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2.1. Total variation. We refer to Secs. 3.1 and 3.2 of [4] for the following notation.
Let I ⊂ R be a bounded open interval, and N ∈ N+. A vector-valued summable

function u : I → RN+1 is said to be of bounded variation if its distributional
derivative Du is a finite RN+1-valued measure in I.

The total variation |Du|(I) of a function u ∈ BV(I,RN+1) is given by

|Du|(I) := sup
{∫

I
ϕ′(s) • u(s) ds | ϕ ∈ C∞

c (I,RN+1) , ‖ϕ‖∞ ≤ 1
}

and hence it does not depend on the choice of the representative in the equivalence
class of the functions that agree L1-a.e. in I with u, where L1 is the Lebesgue
measure in R.

A sequence {un} ⊂ BV(I,RN+1) converges to u ∈ BV(I,RN+1) weakly-∗ in BV
if un → u strongly in L1(I,RN+1) and supn |Dun|(I) < ∞. In this case, the lower
semicontinuity inequality holds:

|Du|(I) ≤ lim inf
n→∞

|Duh|(I) .

If in addition |Duh|(I) → |Du|(I), we say that {uh} strictly converges to u.
The weak-∗ compactness theorem yields that if {un} ⊂ BV(I,RN+1) converges

L1-a.e. on I to a function u, and if suph |Dun|(I) <∞, then u ∈ BV(I,RN+1) and
a subsequence of {un} weakly-∗ converges to u.

Let u ∈ BV(I,RN+1). Since each component of u is the difference of two mono-
tone functions, it turns out that u is continuous outside an at most countable set,
and that both the right and left limits u(s±) := limt→s± u(t) exist for every s ∈ I.
Also, u is an L∞ function that is differentiable L1-a.e. on I, with derivative u̇ in
L1(I,RN+1).

The total variation of u agrees with the essential variation VarRN+1(u), which is
equal to the pointwise variation of any good representative of u in its equivalence
class. A good (or precise) representative is e.g. given by choosing u(s) = (u(s+) +
u(s−))/2 at the discontinuity points. Letting u±(s) := u(s±) for every s ∈ I, both
the left- and right-continuous functions u± are good representatives.

If u ∈ BV(I,RN+1), the decomposition into the absolutely continuous, Jump, and
Cantor parts holds:

Du = Dau+DJu+DCu , |Du|(I) = |Dau|(I) + |DJu|(I) + |DCu|(I) .

More precisely, one splits Du = Dau + Dsu into the absolutely continuous and
singular parts w.r.t. Lebesgue measure L1. The Jump set Ju being the (at most
countable) set of discontinuity points of any good representative of u, and δs denot-
ing the unit Dirac mass at s ∈ I, one has:

Dau = u̇L1 , DJu =
∑
s∈Ju

[u(s+)− u(s−)] δs , DCu = Dsu (I \ Ju) .

Also, any u ∈ BV(I,RN+1) can be represented by u = ua + uJ + uC , where ua

is a Sobolev function in W 1,1(I,RN+1), uJ is a Jump function, and uC is a Cantor
function, so that

|Dau|(I) = |Dua|(I) , |DJu|(I) = |DuJ |(I) , |DCu|(I) = |DuC |(I) .
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Finally, we recall that if u, v ∈ BV(I) := BV(I,R), the product uv ∈ BV(I). In
the particular case in which the Jump sets coincide, Ju = Jv = J , the chain rule
formula (cf. [4, Sec. 3.10]) yields:

Da(uv) = (u̇v + uv̇)L1 , DC(uv) = uDCv + vDCu ,

DJ(uv) =
∑
s∈J

[u(s+)v(s+)− u(s−)v(s−)] δs

where we can choose any good representatives of u and v in the second equality.

2.2. Length. Consider a curve c in the Euclidean space RN+1 parameterized by
the continuous map c : [a, b] → RN+1, with components c(t) = (c1(t), . . . , cN+1(t)).
Any polygonal curve P inscribed in c, say P � c, is obtained by choosing a finite
partition D := {a = t0 < t1 < . . . < tm−1 < tm = b} of [a, b], say P = P (D), and
letting P : [a, b] → RN+1 such that P (ti) = c(ti) for i = 0, . . . ,m, and P (t) affine
on each interval Ii := [ti−1, ti]. We call meshP the maximum lenght of its edges.

The length L(c) of c is defined by

L(c) := sup{L(P ) | P � c}
and c is said to be rectifiable if L(c) < ∞. By uniform continuity, for each ε > 0
we can find δ > 0 such that meshP < ε if meshD < δ and P = P (D). As a
consequence, taking Pn = P (Dn), where {Dn} is any sequence of partitions of I
such that meshDn → 0, we get meshPn → 0 and hence the convergence L(Pn) →
L(c) of the length functional. Finally, the curve c is rectifiable if and only if c ∈
BV(I,RN+1), and in that case

L(c) = VarRN+1(c) = |Dc|(I) .

2.3. Total curvature. We call rotation k∗(P ) of a polygonal curve P in RN+1 the
sum of the exterior angles between consecutive segments. Milnor [20] defined total
curvature TC(c) of a curve c in RN+1 by

TC(c) := sup{k∗(P ) | P � c} .
Then TC(P ) = k∗(P ) for each polygonal P . Moreover, if a curve c has compact
support and finite total curvature, TC(c) < ∞, then it is a rectifiable curve, see
Example 2.4 below for a proof.

Assume now that a rectifiable curve c is parameterized by arc-length, so that
c = c(s), with s ∈ [0, L] = IL, where IL := (0, L) and L = L(c). If c is smooth

and regular, one has TC(c) =
∫ L
0 |k| ds, where k(s) := c̈(s) is the curvature vector.

