion terms.
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squares problem3

(LSE) min
x̂(·)∈L2(T ,Rn)

〈
(x̂(·), y(·)), C−1

X,Y (x̂(·), y(·))
〉
L2(Ω×T ,Rn×Rm)

=
〈
x̂(·) − CXY C−1

Y y(·), C−1
ϵ (x̂(·) − CXY C−1

Y y(·))
〉
L2

+
〈
y(·), C−1

Y y(·)
〉
L2︸ ︷︷ ︸

〈x̂(·),C−1
X x̂(·)〉

L2 +〈y(·)−Hx̂(·),R−1(y(·)−Hx̂(·))〉L2

.

Remark 2.1 (Stochastic and deterministic dual or equivalent problems). [14, Chap-
ter 15, Table 15.1, p568] describes the four problems we obtained as either “dual”
or “equivalent”. Here we intend duality strictly in the Fenchel context, obtained
by permutation of max and min. The problems (MVLE)-(MVLE-dual) are indeed
stochastic dual problems. That (LSE)-(MVLE-det) are deterministic dual prob-
lems as claimed in [5, p59] is not so straightforward (this is justified through dual
bases in [14]). We will return to this in Section 4.4 and prove that when expressed
on RKHSs, there is indeed a Fenchel duality. Similarly, that (MVLE)-(LSE) and
(MVLE-dual)-(MVLE-det) are “equivalent” stochastic and deterministic problems,
as defined in [14, Section 15.3], will get clearer from the fact that both problems
share the same reproducing kernel (see Section 4). Note that (LSE)-(MVLE-det)
do not have the same assumptions concerning the invertibility of CX,Y and of CY , a
limitation which we will not meet when using kernels.

The problem with the approaches developed so far is that manipulating abstract
covariances and continuous linear maps over L2 can be cumbersome and is not
operable for non-discrete time. Instead, Laurent Schwartz’s kernel theorem allows
us to consider all these operators as kernel integral operators. Thus, in the following,
we will see formulas very similar to the ones derived in this section, but written
explicitly on the time axis and with recursive versions in the spirit of Kalman
filtering. Formally one can consider in (MVLE-det) the test function λ̄(·) = δs(·)λ̄
for some λ̄ ∈ Rn,∗ to recover (2.11), but we will see that choosing λ̄(·) based on the
adjoint process Λ̂ will allow us to avoid having to manipulate CX in (MVLE-det).

2.4. A related optimal control problem. We return to the formulas of Sec-
tion 2.2 and start by expressing

〈
ΓS(s|T )λ̄, λ̄

〉
more explicitly,

〈
λ̄, ϵŜs

(s|T )
〉

=
〈
λ̄, x̃(s)

〉
−
∫ T

t0

〈
S∗
s (t|T )λ̄, dỹ(t)

〉
=
〈
λ̄, x̃(s)

〉
−
∫ T

t0

〈
S∗
s (t|T )λ̄,H(t)x̃(t)dt+ db(t)

〉
.

3In continuous time, ỹ(t) ∈ L2(T ,Rm) “is reminiscent of the observation process, in fact rather
the derivative of the observation process (which, as we know, does not exist)” [5, p180]. It is as if
we claim to observe the derivative, but ỹ(t) will always appear within integrals.
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We seek an expression where x̃ does not appear. We thus introduce the following
adjoint equation over an adjoint variable λs, a.k.a. the information vector,

−dλs
dt

= F ∗(t)λs(t) −H∗(t)S∗
s (t|T )λ̄,(2.13)

λs(T ) =
∣∣∣∣∣ 0 if s < T
λ̄ if s = T

, λs(s) − λs(s+) = λ̄, if s < T,(2.14)

where λs(s+) = limh→s+ λs(h) with the convention λs(T+) = 0. Then a simple
calculation shows that〈

λ̄, ϵŜs
(s|T )

〉
=
〈
λ̄, x̃(s)

〉
+
∫ T

t0

〈
−dλ

dt
− F ∗(t)λs(t), x̃(t)dt

〉
−
∫ T

t0

〈
S∗
s (t|T )λ̄, db(t)

〉
=
〈
λs(s) − λs(s+), x̃(s)

〉
+
∫ T

t0

〈
−dλ

dt
, x̃(t)dt

〉
+
∫ T

t0
〈λs(t),−dx̃(t) +G(t)dw(t)〉 −

∫ T

t0

〈
S∗
s (t|T )λ̄, db(t)

〉
=
〈
λs(s) − λs(s+), x̃(s)

〉
− [〈λs(τ), x̃(τ)〉]st0 − [〈λs(τ), x̃(τ)〉]Ts+︸ ︷︷ ︸

=〈λs(t0),ξ〉

+
∫ T

t0
〈G∗(t)λs(t), dw(t)〉 −

∫ T

t0

〈
S∗
s (t|T )λ̄, db(t)

〉
and therefore

(2.15)
〈
ΓS(s|T )λ̄, λ̄

〉
= 〈Π0λs(t0), λs(t0)〉 +

∫ T

t0
〈G(t)Q(t)G∗(t)λs(t), λs(t)〉 dt

+
∫ T

t0

〈
R(t)S∗

s (t|T )λ̄, S∗
s (t|T )λ̄

〉
dt

More generally, beyond linear feedbacks (S∗
s (·|T )λ̄), for a general control input v(·)

with R(·)
1
2 v(·) ∈ L2(t0, T ;Rm), it is natural to consider the following control prob-

lem extending (2.14) and corresponding to (MVLE-det)

−dλs
dt

= F ∗(t)λs(t) +H∗(t)v(t),(2.16)

λs(T ) =
∣∣∣∣∣ 0 if s < T
λ̄ if s = T

, λs(s) − λs(s+) = λ̄, if s < T ;

J(v(·)) = 〈Π0λs(t0), λs(t0)〉 +
∫ T

t0
〈G(t)Q(t)G∗(t)λs(t), λs(t)〉 dt(2.17)

+
∫ T

t0
〈R(t)v(t), v(t)〉 dt.

The classical way to solve such a problem is through Pontryagin’s Maximum Princi-
ple [see e.g. 5, Chapter 10], i.e. by using Lagrange-Fenchel duality, which effectively
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leads to a Hamiltonian system, taking the form of a two-point boundary value
problem:

dγ̂s
dt

= F (t)γ̂s(t) −G(t)Q(t)G∗(t)λ̂s(t)(2.18)

−dλ̂s
dt

= F ∗(t)λ̂s(t) +H∗(t)R−1(t)H(t)γ̂s(t)

γ̂s(t0) = −Π0λ̂s(t0), λs(T ) =
∣∣∣∣∣ 0 if s < T
λ̄ if s = T

, λs(s) − λs(s+) = λ̄, if s < T.

and where the optimal control of problem (2.4)-(2.17) is given by

(2.19) v̂s(t) = R−1(t)H(t)γ̂s(t).

Since the pair (λ̂s(t), γ̂s(t)) depends linearly on λ̄, we obtain immediately that there
exists a single Ŝs(·|T ) which minimizes (2.15) for any λ̄, namely

(2.20) Ŝ∗
s (t|T )λ̄ = −R−1(t)H(t)γ̂s(t).

This suggests that one has to solve (2.18) to get an expression of Ŝ∗(s, t|T ).

2.5. A general two-point boundary value problem. At this stage, rather than
coping with the difficulty of dealing with jumps as in (2.18), we consider another
two-point boundary value problem similar to (2.18) but which crucially does not
depend on s. We also had not so far considered the possibility of having a Gaussian
prior with covariance ΣT ∈ L(Rn,Rn,∗) on the terminal information λs(T ), so we
introduce it here for greater generality. This term will act a special weight on the
terminal point x(T ) in relation with a terminal cost in optimal control. Consider
the pair (µ̂(t), ν̂(t)) solution of the coupled system

dµ̂

dt
= F (t)µ̂(t) −G(t)Q(t)G∗(t)ν̂(t) + lµ(t)(2.21)

−dν̂

dt
= F ∗(t)ν̂(t) +H∗(t)R−1(t)H(t)µ̂(t) − lν(t)

µ̂(t0) = −Π0ν̂(t0), ν̂(T ) = ΣT µ̂(T ).

where µ̂ (resp. ν̂) plays the role of γs (resp. λs) and lµ(·) ∈ L2(t0, T ;Rn) and
lν(·) ∈ L2(t0, T ;Rn,∗) are two test functions acting as perturbations of the differen-
tial equations. Notice that, for lµ(·) ≡ 0 and lν,s(τ) = −λ̄δs(τ), the system (2.18)
with a jump condition corresponds precisely to the two-point boundary system
(2.21). The important result is the following

Proposition 2.2. For ΣT = 0, lµ(·) ≡ 0 and lν(t) = H∗(t)R−1(t)g(t) with g(·) ∈
L2(t0, T ;Rm), we have the formula

(2.22) µ̂(s) =
∫ T

t0
Ŝs(t|T )g(t)dt.

