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SOLVABILITY OF SOME QUADRATIC INTEGRAL EQUATIONS

VITALI VOUGALTER

ABSTRACT. The work deals with the existence of solutions of a certain quadratic
integral equation in H'(R). The theory of quadratic integral equations has many
useful applications in the mathematical physics, economics, biology, as well as
in describing the real world problems. The proof of the existence of solutions is
based on a fixed point technique in the Sobolev space on the real line.

1. INTRODUCTION

The present article is devoted to the existence of solutions of the following integral
equation

(L1) u(w) = wo(e) + [Tula)] [ T K- y)o(uly)dy, xR

The precise conditions on the functions ug(x), g(u), the linear operator T and the
kernel K (z) will be specified further down. The second term in the right side of
(1.1) is a product of Tu(x) and the integral operator acting on the function g(u),
for which the sublinear growth will be established in the proof of Theorem 1.3.
below. Therefore, the integral equation of this kind is called quadratic. The the-
ory of integral equations has many useful applications in describing the numerous
events and problems of the real world. It is caused by the fact that this theory
is frequently applicable in various branches of mathematics and in mathematical
physics, economics, biology as well as in dealing with the real world problems. The
quadratic integral equations arise in the theories of the radiative transfer, neutron
transport, in the kinetic theory of gases, in the design of the bandlimited signals for
the binary communication using the simple memoryless correlation detection, when
the signals are disturbed by the additive white Gaussian noise (see e.g. [1], [5], [11]
and the references therein). The article [1] deals with the solvability of a nonlinear
quadratic integral equation in the Banach space of the real functions being defined
and continuous on a bounded and closed interval using the fixed point result. The
works [2] and [4] are devoted to the studies of the existence of solutions for quadratic
integral equations on unbounded intervals. The existence of solutions for quadratic
integral inclusions was treated in [3]. The paper [10] deals with the nondecreasing
solutions of a quadratic integral equation of Urysohn-Stieltjes type. The solvabil-
ity of the quadratic integral equations in Orlicz spaces was covered in [7], [8], [9].
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The reduction of dimension in multi-dimensional integral equations was discussed
in [15]. The integro-differential equations, which may involve either Fredholm or
non Fredholm operators arise in the mathematical biology when studying the sys-
tems with the nonlocal consumption of resources and the intra-specific competition
(see [12], [13], [17], [18] and the references therein). The contraction argument was
used in [16] to estimate the perturbation to the standing solitary wave of the Nonlin-
ear Schrodinger (NLS) equation when either the external potential or the nonlinear
term were perturbed. The similar ideas were exploited to show the persistence
of pulses for certain reaction-diffusion type equations (see [6]). Suppose that the
assumption below is fulfilled.

Assumption 1.1. Let the kernel K(z) : R — R be nontrivial, such that K(x) €
WLL(R). The function ug(z) : R — R does not vanish identically on the real line
and ug(z) € HY(R). Suppose also that the linear operator T': HY(R) — H(R) is
bounded, such that its norm 0 < ||| < oo.

Let the function V(z) : R — R be nontrivial and V(z) € W1*(R), such that
V(x) and its derivative Iz e bounded on the whole real line. Then it can be
easily verified that the multiplication operator
(1.2) Tu(z) == V(z)u(z), wu(z)ec H(R)

satisfies the assumption above. We will use the Sobolev space

(1.3) H'(R) == {u(z): R — R | u(z) € L*(R), Z—Z € L*(R)}.

It is equipped with the norm

du |2
(1.4) ||U||§{1(R) = H“H%Q(R) + H@‘ L2(R)

Another norm relevant to our argument is given by

dK
(L5) 1K e = 1Kl + |5

Li(R)
By means of the Sobolev inequality in one dimension (see e.g. Sect 8.5 of [14]), we
have

1
1.6 w(x) || poorry < —||u(x .
(1.6) ()] oo (my < \/iH (@) 7 ()
We recall the algebra property for the Sobolev space. For any u(x),v(z) € H'(R)

(1.7) [u(@)o(@) ] m @) < callu(@) ) llv(@) | (),

where ¢, > 0 is a constant, so that u(z)v(z) € H'(R) as well. Estimate from above
(1.7) can be easily derived, for instance via (1.6). The Young’s inequality (see e.g.
Section 4.2 of [14]) enables us to estimate the norm of the convolution as

(1.8) lu* vl 2wy < llullp @ llvllLew)-

Clearly, inequality (1.8) yields the upper bound

(1.9 | [ uta=wrwa

< |, o Mol
L2(R) dx lILY(R)
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We seek the resulting solution of nonlinear equation (1.1) as

(1.10) u(z) = uo(x) + up(x).

