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The reduction of dimension in multi-dimensional integral equations was discussed
in [15]. The integro-differential equations, which may involve either Fredholm or
non Fredholm operators arise in the mathematical biology when studying the sys-
tems with the nonlocal consumption of resources and the intra-specific competition
(see [12], [13], [17], [18] and the references therein). The contraction argument was
used in [16] to estimate the perturbation to the standing solitary wave of the Nonlin-
ear Schrödinger (NLS) equation when either the external potential or the nonlinear
term were perturbed. The similar ideas were exploited to show the persistence
of pulses for certain reaction-diffusion type equations (see [6]). Suppose that the
assumption below is fulfilled.

Assumption 1.1. Let the kernel K(x) : R → R be nontrivial, such that K(x) ∈
W 1,1(R). The function u0(x) : R → R does not vanish identically on the real line
and u0(x) ∈ H1(R). Suppose also that the linear operator T : H1(R) → H1(R) is
bounded, such that its norm 0 < ∥T∥ < ∞.

Let the function V (x) : R → R be nontrivial and V (x) ∈ W 1,∞(R), such that

V (x) and its derivative
dV

dx
are bounded on the whole real line. Then it can be

easily verified that the multiplication operator

(1.2) Tu(x) := V (x)u(x), u(x) ∈ H1(R)
satisfies the assumption above. We will use the Sobolev space

(1.3) H1(R) :=
{
u(x) : R → R | u(x) ∈ L2(R),

du

dx
∈ L2(R)

}
.

It is equipped with the norm

(1.4) ∥u∥2H1(R) := ∥u∥2L2(R) +
∥∥∥du
dx

∥∥∥2
L2(R)

.

Another norm relevant to our argument is given by

(1.5) ∥K∥W 1,1(R) := ∥K∥L1(R) +
∥∥∥dK
dx

∥∥∥
L1(R)

.

By means of the Sobolev inequality in one dimension (see e.g. Sect 8.5 of [14]), we
have

(1.6) ∥u(x)∥L∞(R) ≤
1√
2
∥u(x)∥H1(R).

We recall the algebra property for the Sobolev space. For any u(x), v(x) ∈ H1(R)
(1.7) ∥u(x)v(x)∥H1(R) ≤ ca∥u(x)∥H1(R)∥v(x)∥H1(R),

where ca > 0 is a constant, so that u(x)v(x) ∈ H1(R) as well. Estimate from above
(1.7) can be easily derived, for instance via (1.6). The Young’s inequality (see e.g.
Section 4.2 of [14]) enables us to estimate the norm of the convolution as

(1.8) ∥u ∗ v∥L2(R) ≤ ∥u∥L1(R)∥v∥L2(R).

Clearly, inequality (1.8) yields the upper bound

(1.9)
∥∥∥ d

dx

∫ ∞

−∞
u(x− y)v(y)dy

∥∥∥
L2(R)

≤
∥∥∥du
dx

∥∥∥
L1(R)

∥v∥L2(R).
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We seek the resulting solution of nonlinear equation (1.1) as

(1.10) u(x) = u0(x) + up(x).

Evidently, we arrive at the perturbative equation

(1.11) up(x) = [T (u0(x) + up(x))]

∫ ∞

−∞
K(x− y)g(u0(y) + up(y))dy.

Let us introduce a closed ball in our Sobolev space

(1.12) Bρ := {u(x) ∈ H1(R) | ∥u∥H1(R) ≤ ρ}, 0 < ρ ≤ 1.

We seek the solution of equation (1.11) as the fixed point of the auxiliary nonlinear
problem

(1.13) u(x) = [T (u0(x) + v(x))]

∫ ∞

−∞
K(x− y)g(u0(y) + v(y))dy

in ball (1.12). Let us introduce the interval on the real line

(1.14) I :=
[
− 1√

2
− 1√

2
∥u0∥H1(R),

1√
2
+

1√
2
∥u0∥H1(R)

]
along with the closed ball in the space of C1(I) functions, namely

(1.15) DM := {g(z) ∈ C1(I) | ∥g∥C1(I) ≤ M}, M > 0.

In this context the norm

(1.16) ∥g∥C1(I) := ∥g∥C(I) + ∥g′∥C(I),

where ∥g∥C(I) := maxz∈I |g(z)|.

Assumption 1.2. Let g(z) : R → R, such that g(0) = 0. It is also assumed that
g(z) ∈ DM and it does not vanish identically on the interval I.

Let us introduce the operator tg, such that u = tgv, where u is a solution of
equation (1.13). Our first main result is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold and

(1.17) ca∥T∥(∥u0∥H1(R) + 1)2∥K∥W 1,1(R)M ≤ ρ

2
.