Proof. From (2.20) we have〈
λ̄,

∫ T

t0
Ŝs(t|T )g(t)dt

〉
= −

∫ T

t0

〈
γ̂s(t),H∗(t)R−1(t)g(t)

〉
dt.
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We use the second equation of (2.21) and proceed with integration by parts between
the systems (2.18) and (2.21). Note that µ̂, ν̂, γ̂s are all continuous functions, but
that λ̂s is not, so that we have to split some integrals to take care of the singularity
at s as we did before to derive (2.15).〈

λ̄,

∫ T

t0
Ŝs(t|T )g(t)dt

〉

=
∫ T

t0

〈
γ̂s(t),−

dν̂

dt
− F ∗(t)ν̂(t) −H∗(t)R−1(t)H(t)µ̂(t)

〉
dt

=
∫ T

t0

〈
γ̂s(t),−

dν̂

dt

〉
dt−

∫ T

t0

〈
dγ̂s
dt

+G(t)Q(t)G∗(t)λ̂s(t), ν̂(t)
〉
dt

+
∫ T

t0

〈
dλ̂s
dt

+ F ∗(t)λ̂s(t), µ̂(t)
〉
dt

= −[〈γ̂s(t), ν̂(t)〉]Tt0 +
∫ T

t0

〈
λ̂s(t),

dµ̂

dt
− F (t)µ̂(t)

〉
dt

+
∫ T

t0

〈
dλ̂s
dt

+ F ∗(t)λ̂s(t), µ̂(t)
〉
dt

= −
〈
γ̂s(T ), ν̂(T )︸ ︷︷ ︸

=ΣT µ̂(T )=0

〉
+
〈

γ̂s(t0)︸ ︷︷ ︸
=−Π0λ̂s(t0)

, ν̂(t0)
〉

+
〈
λ̂s(T )︸ ︷︷ ︸

=0

, µ̂(T )
〉

1Is<T

−
〈
λ̂s(s+) − λ̂s(s), µ̂(s)

〉
−
〈
λ̂s(t0), µ̂(t0)︸ ︷︷ ︸

=−Π0ν̂(t0)

〉

=
〈
λ̂s(s) − λ̂s(s+), µ̂(s)

〉
=
〈
λ̄, µ̂(s)

〉
.

□

To derive another formula for Ŝs(t|T ), we are now going to find another matrix
satisfying (2.22) for all g(·) with µ̂(·) defined as per (2.21).

3. Solution through Riccati equations and kernels

3.1. Deriving the kernels. When lµ(·) ≡ 0 and lν(·) ≡ 0, the classical approach
to solve (2.21) is by variation of constants, introducing two matrices Σ(t) and Π(t)
satisfying µ̂(t) = −Π(t)ν̂(t) and ν̂(t) = Σ(t)µ̂(t). It is then straightforward to show
that they must satisfy two (dual) differential Riccati equations

− d

dt
Σ = Σ(t)F (t) + F ∗(t)Σ(t) − Σ(t)G(t)Q(t)G∗(t)Σ(t) +H∗(t)R−1(t)H(t),

(3.1)

Σ(T ) = ΣT ;
d

dt
Π = F (t)Π(t) + Π(t)F ∗(t) − Π(t)H∗(t)R−1(t)H(t)Π(t) +G(t)Q(t)G∗(t),(3.2)

Π(t0) = Π0.
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The information filter matrix Σ(t) satisfies a backward equation depending on T
whereas the estimation filter matrix Π(t) satisfies a forward one and depends on
t0. The solutions for these equations exist at all times on [t0, T ]. This is a classical
result whose proof we give in Lemma 6.1 in Appendix A.1.4

When lµ(·) 6≡ 0 or lν(·) 6≡ 0, we are going instead to follow a Green kernel ap-
proach, related to Wiener filtering, and look for kernel integral operators satisfying
respectively:5

µ̂(s) =
∫ T

t0
K(s, t|T )lν(t)dt for lµ(·) ≡ 0,(3.3)

ν̂(s) =
∫ T

t0
Λ(s, t|T )lµ(t)dt for lν(·) ≡ 0.(3.4)

These formulas may recall the ones appearing in the innovations approach [14,
Section 16.4.2]; however we do not consider cross-covariances between trajectories
and observations. We will show (see Proposition 4.6 below) that K satisfying (3.3)
is precisely the covariance of the optimal error (2.12). On the other hand Λ as
in (3.4) is related to observability problems. To solve (2.21) in general, we can
compute the distorsion w.r.t. the solutions with null perturbations, introducing two
variables:

(3.5) r(t) = µ̂(t) + Π(t)ν̂(t), η(t) = ν̂(t) − Σ(t)µ̂(t).

From (2.21), (3.1) and (3.2), we deduce that r(·) and η(·) satisfy the following
differential equations6

d

dt
r = (F (t) − Π(t)H∗(t)R−1(t)H(t))r(t) + Π(t)lν(t) + lµ(t), r(t0) = 0;(3.6)

− d

dt
η = (F ∗(t) − Σ(t)G(t)Q(t)G∗(t))η(t) + Σ(t)lµ(t) − lν(t), η(T ) = 0.

(3.7)

This suggests to introduce semigroups associated with the matrix function F (t) −
G(t)Q(t)G∗(t)Σ(t) denoted ΦF,Σ(s, t) (resp. F (s) − Π(s)H∗(s)R−1(s)H(s), denoted

4If Π0 is invertible, then so is Π(t). Indeed the Riccati equation preserves positive definiteness
[see e.g. 14, Example 16.3.4, p629]. Then Π(t)−1 also satisfies (3.1), and, if we choose ΣT = Π(T )−1,
then we can identify the matrices Σ(t) and Π(t)−1.

5An alternative scheme would be to consider exponentials of the Hamiltonian matrix as in [30,
Chapter 5]. We use and recall this approach in the Appendix A.2 to give a numerical method to
evaluate the kernel K(s, t|T ).

6We give below the computation for (3.6), eq.(3.7) is obtained similarly

dr/dt = F µ̂ − GQG∗ν̂ + lµ + (F Π + ΠF ∗ − ΠH∗R−1HΠ + GQG∗)ν̂ − Π(F ∗ν̂ + H∗R−1Hµ̂ − lν).
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ΦF,Π(s, t))
d

dτ
ΦF,Σ(τ, t) = (F (τ) −G(τ)Q(τ)G∗(τ)Σ(τ))ΦF,Σ(τ, t), ΦF,Σ(t, t) = Id;

− d

dt
Φ∗
F,Σ(τ, t) = (F ∗(t) − Σ(t)G(t)Q(t)G∗(t))Φ∗

F,Σ(τ, t), ΦF,Σ(τ, τ) = Id;

d

dτ
ΦF,Π(τ, t) = (F (τ) − Π(τ)H∗(τ)R−1(τ)H(τ))ΦF,Π(τ, t), ΦF,Π(t, t) = Id;

− d

dt
Φ∗
F,Π(τ, t) = (F ∗(t) −H∗(t)R−1(t)H(t)Π(t))Φ∗

F,Π(τ, t), Φ∗
F,Π(τ, τ) = Id .

Note that if Q(·) ≡ 0 and Π0 = 0, then Π(·) ≡ 0 and ΦF,Π(t, s) = ΦF (t, s), the
semi-group associated with the operator F (t), i.e. ∂tΦF (t, s) = F (t)ΦF (t, s) and
ΦF (t, t) = Id. Similarly, if H(·) ≡ 0 and ΣT = 0, then ΦF,Σ(t, s) = ΦF (t, s). In the
general case, we have

Theorem 3.1. The kernels K and Λ satisfying (3.3) and (3.4) are given by

K(s, t|T ) = ΦF,Σ(s, t0)Π
1
2
0 (Id +Π

1
2
0 Σ(t0)Π

1
2
0 )−1Π

1
2
0 Φ∗

F,Σ(t, t0)(3.8)

+
∫ min(s,t)

t0
ΦF,Σ(s, τ)G(τ)Q(τ)G∗(τ)Φ∗

F,Σ(t, τ)dτ ;

Λ(s, t|T ) = Φ∗
F,Π(T, s)Σ

1
2
T (Id +Σ

1
2
TΠ(T )Σ

1
2
T )−1Σ

1
2
TΦF,Π(T, t)(3.9)

+
∫ T

max(s,t)
Φ∗
F,Π(τ, s)H∗(τ)R−1(τ)H(τ)ΦF,Π(τ, t)dτ.

Remark. The matrix inverses we consider always exist since Π0, ΣT , Σ(t0) and
Π(T ) are all positive semidefinite. Note that if Π0 is invertible, then the first term
in K boils down to ΦF,Σ(s, t0)(Π−1

0 + Σ(t0))−1Φ∗
F,Σ(t, t0). If ΣT = 0, then the first

term in Λ vanishes. If furthermore H(·) ≡ 0, the observations are then pure Brow-
nian noise independent from the state, and thus dispensable. We hence recover the
formula of [28, Section 6.4, p.89] for the (prior) covariance of a linear SDE. In [14,
Example 3.3], the case G(·) ≡ 0 was further discussed (see also Section 4.2) as it
makes the second term in K vanish. Both kernels satisfy a Hermitian symmetry,
i.e. K(s, t|T ) = K(t, s|T )∗. In Appendix A.2, we give a numerical method to eval-
uate the kernel K(s, t|T ) through the Hamiltonian semigroup. For time-invariant
systems, this boils down to matrix exponentials.

Proof. Let us first identify K. By the variation of constants formula, (3.7) yields

(3.10) ν̂(t) − Σ(t)µ̂(t) = η(t) =
∫ T

t
Φ∗
F,Σ(τ, t)(Σ(τ)lµ(τ) − lν(τ))dτ.

Consequently (2.21) becomes

(3.11) dµ̂

dt
= F (t)µ̂(t) −G(t)Q(t)G∗(t) (Σ(t)µ̂(t)

+
∫ T

t
Φ∗
F,Σ(τ, t)(Σ(τ)lµ(τ) − lν(τ)

)
dτ) + lµ(t).
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Now consider the case where lµ(·) ≡ 0. Introducing the square root Π
1
2
0 , the variation

of constants formula gives

µ̂(s) = ΦF,Σ(s, t0)µ̂(t0) +
∫ s

t0
ΦF,Σ(s, t)G(t)Q(t)G∗(t)

∫ T

t
Φ∗
F,Σ(τ, t)lν(τ)dτdt

(3.12)

= −ΦF,Σ(s, t0)Π
1
2
0 Π

1
2
0 ν̂(t0)

+
∫ T

t0

∫ min(s,t)

t0
ΦF,Σ(s, τ)G(τ)Q(τ)G∗(τ)Φ∗

F,Σ(t, τ)lν(t)dτdt.