Evidently, we arrive at the perturbative equation

(1.11) up(x) = [T(uo(z) + up(x))] / K(z —y)g(uo(y) + up(y))dy.
Let us introduce a closed ball in our Sobolev space

(1.12) B, = {u(x) € H'®) | |[ull sy < p}, 0<p<L.

We seek the solution of equation (1.11) as the fixed point of the auxiliary nonlinear
problem

(1.13) u(z) = [T (uo(x) + v(z))] /_Oo K(z —y)g(uo(y) +v(y))dy

in ball (1.12). Let us introduce the interval on the real line

1 1 1 1
1.14 I::[————u ,—+ —|lu
(1.14) 7 2” ol 71 (m) 7 \/5” oll m1(m)
along with the closed ball in the space of C([) functions, namely
(1.15) Dy :={g(z) € C1(1) | llgllcyry < M}, M > 0.
In this context the norm
(1.16) I9lley iy = llgllew + 19 o)
where [|gllc(r) = maxzer|g(z)].

Assumption 1.2. Let g(z) : R — R, such that g(0) = 0. It is also assumed that
g(z) € Dy and it does not vanish identically on the interval I.

Let us introduce the operator t,, such that u = t,v, where u is a solution of
equation (1.13). Our first main result is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold and

P
(1.17) call Tllluollzrr ) + DI K llwrr @M < 5.
Then equation (1.13) defines the map ty : B, — B,, which is a strict contraction.
The unique fized point u,(x) of this map ty is the only solution of problem (1.11)
in B,.

Obviously, the resulting solution of equation (1.1) given by (1.10) will not vanish
identically on the real line because g(0) = 0, the operator T is linear and the
function ug(z) is nontrivial according to our assumptions.

For the technical purposes we define
(1.18) o = 2¢q([|uoll g wy + DITI M| K[ m) > 0.

Our second major statement is about the continuity of the cumulative solution of
problem (1.1) given by formula (1.10) with respect to the function g.
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Theorem 1.4. Let j = 1,2, the assumptions of Theorem 1.3 are valid, such that
up j () is the unique fized point of the map ty, : B, — B, which is a strict contrac-
tion since inequality (1.17) holds and the resulting solution of problem (1.1) with
9(z) = g;(2) is given by

(1.19) uj(x) = ug(x) + up ().
Then the estimate from above
(1.20) Jur (@) — w2 (@) || () <
o
< m(”UOHHI(R) + Dllg1(2) = g2(2)ley ()

1s valid.

Let us proceed to the proof of our first main proposition.

2. THE EXISTENCE OF THE PERTURBED SOLUTION

Proof of Theorem 1.3. Let us choose arbitrarily v(z) € B,. By means of (1.13)
along with (1.7) we obtain the upper bound

1wl 1 my <

@) <l + o)l [ Z K = y)g(uo(w) + o),

Let us estimate the right side of (2.1). Clearly, we have

(2.2) 1T (uo () + (@)l )y < TN ([Juo(@) || 71wy +1)-
By means of inequality (1.8), we obtain
(23) | | 5= watut) + vay], . <

< K|y llg(uo(@) + v(2))l 2(r)-
Similarly, (1.9) yields

H% /Z K(z —y)g(uo(y) + v(y))dy)

<
L2(®) ~

o <%

LI(R)Hg(uO(az) +v(@)) |l £2(r)-

Estimates (2.3) and (2.4) give us

H /Z K(z —y)g(uo(y) + v(y))dyHHl(R) <

(2.5) < 1K i myllg(uo(@) + v(@)ll L2 (w)-

Let us express

wo(@) +(z)
(2.6) g(uo(x) + v(z)) = /O J(2)dz.



SOLVABILITY OF SOME QUADRATIC INTEGRAL EQUATIONS 605

For v(x) € B, using inequality (1.6) we easily derive

1

2.7 ug + v < —(||w +1

(2.7) [uo + | \/i(ll oll 1y +1)-
Hence,

(28)  lg(uo(z) +v(@)] < maxzerlg'(2)]|uo(w) + v(@)| < Mluo(w) +v(2)],
where the interval I is defined in (1.14). This yields

(2.9) lg(uo(@) +v(@)l 2@ < M([[uoll i) +1)-
Therefore, we arrive at

(2.10) @)y < eal Tl + 2K oy M.