Then equation (1.13) defines the map tg : Bρ → Bρ, which is a strict contraction.
The unique fixed point up(x) of this map tg is the only solution of problem (1.11)
in Bρ.

Obviously, the resulting solution of equation (1.1) given by (1.10) will not vanish
identically on the real line because g(0) = 0, the operator T is linear and the
function u0(x) is nontrivial according to our assumptions.

For the technical purposes we define

(1.18) σ := 2ca(∥u0∥H1(R) + 1)∥T∥M∥K∥W 1,1(R) > 0.

Our second major statement is about the continuity of the cumulative solution of
problem (1.1) given by formula (1.10) with respect to the function g.
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Theorem 1.4. Let j = 1, 2, the assumptions of Theorem 1.3 are valid, such that
up,j(x) is the unique fixed point of the map tgj : Bρ → Bρ, which is a strict contrac-
tion since inequality (1.17) holds and the resulting solution of problem (1.1) with
g(z) = gj(z) is given by

(1.19) uj(x) = u0(x) + up,j(x).

Then the estimate from above

(1.20) ∥u1(x)− u2(x)∥H1(R) ≤

≤ σ

2M(1− σ)
(∥u0∥H1(R) + 1)∥g1(z)− g2(z)∥C1(I)

is valid.

Let us proceed to the proof of our first main proposition.

2. The existence of the perturbed solution

Proof of Theorem 1.3. Let us choose arbitrarily v(x) ∈ Bρ. By means of (1.13)
along with (1.7) we obtain the upper bound

∥u∥H1(R) ≤

(2.1) ≤ ca∥T (u0(x) + v(x))∥H1(R)

∥∥∥ ∫ ∞

−∞
K(x− y)g(u0(y) + v(y))dy

∥∥∥
H1(R)

.

Let us estimate the right side of (2.1). Clearly, we have

(2.2) ∥T (u0(x) + v(x))∥H1(R) ≤ ∥T∥(∥u0(x)∥H1(R) + 1).

By means of inequality (1.8), we obtain

(2.3)
∥∥∥ ∫ ∞

−∞
K(x− y)g(u0(y) + v(y))dy

∥∥∥
L2(R)

≤

≤ ∥K∥L1(R)∥g(u0(x) + v(x))∥L2(R).

Similarly, (1.9) yields∥∥∥ d

dx

∫ ∞

−∞
K(x− y)g(u0(y) + v(y))dy

∥∥∥
L2(R)

≤

(2.4) ≤
∥∥∥dK
dx

∥∥∥
L1(R)

∥g(u0(x) + v(x))∥L2(R).

Estimates (2.3) and (2.4) give us∥∥∥ ∫ ∞

−∞
K(x− y)g(u0(y) + v(y))dy

∥∥∥
H1(R)

≤

(2.5) ≤ ∥K∥W 1,1(R)∥g(u0(x) + v(x))∥L2(R).

Let us express

(2.6) g(u0(x) + v(x)) =

∫ u0(x)+v(x)

0
g′(z)dz.
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For v(x) ∈ Bρ using inequality (1.6) we easily derive

(2.7) |u0 + v| ≤ 1√
2
(∥u0∥H1(R) + 1).

Hence,

(2.8) |g(u0(x) + v(x))| ≤ maxz∈I |g′(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|,
where the interval I is defined in (1.14). This yields

(2.9) ∥g(u0(x) + v(x))∥L2(R) ≤ M(∥u0∥H1(R) + 1).

Therefore, we arrive at

(2.10) ∥u(x)∥H1(R) ≤ ca∥T∥(∥u0∥H1(R) + 1)2∥K∥W 1,1(R)M.

By virtue of (1.17), we have ∥u(x)∥H1(R) ≤ ρ. Thus, the function u(x), which is
uniquely determined by (1.13) belongs to Bρ as well. This means that equation
(1.13) defines a map tg : Bρ → Bρ under the given conditions.

Let us establish that under the stated assumptions this map is a strict contraction.
We choose arbitrarily v1,2(x) ∈ Bρ. The argument above yields that u1,2 := tgv1,2 ∈
Bρ. By virtue of (1.13) we have

(2.11) u1(x) = [T (u0(x) + v1(x))]

∫ ∞

−∞
K(x− y)g(u0(y) + v1(y))dy,

(2.12) u2(x) = [T (u0(x) + v2(x))]

∫ ∞

−∞
K(x− y)g(u0(y) + v2(y))dy.

From (2.11) and (2.12) we easily deduce that

(2.13) u1(x)− u2(x) = [Tv1(x)− Tv2(x)]

∫ ∞

−∞
K(x− y)g(u0(y) + v1(y))dy+

+[T (u0(x) + v2(x))]

∫ ∞

−∞
K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy.