To compute ν̂(t0), we use (3.10)

(3.13) (Id +Π
1
2
0 Σ(t0)Π

1
2
0 )Π

1
2
0 ν̂(t0) = Π

1
2
0 (ν̂(t0) + Σ(t0)Π0ν̂(t0)) = Π

1
2
0 η(t0)

= −Π
1
2
0

∫ T

0
Φ∗
F,Σ(τ, t0)lν(τ)dτ.

Inserting (3.13) in (3.12), we then identify K through (3.3) which yields (3.8). Now
for Λ, the procedure is the same, (3.6) and (2.21) yield

(3.14) µ̂(t) + Π(t)ν̂(t) = r(t) =
∫ t

t0
ΦF,Π(t, τ)(Π(τ)lν(τ) + lµ(τ))dτ,

(3.15) − dν̂

dt
= F ∗(t)ν̂(t) +H∗(t)R−1(t)H(t) (−Π(t)ν̂(t)

+
∫ t

t0
ΦF,Π(t, τ)(Π(τ)lν(τ) + lµ(τ))dτ

)
− lν(t).

Now consider the case where lν(·) ≡ 0,

ν̂(s) = Φ∗
F,Π(T, s)ν̂(T )(3.16)

+
∫ T

t
Φ∗
F,Π(t, s)H∗(t)R−1(t)H(t)

∫ t

t0
ΦF,Π(t, τ)lµ(τ)dτdt

= Φ∗
F,Π(T, s)Σ

1
2
TΣ

1
2
T µ̂(T )

+
∫ T

t0

∫ T

max(s,t)
Φ∗
F,Π(τ, s)H∗(τ)R−1(τ)H(τ)ΦF,Π(τ, t)dτlµ(t)dt.

To compute µ̂(T ), we use (3.14)

(3.17) (Id +Σ
1
2
TΠ(T )Σ

1
2
T )Σ

1
2
T µ̂(T ) = Σ

1
2
T (µ̂(T ) + Π(T )Π0µ̂(T )) = Σ

1
2
T r(T )

= −Σ
1
2
T

∫ T

0
ΦF,Π(τ, t0)lν(τ)dτ.

Inserting (3.17) in (3.16), we then identify Λ through (3.4) which yields (3.9).
□

By Proposition 2.2, we have shown (2.22) which matches with (3.3) and should
hold for all test functions g(·) ∈ L2(t0, T ;Rm), so we deduce immediately that:
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Corollary 3.2. If ΣT = 0, then, for all s, t ∈ [t0, T ], we have the formula

(3.18) Ŝs(t|T ) = K(s, t|T )H∗(t)R−1(t).

3.2. Control interpretation as impulse response. A natural quantity to con-
sider in (3.3) is the impulse-response for lν(τ) = zδt(τ) and some z ∈ Rn,∗, which
gives xzt(s) = K(s, t|T )z. Now (2.21) then writes as

d

dτ
xzt(τ) = F (τ)xzt(τ) −G(τ)Q(τ)G∗(τ)νzt(τ)(3.19)

− d

dτ
νzt(τ) = F ∗(τ)νzt(τ) +H∗(τ)R−1(τ)H(τ)xzt(τ) − zδt(τ)

xzt(t0) = −Π0νzt(t0), νzt(T ) = ΣTxzt(T ),
where the discontinuity occurs in the second line rather than the first. This, we
are going to reverse through a change of variables. Considering the function χzt(τ)
solution of

(3.20) − d

dτ
χzt(τ) = F ∗(τ)χzt(τ), τ < t, χzt(t) = z

we can write formally that χzt(τ)1Iτ<t is solution of

(3.21) − d

dτ
(χzt(τ)1Iτ<t) = F ∗(τ)(χzt(τ)1Iτ<t) + zδt(τ), χzt(T )1IT<t = 0

With lν(τ) = zδt(τ), we define qzt(τ) = νzt(τ) + χzt(τ)1Iτ<t, then from (3.19) the
pair xzt(τ), qzt(τ) is solution of the system

d

dτ
xzt(τ) = F (τ)xzt(τ) −G(τ)Q(τ)G∗(τ)qzt(τ) +G(τ)Q(τ)G∗(τ)χzt(τ)1Iτ<t

(3.22)

− d

dτ
qzt(τ) = F ∗(τ)qzt(τ) +H∗(τ)R−1(τ)H(τ)xzt(τ)

xzt(t0) = −Π0qzt(t0) + Π0χzt(t0), qzt(T ) = ΣTxzt(T ).

Similarly to (2.17), we interpret the system (3.22) as the necessary and sufficient
optimality condition of the following control problem

(3.23) d

dτ
ζ(τ) = F (τ)ζ(τ) +G(τ)Q

1
2 (τ)u(τ) +G(τ)Q(τ)G∗(τ)χzt(τ)1Iτ<t,

ζ(t0) = Π
1
2
0 ξ + Π0χzt(t0)

in which u(·) and ξ are controls, and the objective to minimize is

(3.24) Jx(ξ, u(·)) = ‖ξ‖2 + 〈ΣT ζ(T ), ζ(T )〉 +
∫ T

t0
‖u(τ)‖2dτ

+
∫ T

t0

〈
H∗(τ)R−1(τ)H(τ)ζ(τ), ζ(τ)

〉
dτ

If we call xzt(τ) the optimal state and define qzt(τ) as in (3.22) we obtain by standard
methods that the optimal controls ξ̂ and v̂(·) are given by

(3.25) ξ̂ = −Π
1
2
0 qzt(t0), v̂(τ) = −Q

1
2 (τ)G∗(τ)qzt(τ)
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and the pair xzt(τ), qzt(τ) solves (3.22).

4. Ientifying the RKHS

We can draw a parallel between the above reasoning of Section 3.2 and going from
a partial differential equation (PDE) to its calculus of variations formulation. Simi-
larly, to solve a linear PDE one can look for its Green kernel, a.k.a. its fundamental
solution. This is precisely what we have done in (2.5) for (2.21). Now we will take
advantage of (3.24) to identify the spaces of functions we are optimizing over. This
is the same thing as identifying the reproducing kernel Hilbert spaces of the kernels
of Theorem 3.1. In general it is a hard task given a PDE to find its Green kernel
and the vector space of functions where the solutions live [27, Chapter 1]. But this
task will be made much simpler owing to the fact that we are not looking at any
Hilbert space, but at an RKHS:

Definition 4.1. Let T be a non-empty set. A Hilbert space (HK(T ), 〈·, ·〉K) of
Rn-vector-valued functions defined on T is called a vRKHS if there exists a matrix-
valued kernel KT : T ×T → L(Rn,∗,Rn) such that the reproducing property holds:
for all t ∈ T , p ∈ Rn,∗, we have KT (·, t)p ∈ HK(T ) and for all f ∈ HK(T ),
〈p, f(t)〉 = 〈f ,KT (·, t)p〉K .

Remark: It is well-known that by Riesz’s theorem, an equivalent definition of
a vRKHS is that, for every t ∈ T and p ∈ Rn, the evaluation functional f ∈
HK(T ) 7→ 〈p, f(t)〉 ∈ R is continuous. There is also a one-to-one correspondence
between the kernel KT and the vRKHS (HK(T ), 〈·, ·〉K) [see e.g. 8, Proposition
2.3]. Moreover, by symmetry of the scalar product, the matrix-valued kernel has
a Hermitian symmetry, i.e. KT (s, t) = KT (t, s)∗ for any s, t ∈ T . We refer to [9]
and references therein for more on this topic of operator-valued kernels.

4.1. K: A primal RKHS of trajectories. We want to show that with the kernel
K(s, t|T ) defined in (3.8),

(4.1) K(s, t|T ) = ΦF,Σ(s, t0)Π
1
2
0 (Id +Π

1
2
0 Σ(t0)Π

1
2
0 )−1Π

1
2
0 Φ∗

F,Σ(t, t0)

+
∫ min(s,t)

t0
ΦF,Σ(s, τ)G(τ)Q(τ)G∗(τ)Φ∗

F,Σ(t, τ)dτ

we can associate a Hilbert space, for which it is the reproducing kernel. As intuited
from (3.23), it is a space of functions in H1(t0, T ;Rn) defined as follows

(4.2) Sx[t0,T ] = {x(·) ∈ H1(t0, T ;Rn)|∃ u(·) ∈ L2(t0, T ;Rp), ξ ∈ Rn s.t.
d

dτ
x = F (τ)x(τ) +G(τ)Q

1
2 (τ)u(τ), x(t0) = Π

1
2
0 ξ}.

Recall that we only required R(·) to be invertible, improving over [3]. For a given
trajectory x(·), in case there are several pairs (u(·), ξ) which satisfy the relations
(4.2) we call the representative of x(·) the pair with minimal norm

∫ T
t0

‖u(t)‖2dt +
‖ξ‖2. It is uniquely defined. We can identify this representative as the unique pair
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(u(·), ξ) satisfying (4.2) for a given x(·) and

(4.3)
∫ T

t0
〈u(s), ũ(s)〉 ds = 0,

〈
ξ, ξ̃
〉

= 0,

∀ ũ(·), ξ̃ such that G(s)Q
1
2 (s)ũ(·) = 0, for a.e. s ∈ (t0, T ), Π

1
2
0 ξ̃ = 0

The vector space Sx[t0,T ] is a subspace of the Sobolev space H1(t0, T ;Rn). We equip
Sx[t0,T ] with a scalar product derived from (3.24)

(4.4)
〈
x1(·), x2(·)

〉
Sx

[t0,T ]
=
〈
ξ1, ξ2

〉
+
〈
ΣTx

1(T ), x2(T )
〉

+
∫ T

t0

〈
u1(s), u2(s)

〉
ds

+
∫ T

t0

〈
H∗(s)R−1(s)H(s)x1(s), x2(s)

〉
ds

where (ξ1, u1(·)); (ξ2, u2(·)) are the representatives of x1(·), x2(·) respectively.