By virtue of (1.17), we have [lu(z)| g1®) < p. Thus, the function u(z), which is
uniquely determined by (1.13) belongs to B, as well. This means that equation
(1.13) defines a map t, : B, — B, under the given conditions.

Let us establish that under the stated assumptions this map is a strict contraction.
We choose arbitrarily vy 2(z) € B,. The argument above yields that uq 2 := tyv12 €
B,. By virtue of (1.13) we have

(2.11) ui(x) = [T (uo(z) + vi (2 / K(z —y)g(uo(y) + vi(y))dy,

(2.12) uz(x) = [T (uo(z) + va(z / K(z —y)g(uo(y) + va(y))dy.

From (2.11) and (2.12) we easily deduce that

(213)  w(z) - us(e) = [Tor(z) - Tos(c)] / " K — y)g(uoly) + vi () dy+

(o) +va(@)] [ Kl = 9)lo(uos) + () ~ g(uoly) + va(o)ldy
By means of (2.13) along with (1.7) we derive

Jur(2) — w2 () |1 (ry < CallTvi() = Toz(2)| g ) X

X H /_Oo K(z —y)g(uo(y) + v (y))dyHHl(R) + call T (uo () + va(@)) | g1y X

@) x| [ K= o) + ) - g + e,
Let us obtain the upper bound on the right side of (2.14). Obviously,
(2.15) 1To1(x) = Tw (@) 1y < [T Hvi(z) = v2(2) |1 m)-

Using inequality (1.8), we arrive at

H/Z K (@ = y)g(uo(y) + v1 (y))dy|

L2(R)

(2.16) <Kz llg(uo(z) + v1(2))ll L2 ()
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By applying (1.9), we have

4 [ K@= gt + w)ay]

<
L2(R) ~

(2.17) <[] .. Natuo@) + va(@)

L(R)

Estimates from above (2.16) and (2.17) give us

H /_Z K(z —y)g(uo(y) +v1(y))

(2.18) < I s o g (uolz) + v1(2) L2y
Clearly,
up(z)+v1(w) .
(2.19) gluo(a) +va(e)) = [ ¢(2)dz.
0

From (2.19) we easily deduce that

(2.20)  lg(uo(x) + v1(2))] < mazzerlg'(2)[|uo(x) + vi(2)] < Mluo(x) + vi()],
such that

(2.21) lg(uo(@) +vi(@) 2y < M([luollmrr) +1)-

Therefore, the first term in the right side of inequality (2.14) can be bounded from
above by

(2.22) Cal|Tl[llv1 (2) = va(@)l| oy [l (ry M ([lwo | 1 ) +1)-
Hence, it remains to estimate the second term in the right side of (2.14). Evidently,
(2.23) 1T (uo(2) +v2 (@) g my < IT1([[woll ) +1)-

By means of inequality (1.8), we easily derive

H / T K@ - y)lg(uoly) + v1()) — guoly) + va(y))]

(2.24) < KL llg(uo(z) + vi(z)) — g(uo(z) + v2 (@)l 2(w)
Upper bound (1.9) yields

dec/ K(z —y)lg(uo(y) + v1(y)) — g(uo(y) + v2(y y‘

<

L2(R)

(2.25) < H

o 9(00() + 01(@)) = 9(0t0(@) + 22 2t

Using (2.24) and (2.25), we arrive at

H/ K(z = y)[g(uo(y) +vi(y)) — g(uo(y) + valy y)

HY(R) —

(2.26) < [IKllwrr@llg(uo(z) +vi(x)) = g(uo(z) + va(2))l L2(m)
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We easily express
uo(z)+v1 ()

(227)  gluo(z) + v1(2) — gluo() + va(x)) = / ¢ (2)dz.

uo(2)+v2(z)
Formula (2.27) gives us

l9(uo(z) + v1(2)) = g(uo(z) + v2(2))| < maz.er|g'(2)|[v1(x) — vi(z)] <
(2.28) < Mlvi(z) — vi(2)],
such that

(229)  llg(uo(z) + v1(2)) — g(uo(x) + v2(2))|| L2(r) < Mlv1(2) — v2(2) |11 (r)-

Thus, the second term in the right side of inequality (2.14) can be estimated from
above by expression (2.22) as well. Hence, we obtain

Jur(z) — w2 (@) g2 (r) <
(2.30) < 2¢q([[uoll oy + DIT MK lwraryllor (z) = va (@) |11 w)-
By virtue of (2.30) along with definition (1.18), we have
(2.31) [tgv1(2) — tgva(x)|[ g1 (r) < ollvr(z) — v2 (@)l 1 (R)-

It can be easily verified using (1.17) that the constant in the right side of inequality
above

(2.32) o<1

This implies that our map t, : B, — B, defined by equation (1.13) is a strict
contraction under the given conditions. Its unique fixed point wu,(z) is the only
solution of problem (1.11) in the ball B,. The resulting u(z) given by (1.10) is a
solution of equation (1.1). O

Let us conclude the article by establishing our second main result.