By means of (2.13) along with (1.7) we derive

∥u1(x)− u2(x)∥H1(R) ≤ ca∥Tv1(x)− Tv2(x)∥H1(R)×

×
∥∥∥ ∫ ∞

−∞
K(x− y)g(u0(y) + v1(y))dy

∥∥∥
H1(R)

+ ca∥T (u0(x) + v2(x))∥H1(R)×

(2.14) ×
∥∥∥ ∫ ∞

−∞
K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy

∥∥∥
H1(R)

.

Let us obtain the upper bound on the right side of (2.14). Obviously,

(2.15) ∥Tv1(x)− Tv2(x)∥H1(R) ≤ ∥T∥∥v1(x)− v2(x)∥H1(R).

Using inequality (1.8), we arrive at∥∥∥ ∫ ∞

−∞
K(x− y)g(u0(y) + v1(y))dy

∥∥∥
L2(R)

≤

(2.16) ≤ ∥K∥L1(R)∥g(u0(x) + v1(x))∥L2(R).
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By applying (1.9), we have∥∥∥ d

dx

∫ ∞

−∞
K(x− y)g(u0(y) + v1(y))dy

∥∥∥
L2(R)

≤

(2.17) ≤
∥∥∥dK
dx

∥∥∥
L1(R)

∥g(u0(x) + v1(x))∥L2(R).

Estimates from above (2.16) and (2.17) give us∥∥∥ ∫ ∞

−∞
K(x− y)g(u0(y) + v1(y))dy

∥∥∥
H1(R)

≤

(2.18) ≤ ∥K∥W 1,1(R)∥g(u0(x) + v1(x))∥L2(R).

Clearly,

(2.19) g(u0(x) + v1(x)) =

∫ u0(x)+v1(x)

0
g′(z)dz.

From (2.19) we easily deduce that

(2.20) |g(u0(x) + v1(x))| ≤ maxz∈I |g′(z)||u0(x) + v1(x)| ≤ M |u0(x) + v1(x)|,
such that

(2.21) ∥g(u0(x) + v1(x))∥L2(R) ≤ M(∥u0∥H1(R) + 1).

Therefore, the first term in the right side of inequality (2.14) can be bounded from
above by

(2.22) ca∥T∥∥v1(x)− v2(x)∥H1(R)∥K∥W 1,1(R)M(∥u0∥H1(R) + 1).

Hence, it remains to estimate the second term in the right side of (2.14). Evidently,

(2.23) ∥T (u0(x) + v2(x))∥H1(R) ≤ ∥T∥(∥u0∥H1(R) + 1).

By means of inequality (1.8), we easily derive∥∥∥ ∫ ∞

−∞
K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy

∥∥∥
L2(R)

≤

(2.24) ≤ ∥K∥L1(R)∥g(u0(x) + v1(x))− g(u0(x) + v2(x))∥L2(R).

Upper bound (1.9) yields∥∥∥ d

dx

∫ ∞

−∞
K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy

∥∥∥
L2(R)

≤

(2.25) ≤
∥∥∥dK
dx

∥∥∥
L1(R)

∥g(u0(x) + v1(x))− g(u0(x) + v2(x))∥L2(R).

Using (2.24) and (2.25), we arrive at∥∥∥ ∫ ∞

−∞
K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy

∥∥∥
H1(R)

≤

(2.26) ≤ ∥K∥W 1,1(R)∥g(u0(x) + v1(x))− g(u0(x) + v2(x))∥L2(R).
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We easily express

(2.27) g(u0(x) + v1(x))− g(u0(x) + v2(x)) =

∫ u0(x)+v1(x)

u0(x)+v2(x)
g′(z)dz.

Formula (2.27) gives us

|g(u0(x) + v1(x))− g(u0(x) + v2(x))| ≤ maxz∈I |g′(z)||v1(x)− v1(x)| ≤

(2.28) ≤ M |v1(x)− v1(x)|,
such that

(2.29) ∥g(u0(x) + v1(x))− g(u0(x) + v2(x))∥L2(R) ≤ M∥v1(x)− v2(x)∥H1(R).

Thus, the second term in the right side of inequality (2.14) can be estimated from
above by expression (2.22) as well. Hence, we obtain

∥u1(x)− u2(x)∥H1(R) ≤

(2.30) ≤ 2ca(∥u0∥H1(R) + 1)∥T∥M∥K∥W 1,1(R)∥v1(x)− v2(x)∥H1(R).