Theorem 4.2. The vector space (Sx[t0,T ], 〈·, ·〉Sx
[t0,T ]

) is a reproducing kernel Hilbert
space, and K(s, t|T ) defined by (3.8) is its corresponding reproducing kernel.

Proof. The vector space (Sx[t0,T ], 〈·, ·〉Sx
[t0,T ]

) is clearly a pre-complete Hilbert space
by bilinearity of its inner product. It is furthermore complete since every Cauchy
sequence converges within. Indeed, consider a Cauchy sequence (xk(·))k∈N in Sx[t0,T ],
namely one for which there exists (uk(·), ξk), which is the representative of xk(·),
satisfying

d

ds
xk = F (s)xk(s) +G(s)Q

1
2 (s)uk(s), xk(t0) = Π

1
2
0 ξ

k

and

‖ξk − ξl‖2 + ‖Σ
1
2
T (xk(T ) − xl(T ))‖2 +

∫ T

t0
‖uk(s) − ul(s)‖2ds

+
∫ T

t0

〈
H∗(s)R−1(s)H(s)(xk(s) − xl(s)), (xk(s) − xl(s)

〉
ds −−−−−→

k,l→+∞
0.

Consequently ξk, uk(·) are Cauchy sequences in Rn, L2(t0, T ;Rm) respectively, so
ξk → ξ, uk(·) → u(·) and necessarily xk(·) → x(·) in H1(t0, T ;Rn) with

d

ds
x = F (s)x(s) +G(s)Q

1
2 (s)u(s), x(t0) = Π

1
2
0 ξ.

Since (ξk, uk(·)) are the representatives of xk(·) they satisfy
∫ T
t0

〈
uk(s), ũ(s)

〉
ds = 0,〈

ξk, ξ̃
〉

= 0 for any pair (ũ(·), ξ̃) such that G(s)Q
1
2 (s)ũ(s) = 0, a.e. s ∈ (t0, T ),Π

1
2
0 ξ̃ =

0. But then (u(·), ξ) satisfies also
∫ T
t0

〈u(s), ũ(s)〉 ds = 0,
〈
ξ, ξ̃
〉

= 0, which implies
that (u(·), ξ) is the representative of x(·). Hence xn(·) → x(·) in the sense of the
norm of Sx[t0,T ] and Sx[t0,T ] is a Hilbert space. We now want to show that Sx[t0,T ] is a
RKHS and that its corresponding kernel is K(s, t|T ). We must check two facts as
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per Definition 4.1

K(·, t|T )z ∈ Sx[t0,T ](4.5)
〈x(·),K(·, t|T )z〉Sx

[t0,T ]
= 〈x(t), z〉 , ∀x(·) ∈ Sx[t0,T ], t ∈ [t0, T ], z ∈ Rn,∗(4.6)

By definition, K(·, t|T )z = xzt(·). Now, from formulas (3.22) xzt(·) belongs to
Sx[t0,T ], with

(4.7) vzt(τ) = −Q
1
2 (τ)G∗(τ)qzt(τ) +Q

1
2 (τ)G∗(τ)χzt(τ)1Iτ<t,

ξzt = −Π
1
2
0 qzt(t0) + Π

1
2
0 χzt(t0)

We claim that (vzt(·), ξzt) is the representative of xzt(·). Indeed the pair (vzt(·), ξzt)
satisfies (4.3) by using a transposition. It remains to check (4.6). Consider x(·) ∈
Sx[t0,T ], such that

d

dτ
x = F (τ)x(τ) +G(τ)Q

1
2 (τ)u(τ), x(t0) = Π

1
2
0 ξ

assuming that (u(·), ξ) is the representative. We have

〈x(·), xzt(·)〉Sx
[t0,T ]

=
〈
ξ, (−Π

1
2
0 qzt(t0) + Π

1
2
0 χzt(t0))

〉
+ 〈ΣTx(T ), xzt(T )〉

+
∫ T

t0

〈
u(τ),−Q

1
2 (τ)G∗(τ)qzt(τ) +Q

1
2 (τ)G∗(τ)χzt(τ)1Iτ<t

〉
dτ

+
∫ T

t0

〈
H∗(τ)R−1(τ)H(τ)x(τ), xzt(τ)

〉
dτ

Using relations (3.22) and the equation for x(·) with integration by parts, it is easy
to conclude that

〈x(·), xzt(·)〉Sx
[t0,T ]

= 〈x(t0), χzt(t0) − qzt(t0)〉 + 〈x(T ), qzt(T )〉

+
∫ T

t0

〈
d

dτ
x(τ) − F (τ)x(τ), χzt(τ)1Iτ<t − qzt(τ)

〉
dτ

+
∫ T

t0

〈
x(τ),− d

dτ
qzt(τ) − F ∗(τ)qzt(τ)

〉
dτ

= [〈x(τ), qzt(τ)〉]t0τ=T + 〈x(T ), qzt(T )〉 +
∫ t

t0

〈
d

dτ
x(τ), χzt(τ)

〉
dτ

+
∫ t

t0

〈
x(τ), d

dτ
χzt(τ)

〉
]dτ

= 〈x(t), z〉

which proves (4.6) and concludes the proof of the theorem.
□

Remark 4.3 (No measurements and Gramian of controllability). In the simpler
case where ΣT = 0, H(·) ≡ 0, we have that Σ(·) ≡ 0. For Π0 = 0 and Q(·) ≡ Id,
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(3.24) becomes Jx(ξ, u(·)) =
∫ T
t0

‖u(τ)‖2dτ and we obtain

K(T, T |T ) =
∫ T

t0
ΦF (T, τ)G(τ)Q(τ)G∗(τ)Φ∗

F (T, τ)dτ

which is precisely the Gramian of controlability. Its straightforward relation with
kernels for optimal control was further discussed in [1, p8].

4.2. Λ: A dual RKHS of information vectors. We have seen with formula
(2.20) that the optimal operator Ŝs(t|T ) is directly related to an optimal control
problem (2.4),(2.17). This problem concerns a backward evolution. Similarly, for-
mula (2.22) has been related to a two-point boundary value problem (2.21). This
one is easily interpreted as the necessary and sufficient conditions of optimality of
another control problem, namely

(4.8) − d

dt
λ(t) = F ∗(t)λ(t) +H∗(t)v(t), λ(T ) = Σ

1
2
T z

and the payoff to minimize is a slight variation of (2.17),

(4.9) Jλ(z, v(·)) = 〈Π0λ(t0), λ(t0)〉 + ‖z‖2 +
∫ T

t0
〈G(t)Q(t)G∗(t)λ(t), λ(t)〉 dt

+
∫ T

t0
〈R(t)v(t), v(t)〉 dt.

Recall that we did not require ΣT to be invertible but that R(t) is invertible. These
problems lead to the kernel

(4.10) Λ(s, t|T ) = Φ∗
F,Π(T, s)Σ

1
2
T (Id +Σ

1
2
TΠ(T )Σ

1
2
T )−1Σ

1
2
TΦF,Π(T, t)

+
∫ T

max(s,t)
Φ∗
F,Π(τ, s)H∗(τ)R−1(τ)H(τ)ΦF,Π(τ, t)dτ

and to a space of information vectors Sλ[t0,T ]

(4.11) Sλ[t0,T ] = {λ(·) ∈ H1(t0, T ;Rn)| v(·) ∈ L2(t0, T ;Rm), z ∈ Rn s.t.

− d

dt
λ(t) = F ∗(t)λ(t) +H∗(t)v(t), λ(T ) = Σ

1
2
T z}.

Again if there are several (z, v(·)) for the same trajectory λ(·), we define the represen-
tative of λ(·) as the unique (z, v(·)) satisfying (4.11) which minimizes

∫ T
t0

〈R(t)v(t), v(t)〉 dt+
‖z‖2 and, similarly to (4.3), we have

(4.12)
∫ T

t0
〈R(s)v(s), ṽ(s)〉 ds = 0, 〈z, z̃〉 = 0,

∀ ṽ(·), z̃ such that H∗(s)ṽ(·) = 0, for a.e. s ∈ (t0, T ), Σ
1
2
T z̃ = 0.

We then equip Sλ[t0,T ] with the inner product derived from the quadratic form (4.9).

Theorem 4.4. The Hilbert space (Sλ[t0,T ], 〈·, ·〉Sλ
[t0,T ]

) is a reproducing kernel Hilbert
space and the corresponding kernel is Λ(s, t|T ).
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Proof. The proof is exactly the same as that of Theorem 4.2, noticing that the RKHS
Sx[t0,T ] corresponds to Sλ[t0,T ] when considering the permutations t ↔ T − (t − t0),
F (t) ↔ F ∗(t), Π0 ↔ ΣT , G(t)Q

1
2 (t) ↔ H∗(t)R− 1

2 (t). □

Remark 4.5 (No plant noise and Gramian of observability). In the simpler case
where Π0 = 0, G(·) ≡ 0, we have that Π(·) ≡ 0 and Sx[t0,T ] is finite-dimensional. For
ΣT = 0 and R(·) ≡ Id, (4.9) becomes Jλ(z, v(·)) =

∫ T
t0

‖v(t)‖2dt and we obtain

Λ(t0, t0|T ) =
∫ T

t0
Φ∗
F (τ, t0)H∗(τ)H(τ)ΦF (τ, t0)dτ

which is precisely the Gramian of observability. This setting is discussed in [14,
Example 16.3.3]. The covector λ(·), through its interpretation as a Lagrange mul-
tiplier as in Section 2.3, is related to a notion of sensitivity of the solution x̂(·) to
the “constraints” (yt)t∈[t0,T ], and thus here to the ability to recover x0 from the
observations.