3. THE CONTINUITY OF THE RESULTING SOLUTION WITH RESPECT TO THE
FUNCTION ¢

Proof of Theorem 1.4. Obviously, under the stated assumptions, we have

(3.1) Up1 = tg Up1, Up2 = lg,Up2.

Thus,

(3.2) Up1 — Up2 = lg Up1 — lg Up2 + Tg Up2 — LgyUp 2.

Therefore,

(3.3) |up,1 — up2 HI(R) < [tg, up,1 — tg1up,2HH1(1R) + [[tg up,2 — t92up72||H1(]R)‘

By means of estimate (2.31), we have

(3.4) [tg,up,1 — tgl“p,2||H1(R) < oflup1 — UP,QHHl(R)
with o given by (1.18), such that (2.32) holds. Hence, we obtain

(3.5) (1 —0o)llupy — “p,2||H1(R) < ltgiup2 — tgoup,2 H'(R)-
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Evidently, for our fixed point tg,up,2 = up2. We denote r(z) := t4,up2 and arrive
at

(3.6)  r(z) = [T(uo(x) + upa(x / K(z —y)g1(uo(y) + up2(y))dy,

(3.7) up2(x) = [T(uo(z) + upa(x / K(z = y)g2(uo(y) + up2(y))dy.
Formulas (3.6) and (3.7) yield
(@) —up2(x) = [T(uo(x) + upa(x))]x

(3.8) x /OO K(z = y)lgi(uo(y) + up2(y)) — g2(uo(y) + up2(y))]dy.
By virtue of (1.7), we derive
[7(2) = up2(2) | ) < CallT(uo() + up2() | 11 () X

69 x| [ K-l + wa) - o) + wa)

HY(R)

Clearly, we have the upper bound
(3.10) 1T (uo () + up2(@2) 1wy < IT M (luoll iy + 1)-
By means of inequality (1.8),

| [ K= lar o) + 120)) = uolo) + vl . <
(3.11) < KN L @yllgr (uo(@) + upa(2)) = ga(uo(x) + up2(2)) | L2 m)-
Similarly, (1.9) gives us

2 Kl (a0(0) + ) — ga(uo(o) + upa(o |, , <

dx L2(R)
12 <] 9 (00(e) + @) - ga(uele) + vl
Estimates (3.11) and (3 12) easily imply

| [ K@= nlontunlo) + u20) = 22u0(o) + wpaids], <
(3.13) <K lwramyllgr(uo(z) + up2(x)) — ga(uo(z) + up2(z))l 22 (r)
Evidently,
(3.14) g1(uo(x) + up2(x)) — g2(uo(x) + up2(x)) =

uo(x)+up,2(x) , ,
- /0 9.(2) — gh(2)]d=.

From (3.14) we deduce
|91 (uo(x) + up2(x)) — g2 (uo(z) + upa2(2))| <
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< mawzer]gi(2) — g5(2)|luo(x) + up ()] <

(3.15) < |lg1(2) = 92(2)llcy (1) luo(x) + up ()],
so that
g1 (uo(2) + up2(x)) — g2(uo(r) + up2(2)) |l L2m) <

(3.16) < ll91(2) = g2(2)llcy 1y (llwol a1y +1)-
By virtue of upper bounds (3.9), (3.10), (3.13), (3.16) obtained above, we derive
I (2) = up2 (@)l 1 ) <
(3.17) < call Tl (luoll gy + 121K lwra ey lgr(2) — g2(2) oy -
Inequalities (3.5) and (3.17) give us
[up,1 () = wp2(2) | 11 () <

(3.18) <

Tl oll i @) + DI lwrr@llor(2) = 922wy

By means of (1.19) along with (3.18) and definition (1.18) estimate (1.20) holds. [J

Remark 3.1. The results of the present work will be generalized to the higher
dimensions in the consecutive articles.
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