By virtue of (2.30) along with definition (1.18), we have

(2.31) ∥tgv1(x)− tgv2(x)∥H1(R) ≤ σ∥v1(x)− v2(x)∥H1(R).

It can be easily verified using (1.17) that the constant in the right side of inequality
above

(2.32) σ < 1.

This implies that our map tg : Bρ → Bρ defined by equation (1.13) is a strict
contraction under the given conditions. Its unique fixed point up(x) is the only
solution of problem (1.11) in the ball Bρ. The resulting u(x) given by (1.10) is a
solution of equation (1.1). □

Let us conclude the article by establishing our second main result.

3. The continuity of the resulting solution with respect to the
function g

Proof of Theorem 1.4. Obviously, under the stated assumptions, we have

(3.1) up,1 = tg1up,1, up,2 = tg2up,2.

Thus,

(3.2) up,1 − up,2 = tg1up,1 − tg1up,2 + tg1up,2 − tg2up,2.

Therefore,

(3.3) ∥up,1 − up,2∥H1(R) ≤ ∥tg1up,1 − tg1up,2∥H1(R) + ∥tg1up,2 − tg2up,2∥H1(R).

By means of estimate (2.31), we have

(3.4) ∥tg1up,1 − tg1up,2∥H1(R) ≤ σ∥up,1 − up,2∥H1(R)

with σ given by (1.18), such that (2.32) holds. Hence, we obtain

(3.5) (1− σ)∥up,1 − up,2∥H1(R) ≤ ∥tg1up,2 − tg2up,2∥H1(R).
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Evidently, for our fixed point tg2up,2 = up,2. We denote r(x) := tg1up,2 and arrive
at

(3.6) r(x) = [T (u0(x) + up,2(x))]

∫ ∞

−∞
K(x− y)g1(u0(y) + up,2(y))dy,

(3.7) up,2(x) = [T (u0(x) + up,2(x))]

∫ ∞

−∞
K(x− y)g2(u0(y) + up,2(y))dy.

Formulas (3.6) and (3.7) yield

r(x)− up,2(x) = [T (u0(x) + up,2(x))]×

(3.8) ×
∫ ∞

−∞
K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy.

By virtue of (1.7), we derive

∥r(x)− up,2(x)∥H1(R) ≤ ca∥T (u0(x) + up,2(x))∥H1(R)×

(3.9) ×
∥∥∥ ∫ ∞

−∞
K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy

∥∥∥
H1(R)

.

Clearly, we have the upper bound

(3.10) ∥T (u0(x) + up,2(x))∥H1(R) ≤ ∥T∥(∥u0∥H1(R) + 1).

By means of inequality (1.8),∥∥∥ ∫ ∞

−∞
K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy

∥∥∥
L2(R)

≤

(3.11) ≤ ∥K∥L1(R)∥g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))∥L2(R).

Similarly, (1.9) gives us∥∥∥ d

dx

∫ ∞

−∞
K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy

∥∥∥
L2(R)

≤

(3.12) ≤
∥∥∥dK
dx

∥∥∥
L1(R)

∥g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))∥L2(R).

Estimates (3.11) and (3.12) easily imply∥∥∥ ∫ ∞

−∞
K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy

∥∥∥
H1(R)

≤

(3.13) ≤ ∥K∥W 1,1(R)∥g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))∥L2(R).

Evidently,

(3.14) g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x)) =

=

∫ u0(x)+up,2(x)

0
[g′1(z)− g′2(z)]dz.

From (3.14) we deduce

|g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))| ≤
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≤ maxz∈I |g′1(z)− g′2(z)||u0(x) + up,2(x)| ≤

(3.15) ≤ ∥g1(z)− g2(z)∥C1(I)|u0(x) + up,2(x)|,
so that

∥g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))∥L2(R) ≤

(3.16) ≤ ∥g1(z)− g2(z)∥C1(I)(∥u0∥H1(R) + 1).

By virtue of upper bounds (3.9), (3.10), (3.13), (3.16) obtained above, we derive

∥r(x)− up,2(x)∥H1(R) ≤

(3.17) ≤ ca∥T∥(∥u0∥H1(R) + 1)2∥K∥W 1,1(R)∥g1(z)− g2(z)∥C1(I).

Inequalities (3.5) and (3.17) give us

∥up,1(x)− up,2(x)∥H1(R) ≤

(3.18) ≤ ca
1− σ

∥T∥(∥u0∥H1(R) + 1)2∥K∥W 1,1(R)∥g1(z)− g2(z)∥C1(I).

By means of (1.19) along with (3.18) and definition (1.18) estimate (1.20) holds. □
Remark 3.1. The results of the present work will be generalized to the higher
dimensions in the consecutive articles.
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