By Loéve’s theorem [6, Theorem 27, p57], we know that Λ(s, t) is the covariance of
a stochastic process. It is clearly not forward Markovian. It is possible to introduce a
backward Markovian Gaussian process which would allow to recover (MVLE-dual),
with technicalities covered in [14, Appendix Chap. 16]. We leave this identification
to future developments.

4.3. K as error covariance, formulas relating K and Λ. We can now prove
the claimed result (2.12) stating that the kernel K corresponds to the covariance of
the error. We can also relate through a simple formula the two kernels K and Λ.

Proposition 4.6. Let ΣT = 0 and recall that ϵŜs
(s|T ) = x(s) − x̂(s|T ), then

(4.13) K(s, t|T ) = E[ϵŜs
(s|T )(ϵŜt

(t|T ))∗]

Moreover, we have, for all s, t ∈ [t0, T ],

(4.14) K(s, t|T ) = Π(s)Φ∗
F,Π(t, s)1Is≤t + ΦF,Π(s, t)Π(t)1Is>t − Π(s)Λ(s, t|T )Π(t).

In particular K(T, T |T ) = Π(T ) and K(t, t|T ) = Π(t) − Π(t)Λ(t, t|T )Π(t).

Equation (4.14) can be seen as an extension to s 6= t of Bryson-Frazier formulas
[14, Theorem 16.5.1]. For s = t, it gives that E[ϵŜs

(s|T )(ϵŜs
(s|T ))∗] ≼ Π(s) =

E[ϵŜs
(s|s)(ϵŜs

(s|s))∗]. In other words, observations on the interval [s, T ] allow to
lower the variance of the error at time s. For t = T and ΣT = 0, Λ(s, T |T ) = 0 and
we recover the result of [14, Lemma 16.5.1].

Proof. Since for lµ(·) ≡ 0 and lν,s(τ) = −λ̄δs(τ), the system (2.18) with a jump
condition corresponds to the two-point boundary system (2.21). With the same
computations that led to (2.15), using (2.20) then integration by parts, we obtain
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that〈
E[ϵŜs

(s|T )(ϵŜs
(t|T ))∗]λ̄, λ̄

〉
= 〈Π0λs(t0), λt(t0)〉

+
∫ T

t0
〈G(τ)Q(τ)G∗(τ)λs(τ), λt(τ)〉 dτ +

∫ T

t0

〈
H∗(τ)R−1(τ)H(τ)γ̂s(τ)λ̄, γ̂t(τ)

〉
dτ

(2.18)= − 〈λs(t0), γ̂t(t0)〉 +
∫ T

t0

〈
λs(τ), F (τ)γ̂s(τ) − dγ̂s

du

〉
dτ

−
∫ T

t0

〈
dλ̂s
du

+ F ∗(τ)λ̂s(τ), γ̂t(τ)
〉
dτ

= − 〈λs(t0), γ̂t(t0)〉 − [〈λs(τ), γ̂t(τ)〉]st0 − [〈λs(τ), γ̂t(τ)〉]Ts+

(2.18)= −
〈
λ̄, γ̂t(s)

〉 (3.3)=
〈
λ̄,K(s, t|T )λ̄

〉
.

This proves (4.13). For (4.14), define rt(τ) = γ̂t(τ) + Π(τ)λt(τ) as in (3.5). Then
similarly to (3.14)-(3.15)

(4.15) rt(τ) = −
∫ τ

t0
ΦF,Π(τ, σ)(Π(σ)λ̄δt(σ))dσ = −ΦF,Π(τ, t)Π(t)1Iτ>tλ̄.

(4.16) − d

dτ
λt = (F ∗(τ) −H∗(τ)R−1(τ)H(τ))λt(τ) + λ̄δt(τ)

−H∗(τ)R−1(τ)H(τ)ΦF,Π(τ, t)Π(t)1Iτ>tλ̄.

Consequently, by the variation of constants formula,

(4.17) λt(s) = Φ∗
F,Π(t, s)λ̄1Is≤t

−
∫ T

max(s,t)
Φ∗
F,Π(τ, s)H∗(τ)R−1(τ)H(τ)ΦF,Π(τ, t)Π(t)λ̄dτ.

Since
〈
λ̄,K(s, t|T )λ̄

〉
= −

〈
λ̄, γ̂t(s)

〉
=
〈
λ̄,Π(s)λt(s) − rt(s)

〉
, (4.15)-(4.17) yield

(4.14).
□

Remark 4.7 (Relation with Fisher information). From (4.13), we know that the
kernel K is the optimal error covariance for linear estimators. The Fisher informa-
tion matrix of estimating (xt)t∈[t0,T ] given (yt)t∈[t0,T ] is well-defined if the unknown
(xt)t∈[t0,T ] is deterministic. In that case, since (yt)t∈[t0,T ] is a Gaussian process and
the measurements are linear, the integral operator with kernel K thus saturates
the Cramér-Rao inequality and coincides with the inverse of the Fisher information
matrix. For random (xt)t∈[t0,T ], defining properly the Bayesian posterior analogue
of the Cramér-Rao lower bound [34] in this infinite-dimensional context would re-
quire an undue level of generality, as hinted at in Section 2.3. However, for a
deterministic (xt)t∈[t0,T ], we have G(·) ≡ 0 and Π0 = 0 as considered previously.
The only parameter of (xt)t∈[t0,T ] to identify is x0, so the Fisher information matrix
writes as

∫ T
t0

∂ȳ(t)
∂x0

∂ȳ(t)
∂x0

∗
dt which through simple calculations is shown to be equal

to the Gramian of observability (already noticed in [16, Remark (h)]). The fact
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that the Fisher information defines a kernel was unveiled by [13]. Since the pos-
terior Cramér-Rao lower bound of our estimation problem does not seem to have
been written yet, much remains to be done in this direction of research to draw
connections with information theory and with the score vector. Applications would
already exist in sensor placement and D-optimal design.

4.4. Dual deterministic problems on RKHSs. So far, we identified the RKHSs
associated with the two Green functions K and Λ. However the primary modern use
of reproducing kernels is as convenient spaces for optimization problems such as the
GP regression (GP-reg) highlighted earlier on. This is exemplified in the following
formalization of (LSE). Since we do not require any invertibility except for R(t),
we will use pseudo-inverses w.r.t. the Euclidean norm for the other operators, such
as Π	

0 , but this does not change the formalism. For x̃(·) ∈ Sx[t0,T ], after making the
covariances explicit, (LSE) writes as the traditional least-squares problem:

(4.18) Lx(x̃(·)) :=
∫ T

t0
‖ỹ(t) −H(t)x̃(t)‖2

R(t)−1dt

+ ‖G(t)	
(
d

dt
x̃− F (t)x̃(t)

)
‖2
Q(t)	dt+

〈
Π	

0 x̃(t0), x̃(t0)
〉

+ 〈ΣT x̃(T ), x̃(T )〉

=
∫ T

t0
‖ỹ(t) −H(t)x̃(t)‖2

R(t)−1dt+ ‖x̃(·)‖2
Sx

[t0,T ]
−
∫ T

t0
‖H(t)x̃(t)‖2

R(t)−1dt,

where we refer to footnote 3 for the interpretation of ỹ(t). The space Sx[t0,T ] is
actually the set of trajectories such that Lx is finite. The term in ΣT can be seen
as imposing a Gaussian prior on the terminal point.

Proposition 4.8. For a realization ỹ(·), the zero-mean part of the solution to the
smoothing problem is given by

(4.19)
∫ T

t0
K(·, t|T )H∗(t)R−1(t)ỹ(t)dt = argmin

x̃(·)∈Sx
[t0,T ]

Lx(x̃(·))

with Lx(x̃(·)) = ‖R(t)−1/2ỹ(·)‖2
L2 + ‖x̃(·)‖2

Sx
[t0,T ]

− 2
〈
H∗(·)R−1(·)ỹ(·), x̃(·)

〉
L2([t0,T ]).

Proof. By Corollary 3.2, we know that the l.h.s. is the solution of the smoothing
problem. We just have to prove the equality. Set T = [t0, T ]. By our assumptions
on F,G,Q,H, we obtain that K(·, ·|T ) ∈ L∞(T × T ,L(Rn,∗,Rn)). Consequently
the following kernel integral operator K : L2(T ,Rn,∗) → L2(T ,Rn) is self-adjoint
and bounded [8, Proposition 4.2],

(K f)(s) :=
∫ T

t0
K(s, t|T )f(t)dt for f ∈ L2(T ,Rn,∗).

Furthermore, by the reproducing property (4.6), we have that

∀f ∈ L2(T ,Rn,∗), g ∈ Sx[t0,T ], 〈g, f〉L2(T ) =
∫ T

t0
〈f(t), g(t)〉 dt

=
〈
g,

∫ T

t0
K(·, t|T )f(t)dt

〉
Sx

[t0,T ]

= 〈g,K f〉Sx
[t0,T ]

.
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Consequently (4.19) boils down to minimizing the strongly convex function
‖x̃(·)‖2

Sx
[t0,T ]

− 2
〈
K [H∗R−1ỹ(·)], x̃

〉
Sx

[t0,T ]
, which gives x̂(·) = K [H∗R−1ỹ(·)] as ex-

pected. This concludes the proof. □

Remark 4.9 (Analogy with Sobolev spaces in calculus of variations). The above
problem (4.19) may seem unfamiliar to kernel practitioners. Indeed it would be a
kernel ridge regression if not for the last term in (4.18), as it is not a quadratic data
fitting term with a quadratic regularizer, but a linear data fitting term. Nevertheless
it precisely matches the variational formulation (

∫
‖∇u(t)‖2dt+ 〈f, u〉L2) of a PDE

like Poisson’s equation (∆u = f) with null boundary condition. The emphasis we
have put on the Sobolev-like space Sx[t0,T ] over which we optimize is no different
than the focus on the Sobolev space H1

0 to study Poisson’s equation. [26] treated
Linear-Quadratic optimal control as a form of quadratic programming. The Hilbert
spaces of trajectories and information vectors we defined are complementary to
his discussion.7 Considering a dual convex problem to an optimal control one is
admittedly less frequent in the control community, even though it may have some
computational advantages [see 7, and references therein]. Here we derive the dual
problem to (4.19), which corresponds formally to (MVLE-det).

Proposition 4.10. Decompose R−1(t)ỹ(t) into the sum of two vectors of Rm,∗:
proj‖·‖R(t)

ImH(t)(ỹ(t)) ∈ R(t)−1 ImH(t) and proj‖·‖R(t)
KerH∗(t)(ỹ(t)) ∈ KerH∗(t). The convex

dual problem to (4.19) is, for the adjoint control v(·) defined as in (4.11),

(4.20) min
λ(·)∈Sλ

[t0,T ]

Lλ(λ(·)) = ‖λ(·)‖2
Sλ

[t0,T ]
− 2

∫ T

t0

〈
R(t) proj‖·‖R(t)

ImH(t)(ỹ(t)), v(t)
〉
dt

− ‖R(·)1/2 proj‖·‖R(·)
KerH∗(·)(ỹ(·))‖2

L2

=
∫ T

t0
‖proj‖·‖R(t)

ImH(t)(ỹ(t)) − v(t)‖2
R(t)dt+

∫ T

t0
〈G(t)Q(t)G∗(t)λ(t), λ(t)〉 dt

+ 〈Π0λ(t0), λ(t0)〉 +
〈
Σ	
T λ(T ), λ(T )

〉
− ‖R(·)−1/2ỹ(·)‖2

L2 .

Proof. For any given λ(·) ∈ C1(T ,Rn,∗) and λ0 ∈ Rn,∗, we introduce the Lagrangian
L over x(·) ∈ C1(T ,Rn), u(·) ∈ L2(T ,Rd), ξ ∈ Rn,

Ltot(ξ, u(·), x(·), λ(·), λ0) = ‖ξ‖2 + 〈ΣTx(T ), x(T )〉 +
∫ T

t0
‖u(τ)‖2dτ

+
∫ T

t0

〈
H∗(τ)R−1(τ)(H(τ)x(τ) − 2ỹ(τ)), x(τ)

〉
dτ

+ 2
∫ T

t0

〈
λ(t), d

dτ
x− F (τ)x(τ) −G(τ)Q

1
2 (τ)u(τ)

〉
dτ

+ 2
〈
x(t0) − Π

1
2
0 ξ, λ0

〉
+ ‖R(·)−1/2ỹ(·)‖2

L2 .

7[26] takes the control in L1 and considers additional constraints, making it closer to optimization
problems over Banach spaces W 1,∞ or W 1,1 which we do not cover in our Hilbertian setting.
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Integrating by parts, and minimizing over (ξ, x(·), u(·), x(T ), x(t0)), and we obtain
that

∂ξ ξ = Π
1
2
0 λ0, ∂u(·) u = Q

1
2G∗λ,

∂x(T ) λ(T ) = −ΣTx(T ), ∂x(t0) λ0 = λ(t0),

∂x(·) 0 = d

dt
λ(t) + F ∗(t)λ(t) −H∗(t)R−1(t)(H(t)x(t) − ỹ(t)),

whence λ(·) ∈ Sλ[t0,T ]. DecomposeR−1(t)ỹ(t) into vH,y(t)+vH∗,y(t) withR(t)vH,y(t) ∈
ImH(t) and vH∗,y(t) ∈ KerH∗(t). Denoting by x̂ the optimum of x(·) and setting
v(t) = −R−1(t)H(t)x̂(t)+vH,y(t), z = −ΣT x̂(T ), we obtain that v(t) is the represen-
tative of λ(·) ∈ Sλ[t0,T ], since H∗(t)R−1(t)ỹ(t) = H∗(t)vH,y(t) and for all ṽ satisfying
(4.11) and H∗(t)ṽ(t) = 0, we have obviously 〈R(t)v(t), ṽ(t)〉 = 0, so (4.12) holds,
and for z = −ΣT x̂(T ) as well, showing (vH,y(·, z)) is the representative of λ(·).
Consequently

L(x̂(·), λ(·)) = − 〈Π0λ(t0), λ(t0)〉 − ‖z‖2 −
∫ T

t0
〈G(t)Q(t)G∗(t)λ(t), λ(t)〉 dt

−
∫ T

t0

〈
H∗(τ)R−1(τ)(H(τ)x̂(τ), x̂(τ)

〉
dτ + ‖R(·)−1/2ỹ(·)‖2

L2 ,

since
∫ T
t0

〈
H∗(τ)R−1(τ)(H(τ)x̂(τ), x̂(τ)

〉
dτ = 〈R(v − vH,y), v − vH,y〉L2 ,

L(x̂(·), λ(·)) = −‖λ(·)‖2
Sλ

[t0,T ]
+ 2

∫ T

t0
〈R(t)vH,y(t), v(t)〉 dt

− ‖R(·)1/2ṽH,y(·)‖2
L2 + ‖R(·)−1/2ỹ(·)‖2

L2 .

Since, by orthogonality ‖R(·)−1/2ỹ(·)‖2
L2 = ‖R(·)1/2ṽH,y(·)‖2

L2 + ‖R(·)1/2ṽH∗,y(·)‖2
L2 ,

this concludes the proof.
□

The two problems we obtained (4.19)-(4.20) are the proper formalization of
(LSE)-(MVLE-det) when the function spaces are properly defined. Not using the
RKHSs would be similar to not defining the Sobolev spaces when doing variational
analysis of quadratic energies. Furthermore, unlike (LSE) and (MVLE-det), which
stem from stochastic or Bayesian viewpoints as presented in Section 2.3, (4.19) and
(4.20) can be easily modified to account for further side information, such as the
sign of the trajectory to be reconstructed, which is a form of state constraint, or
other objective functions. We can then use the full machinery of kernel representer
theorems to derive a numerical solution, as in [1].

5. Complements on the filter and smoother

In this section, for completeness, we derive the expression of the Kalman filter
in continuous time and the expression of the smoother based on the innovation
process, both being well-known. We take ΣT = 0 and lν(t) = H∗(t)R−1(t)g(t) with
g(·) ∈ L2(t0, T ;Rm), and later we posit g(t)dt = dỹ(t). Going back to the expression
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(2.9) of the best estimate, and to the expression (3.18) of the operator Ŝs(t|T )), we
can write the formula

(5.1) x̂(s|T ) = x̄(s) +
∫ T

t0
K(s, t|T )H∗(t)R−1(t)dỹ(t),

which gives for s = T the Kalman filter formula

(5.2) x̂(T |T ) = x̄(T ) +
∫ T

t0
K(T |T, t)H∗(t)R−1(t)dỹ(t).

We want to show that the smoother at s can be recursively expressed in terms of the
sequence of filters between s and T . As we deal with Linear-Quadratic-Gaussian
estimation problems, we naturally find ourselves in a very thoroughly explored field
and some expressions below are well-known, and we point out to where they could
be found in textbooks [14, 5]. General kernel formulas are in any case new, and
so is the connection of Kalman filtering and smoothing with the explicit RKHSs
discussed in Section 4.

5.1. Rederiving the Kalman filter. Recall that we defined r(t) = µ̂(t)+Π(t)ν̂(t)
in (3.5). By (3.14),

(5.3) dr

dt
= (F (t) − Π(t)H∗(t)R−1(t)H(t))r(t) + Π(t)H∗(t)R−1(t)g(t),

r(t0) = 0.

The importance of r(t) is that, like Π(t), it satisfies a forward differential equation
and thus it does not depend on T . On the other hand, since ν̂(T ) = 0, µ̂(T ) = r(T ).
But then from (3.14) we can write

(5.4) r(T ) =
∫ T

t0
K(T |T, t)H∗(t)R−1(t)g(t)dt =

∫ T

t0
Ŝ(T |T, t)g(t)dt.

If in (5.4) we substitute g(t)dt by dỹ(t) we obtain the stochastic differential equation
(SDE) as given in [5, Chapter 7]

(5.5) dr = (F (t) − Π(t)H∗(t)R−1(t)H(t))r(t)dt+ Π(t)H∗(t)R−1(t)dỹ(t),
r(t0) = 0.

and

(5.6) r(T ) =
∫ T

t0
Ŝ(T |T, t)dỹ(t).

From (5.2) it follows that the Kalman filter over [0, t], i.e. only filtering without
smoothing, denoted to simplify notation x̂(t) = x̂(t|t) = x(t) + r(t), thus satisfies
the SDE

dx̂(t) = (F (t)x̂(t) + f(t))dt+ Π(t)H∗(t)R−1(t)(dỹ(t) −H(t)r(t)dt).
Finally, we obtain the classical Kalman filter equation

(5.7) dx̂(t) = (F (t)x̂(t) + f(t))dt+ Π(t)H∗(t)R−1(t)(dy(t) − (H(t)x̂(t) + h(t))),
x̂(t0) = x0.
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5.2. Expression of the smoother in terms of innovation. From (3.15), we
know that

(5.8) − d

dτ
ν̂(τ) = (F ∗(τ) −H∗(τ)R−1(τ)H(τ)Π(τ))ν̂(τ)

−H∗(τ)R−1(τ)(g(τ) −H(τ)r(τ)),
ν̂(T ) = 0

and thus, by the variation of constants formula,

(5.9) ν̂(s) = −
∫ T

s
Φ∗
F,Π(t, s)H∗(t)R−1(t)(g(t) −H(t)r(t))dt.

Therefore, we have

(5.10) µ̂(s) = r(s) + Π(s)
∫ T

s
Φ∗
F,Π(t, s)H∗(t)R−1(t)(g(t) −H(t)r(t))dt.

If we replace in the equation g(t)dt by dỹ(t) we must interpret r(t) as the solution
of the SDE (5.5) . We then have

(5.11) x̂(s|T ) = x(s) + µ̂(s)

x̂(s) = x(s) + r(s).
From (5.10), we deduce that

(5.12) x̂(s|T ) = x̂(s)+Π(s)
∫ T

s
Φ∗
F,Π(t, s)H∗(t)R−1(t)(dy(t)−(H(t)x̂(t)+h(t))dt).

Define the innovation process e(·) as follows

(5.13) e(t) = y(t) −
∫ t

t0
(H(τ)x̂(τ) + h(τ))dτ.

It is well-known that the innovation process is a Yt Wiener process with covariance
matrix R(t) [see e.g. 5, Lemma 7.1]. In a nutshell we obtained that

Proposition 5.1. The Kalman smoother can be written as follows

(5.14) x̂(s|T ) = x̂(s) + Π(s)
∫ T

s
Φ∗
F,Π(t, s)H∗(t)R−1(t)de(t)

This result is well-known and can be found in [14, Lemma 16.5.1]. Consequently,
the error of the Kalman smoother is given by

(5.15) ϵ̂(s|T ) = x(s) − x̂(s) − Π(s)
∫ T

s
Φ∗
F,Π(t, s)H∗(t)R−1(t)de(t)

= ϵ̂(s|s) − Π(s)
∫ T

s
Φ∗
F,Π(t, s)H∗(t)R−1(t)de(t)

It is obvious that, for s < t, the random variables ϵ̂(s|s) and e(t) are independent.
From (5.15), one can then compute K(s, s|T ) = E[ϵ̂(s|T )ϵ̂∗(s|T )] and obtain (4.14)
for the special case of s = t, as in [14, Theorem 16.5.1].
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6. Summary of results

In this section we summarize the findings and key expressions of the article.
We also highlight the improvements made over previous formulas for kernels and
controlled linear systems. Our problem was to find the operator Ŝs(t|T ) minimizing
the variance of the estimation error,

(6.1) ϵS(s|T ) = x(s) − xS(s|T ) = x̃(s) −
∫ T

t0
Ss(t|T )dỹ(t).

(6.2) Ŝs(·|T ) ∈ argmin
Ss(·|T )

ΓS(s|T ) = E[ϵS(s|T )(ϵS(s|T ))∗].

The latter is related to the posterior covariance through the expression Ŝs(t|T ) =
K(s, t|T )H∗(t)R−1(t) (Corollary 3.2) with

(6.3) K(s, t|T ) = E[ϵŜ(s|T )(ϵŜ(t|T ))∗] ∈ L(Rn,∗,Rn).

The explicit formula for K can be obtained by finding the Green functions of a
two-point boundary value problem:

dµ̂

dt
= F (t)µ̂(t) −G(t)Q(t)G∗(t)ν̂(t) + lµ(t)(6.4)

−dν̂

dt
= F ∗(t)ν̂(t) +H∗(t)R−1(t)H(t)µ̂(t) − lν(t)

µ̂(t0) = −Π0ν̂(t0), ν̂(T ) = ΣT µ̂(T ).

The canonical resolution proceeds by introducing two Riccati differential equations

(6.5)

− d

dt
Σ = Σ(t)F (t) + F ∗(t)Σ(t) − Σ(t)G(t)Q(t)G∗(t)Σ(t) +H∗(t)R−1(t)H(t),

Σ(T ) = ΣT ;

(6.6) d

dt
Π = F (t)Π(t) + Π(t)F ∗(t) − Π(t)H∗(t)R−1(t)H(t)Π(t) +G(t)Q(t)G∗(t),

Π(t0) = Π0.

which we complement by looking for matrix-valued kernels K and Λ satisfying

µ̂(s) =
∫ T

t0
K(s, t|T )lν(t)dt for lµ(·) ≡ 0,(6.7)

ν̂(s) =
∫ T

t0
Λ(s, t|T )lµ(t)dt for lν(·) ≡ 0.(6.8)

where K corresponds to the covariance (6.3) as shown in Proposition 4.6. Intro-
ducing a semigroup associated with the matrix function F (t) − G(t)Q(t)G∗(t)Σ(t)
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denoted ΦF,Σ(s, t) (resp. F (s) − Π(s)H∗(s)R−1(s)H(s), denoted ΦF,Π(s, t)), we ob-
tained two symmetric formulas (Theorem 3.1):

(6.9) K(s, t|T ) = ΦF,Σ(s, t0)Π
1
2
0 (Id +Π

1
2
0 Σ(t0)Π

1
2
0 )−1Π

1
2
0 Φ∗

F,Σ(t, t0)

+
∫ min(s,t)

t0
ΦF,Σ(s, τ)G(τ)Q(τ)G∗(τ)Φ∗

F,Σ(t, τ)dτ

(6.10) Λ(s, t|T ) = Φ∗
F,Π(T, s)Σ

1
2
T (Id +Σ

1
2
TΠ(T )Σ

1
2
T )−1Σ

1
2
TΦF,Π(T, t)

+
∫ T

max(s,t)
Φ∗
F,Π(τ, s)H∗(τ)R−1(τ)H(τ)ΦF,Π(τ, t)dτ

For which we proved (Theorem 4.2), that K was the reproducing kernel of a space
of controlled trajectories equipped with a quadratic norm

(6.11) Sx[t0,T ] = {x(·) ∈ H1(t0, T ;Rn)|∃ u(·) ∈ L2(t0, T ;Rp), ξ ∈ Rn s.t.
d

dτ
x = F (τ)x(τ) +G(τ)Q

1
2 (τ)u(τ), x(t0) = Π

1
2
0 ξ}

(6.12) ‖x(·)‖2
Sx

[t0,T ]
= Jx(ξ, u(·)) = ‖ξ‖2 + 〈ΣTx(T ), x(T )〉 +

∫ T

t0
‖u(τ)‖2dτ

+
∫ T

t0

〈
H∗(τ)R−1(τ)H(τ)x(τ), x(τ)

〉
dτ.

Similarly, Λ is associated with a Hilbert space of information vectors (Theorem 4.4)

(6.13) Sλ[t0,T ] = {λ(·) ∈ H1(t0, T ;Rn)| v(·) ∈ L2(t0, T ;Rm), z ∈ Rn s.t.

− d

dt
λ(t) = F ∗(t)λ(t) +H∗(t)v(t), λ(T ) = Σ

1
2
T z}

(6.14) ‖λ(·)‖2
Sλ

[t0,T ]
= Jλ(z, v(·)) = 〈Π0λ(t0), λ(t0)〉 + ‖z‖2

+
∫ T

t0
〈G(t)Q(t)G∗(t)λ(t), λ(t)〉 dt+

∫ T

t0
〈R(t)v(t), v(t)〉 dt

The two kernels are related by the following formula (Proposition 4.6)

(6.15) K(s, t|T ) = Π(s)Φ∗
F,Π(t, s)1Is≤t + ΦF,Π(s, t)Π(t)1Is>t − Π(s)Λ(s, t|T )Π(t).
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For any realization ỹ(·) of Y − ȳ, the kernels allow to define two dual optimiza-
tion problems (see Propositions 4.8 and 4.10 for the definitions) formalizing (LSE)-
(MVLE-det)

min
x̃(·)∈Sx

[t0,T ]

‖R(t)−1/2ỹ(·)‖2
L2 + ‖x̃(·)‖2

Sx
[t0,T ]

− 2
〈
H∗(·)R−1(·)ỹ(·), x̃(·)

〉
L2([t0,T ])

(6.16)

=
∫ T

t0
‖ỹ(t)−H(t)x̃(t)‖2

R(t)−1dt+‖x̃(·)‖2
Sx

[t0,T ]
−
∫ T

t0
‖H(t)x̃(t)‖2

R(t)−1dt

min
λ(·)∈Sλ

[t0,T ]

‖λ(·)‖2
Sλ

[t0,T ]
− 2

∫ T

t0

〈
R(t) proj‖·‖R(t)

ImH(t)(ỹ(t)), v(t)
〉
dt(6.17)

− ‖R(·)1/2 proj‖·‖R(·)
KerH∗(·)(ỹ(·))‖2

L2

=
∫ T

t0
‖proj

‖·‖R(t)
Im H(t)(ỹ(t))−v(t)‖2

R(t)dt+
∫ T

t0
〈G(t)Q(t)G∗(t)λ(t),λ(t)〉dt

+〈Π0λ(t0),λ(t0)〉+〈Σ	
T λ(T ),λ(T )〉−‖R(·)−1/2ỹ(·)‖2

L2 .

This relates Kalman filtering to optimization problems over RKHSs, which act in
filtering problems as the Sobolev spaces in calculus of variations. Inspired by Table
15.1 in [14], which written for discrete-time estimation problems, we summarize in
Table 1 the relations between the deterministic optimal control problems written
over RKHSs (6.16)-(6.17) and the original stochastic smoothing problems. The
lower line, consisting of problems (iii) and (iv) over dual variables, is arguably less
studied both in estimation and control, and we leave to future work the identification
of the backward Markovian Gaussian process underlying Λ.

Table 1. Summary of the four optimization problems considered in
the article. One moves vertically by permuting min-max into max-
min, the problems being (Fenchel) dual. One moves horizontally by
formally setting dw(t) = u(t)dt and considering the same kernel for
(stochastic) covariance of optimal error and (deterministic) trajec-
tories, the problems being (kernel) “equivalent”.

Comparison with previous results on kernels and control: The trajectory
space seen as an RKHS was first presented in previous articles on linear-quadratic
optimal control:
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• [1] first introduced the idea of considering the vector space (Sx[t0,T ], 〈·, ·〉Sx
[t0,T ]

) as
a reproducing kernel Hilbert space in the case ΣT = 0. A two-point boundary
system to obtain K was given but not solved explicitly. The closed form formula
were only given for Π0 = Id and H ≡ 0. The kernel was used to guarantee the
satisfaction of state constraints;

• [2] observed that, for ΣT 6= 0 and Π0 → ∞, the map t0 7→ K(t0, t0|[t0, T ])
satisfied a forward Riccati equation and was the inverse of the usual backward
Riccati matrix considered in linear-quadratic optimal control. It was underlined
that kernels shift the focus on trajectories rather than their parametrization by
controls;

• [3] gave a closed form formula for K, when ΣT = 0, in the general case of an
infinite-dimensional state with values in a Hilbert space to tackle linear PDE
control. We emphasized there that this allowed for representer theorems and
closed-form solutions when considering linear-quadratic optimal control problems.

To summarize, the kernels considered appear in linear-quadratic optimal control
because of Hilbertian vector spaces of trajectories, while, for estimation problems,
they appear through covariances of Gaussian processes. It is this “dual”, determin-
istic and stochastic, nature of kernels which underlies the “duality” between optimal
control and estimation in the Linear-Quadratic case.

Conclusion. We improved on our previous results by considering the dual RKHS
(Sλ[t0,T ], 〈·, ·〉Sλ

[t0,T ]
) of covectors/information vectors, by relaxing as much as possible

the invertibility requirements on the matrices Q,Π0,ΣT , and most of all by consid-
ering an estimation, rather than optimal control, problem and consequently defining
the kernel K as the covariance of the estimation error. This way, we derived novel
formulas for the covariances of the Markovian Gaussian processes induced by linear
SDEs. The kernels presented should also in principle allow for incorporating con-
straints or considering various sampling times of observations, and are computable
through the matrix exponential formulas given in Appendix A.2. We considered
here a continuous-time observation process, the extension to discrete-time measure-
ments is straightforward by replacing integrals with finite sums when dealing with
the observation operator H. Similarly generalization to an infinite-dimensional state
space can be done in the spirit of [3]. We could not discuss here the question of
duality as a formal change of variables as in [16, 32], as well as the relation between
value function and likelihood. Indeed, the two Riccati equations outlined corre-
spond respectively to the backward evolution of the Hessian of the quadratic value
function through the Hamilton-Jacobi-Bellman equation, and to the forward evo-
lution of the Hessian of the Gaussian posterior density through the Fokker-Planck
equation. This paves the way to extending to nonlinear filtering the kernel view-
point. We leave these interesting directions to future work.

Acknowledgments: We thank the anonymous referee for his positive and con-
structive comments. PCAF expresses his gratitude to Marc Lambert and Hans
Kersting for the numerous discussions at the SIERRA laboratory on Kalman filter-
ing, which spurred him into exploring the duality and Bayesian aspects.
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Appendix

A.1 Existence of the solution of the Riccati equation.

Lemma 6.1. The Riccati equation (3.1) has a solution Σ(t) which is symmetric
and positive semi-definite on the interval [t0, T ].

Proof. The differential equation (3.1) has a unique local solution on an interval
[t1, T ] for t1 sufficiently close to T . The solution is symmetric, since the transpose
satisfies the equation. We can then consider the differential equation

(6.18) dγ

dt
= (F (t) −G(t)Q(t)G∗(t)Σ(t))γ(t), γ(t1) = γ0.

We can then compute
d 〈γ(t),Σ(t)γ(t)〉

dt
= 2

〈
γ(t),Σ(t)dγ(t)

dt

〉
+
〈
γ(t), dΣ(t)

dt
γ(t)

〉
= −

〈
γ(t),

(
Σ(t)G(t)Q(t)G∗(t)Σ(t) +H∗(t)R−1(t)H(t)

)
γ(t)

〉
≤ 0

and since Σ(T ) ≽ 0, by integration between t1 and T , we obtain 〈γ0,Σ(t1)γ0〉 ≥ 0.
Since γ0 is arbitrary, we obtain Σ(t1) ≥ 0. We could have started in (6.18) at
any point on the interval (t1, T ). Therefore the local solution satisfies Σ(t) ≥ 0.
Consider next the semi group ΦF (t, t1), on the interval t ∈ (t1, T ) defined by the
differential equation

(6.19) d

dt
ΦF (t, t1) = F (t)ΦF (t, t1), ΦF (t1, t1) = Id .

If we consider
d 〈ΦF (t, t1)γ0,Σ(t)ΦF (t, t1)γ0〉

dt

=
〈

ΦF (t, t1)γ0,

(
F ∗(t)Σ(t) + Σ(t)F (t) + d

dt
Σ(t)

)
ΦF (t, t1)γ0

〉
,

from the Riccati equation, we obtain
d 〈ΦF (t, t1)γ0,Σ(t)ΦF (t, t1)γ0〉

dt
≥ −

〈
ΦF (t, t1)γ0,H

∗(t)R−1(t)H(t)ΦF (t, t1)γ0
〉

Integrating between t1 and T , we get

(6.20) 〈γ0,Σ(t)γ0〉 ≤
∫ T

t1

〈
ΦF (t, t1)γ0,H

∗(t)R−1(t)H(t)ΦF (t, t1)γ0
〉

≤ C‖γ0‖2

for some constant C > 0. It follows that the solution Σ(t) can be extended beyond
t1 and finally up to t0. This completes the proof. □

A.2 Computation of kernels of linear SDEs through exponentials of the
Hamiltonian matrix. The following method to compute Gramians can be traced
at least back to [33] in the time-invariant case and was mentioned in [15, Section 8]
as a periodically rediscovered way to solve differential Riccati equations. It made
its way in the linear SDE literature [see e.g. 28, Section 6.3, p.84] where H ≡ 0 and
Σ ≡ 0. However a more systematic presentation through the Hamiltonian matrix
can be found in [30] for linear-quadratic control. In particular this allows to consider
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the important case of GQG∗ 6≡ 0 and H 6≡ 0. We focus below on computing K but
similar operations can be performed to obtain Λ by changing variables, as was done
in the proof of Theorem 4.4. Consider the equations

dµ̂

dt
= F (t)µ̂(t) −G(t)Q(t)G∗(t)ν̂(t), µ̂(t0) = −Π0ν̂(t0)

dν̂

dt
= −F ∗(t)ν̂(t) −H∗(t)R−1(t)H(t)µ̂(t), ν̂(T ) = ΣT µ̂(T )

and write them in matrix form introducing the Hamiltonian matrix H(t)

(6.21) d

dt

(
µ̂(t)
ν̂(t)

)
=
(

F (t) −G(t)Q(t)G∗(t)
−H∗(t)R−1(t)H(t) −F ∗(t)

)
︸ ︷︷ ︸

H(t)

(
µ̂(t)
ν̂(t)

)
.

Denote by ΦH(T, t) the transition matrix d
dtΦH(T, t) = −H(t)ΦH(T, t), ΦH(T, T ) =

Id and set as in [30, eq.(5.72)]

ΦH(T, t) :=
(

Φ11(T, t) Φ12(T, t)
Φ21(T, t) Φ22(T, t)

)
Φ̄H(T, t) :=

(
Φ̄11(T, t) Φ̄12(T, t)
Φ̄21(T, t) Φ̄22(T, t)

)
=
(

Id 0
−ΣT Id

)
· ΦH(T, t).

Assume that Φ̄22(T, t) is invertible, then through some calculations one can show
that [see 30, Chapter 5, eq.(5.77,5.160, 5.163)]

Σ(t) = −Φ̄−1
22 (T, t)Φ̄21(T, t),

ΦF,Σ(t, T ) = Φ̄∗
22(T, t),∫ s

T
ΦF,Σ(T, τ)G(τ)Q(τ)G∗(τ)Φ∗

F,Σ(T, τ)dτ = Φ̄12(T, s)Φ̄−1
22 (T, s).

where Σ(t) is the solution of the backward Riccati equation (6.5) and ΦF,Σ(s, t) the
semigroup associated with F (t) − G(t)Q(t)G∗(t)Σ(t). Define two auxiliary kernels
which we will compute independently.

(6.22) K(s, t|T ) = ΦF,Σ(s, t0)Π
1
2
0 (Id +Π

1
2
0 Σ(t0)Π

1
2
0 )−1Π

1
2
0 Φ∗

F,Σ(t, t0)︸ ︷︷ ︸
=:K0(s,t)

+
∫ min(s,t)

t0
ΦF,Σ(s, τ)G(τ)Q(τ)G∗(τ)Φ∗

F,Σ(t, τ)dτ︸ ︷︷ ︸
=:K1(s,t)

By the above expressions, we have for s ≤ t

K0(s, t) = Φ̄∗
22(T, s)Φ̄−1,∗

22 (T, t0)Π
1
2
0 (Id +Π

1
2
0 Φ̄−1

22 (T, t0)Φ̄21(T, t0)Π
1
2
0 )−1

× Π
1
2
0 Φ̄−1

22 (T, t0)Φ̄22(T, t)
K1(s, t) = Φ̄∗

22(T, s)[Φ̄12(T, s)Φ̄−1
22 (T, s) − Φ̄12(T, t0)Φ̄−1

22 (T, t0)]Φ̄22(T, t)
Formulas for s > t can be obtained by Hermitian symmetry, K(s, t|T ) = K(t, s|T )∗.
These formulas simplify drastically when H(·) ≡ 0 and ΣT = 0, so Σ(·) ≡ 0,
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Φ̄∗
22(T, t) = ΦF (t, T ) (alternative computations could be done in this case with

ΦH(t, t0)) which inverse is easily computable. Otherwise every inversion should be
computed numerically. In the time-invariant case, we have ΦH(T, t) = e(T−t)H and
all quantities can be computed through matrix exponentials.
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