More generally, since c is a Lipschitz function, by Rademacher’s theorem (cf. [4,

Thm. 2.14]) it is differentiable L1-a.e. in IL. Denoting by ḟ := d
dsf the derivative

w.r.t. arc-length parameter s, the tantrix t = ċ exists a.e., and actually t : IL →
RN+1 is a function of bounded variation. Since moreover t(s) ∈ SN for a.e. s, where
SN is the Gauss hyper-sphere

SN := {y ∈ RN+1 : |y| = 1}
we shall write t ∈ BV(IL, SN ). The essential variation VarSN (t) of t in SN differs
from VarRN+1(t), as its definition involves the geodesic distance dSN in SN instead
of the Euclidean distance in RN+1. Therefore, VarRN+1(t) ≤ VarSN (t), and equality
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holds if and only if t has a continuous representative. More precisely, by decompos-
ing t = ta + tJ + tC , one obtains:

(2.1) VarSN (t) =

∫ L

0
|ṫ| ds+

∑
s∈Jt

dSN (t(s+), t(s−)) + |DCt|(IL)

whereas in the formula for VarRN+1(t), that is equal to |Dt|(IL), one has to replace in
(2.1) the geodesic distance dSN (t(s+), t(s−)) with the Euclidean distance |t(s+)−
t(s−)| at each Jump point s ∈ Jt.

Notice moreover that the Cantor component DCt is non-trivial, in general.

Example 2.1. Let e.g. γ : I → R2, where I = (0, 1), denote the Cartesian curve

γ(t) := (t, u(t)) in R2 given by the graph of the primitive u(t) :=
∫ t
0 v(λ) dλ of the

classical Cantor-Vitali function v : I → R associated to the “middle thirds” Cantor
set. It turns out that t = (1 + v2)−1/2(1, v), whence t is a Cantor function, i.e.,
Dat = DJt = 0, and

Dt(I) = DCt(I) =

∫
I

1

(1 + v2)3/2
(−v, 1) dDCv .

The angle ω between the unit vectors (1, 0) and t satisfies ω = arctan v ∈ BV(I).
Therefore, Dω(I) = DCω(I) =

∫
I

1
1+v2

dDCv, which yields

|Dω|(I) =
∫
I

1

1 + v2
d|DCv| = |Dt|(I) = TC(γ) =

π

4
.

The following facts hold:

(1) if P and P ′ are inscribed polygonals and P ′ is obtained by adding a vertex
in c to the vertices of P , then k∗(P ) ≤ k∗(P ′) ;

(2) if c has finite total curvature, for each point v in c, small open arcs of c
with an end point equal to v have small total curvature.

As a consequence, compare [28], it turns out that TC(c) = VarSN (t), see (2.1),
and the total curvature of c is equal to the limit of k∗(Pn) for any sequence {Pn}
of polygonals in RN+1 inscribed in c such that meshPn → 0. More precisely, if tn
is the tantrix of Pn, then VarSN (tn) → VarSN (t).

Remark 2.2. For future use, we recall how equality

(2.2) TC(c) = VarSN (t) , t = ċ

is checked for rectifiable curves c in RN+1 with finite total curvature (and parameter-
ized in arc-length). In case N = 1, we apply a “planar” version of the Gauss-Bonnet
theorem, see Theorem 5.8 below.

Let Pn be an inscribed polygonal to the curve c : [0, L] → RN+1 and generated
by the consecutive vertices c(si), where 0 = s0 < s1 < · · · < sm = L, and call vi

the oriented segment of Pn from c(si−1) to c(si). If tn is the tantrix of Pn in SN ,
the value of tn in vi is an average of the values of the restriction of the tantrix t
of c to (si−1, si), when completed to a continuous curve in SN by connecting with
geodesic arcs the points t(s−) and t(s+) for each s ∈ Jt ∩ (si−1, si), in the sense of
Alexandrov-Reshetnyak [3]. This property implies that VarSN (th) ≤ VarSN (t). If
{Pn} is an inscribed sequence satisfying meshPn → 0, the weak BV convergence of
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tn to t implies the lower semicontinuity inequality VarSN (t) ≤ lim infnVarSN (tn),
yielding the strict convergence VarSN (tn) → VarSN (t). Using that VarSN (tn) →
TC(c), one gets (2.2).

When c is a planar curve, i.e., when N = 1, the value of tn ∈ S1 on the segment
vi is equal to one of the values of the “completion” in S1 of the restriction of the
tantrix t to the interval ]si−1, si[.

Actually, this property can be rewritten in terms of angle functions, and hence
of the “planar” version of the Gauss-Bonnet theorem 5.8.

2.4. Curvature force. The curvature force was introduced in [6] by J. M. Sullivan
and his collaborators as the distributional derivative of the tangent indicatrix of
rectifiable curves c in RN+1 with finite total curvature.

The curvature force TC∗(P ) of a polygonal is the total variation in RN+1 of the
tantrix tP :

TC∗(P ) := VarRN+1(tP ) .

In particular, if P � c, with the previous notation one has:

TC∗(P ) =

m−1∑
i=1

2 sin(θi/2)

where θi is the i-th turning angle. Defining the Euclidean total curvature, or cur-
vature force, of c by

TC∗(c) := sup{TC∗(P ) | P � c}
then c has finite curvature force if and only if it has finite total curvature. In
addition, compare [21], if a rectifiable curve c is parameterized in arc-length, and
t := ċ(s), s ∈ IL, we recover the definition by Sullivan [28]:

Proposition 2.3. If TC∗(c) < ∞, then t is a function of bounded variation in
BV(IL, SN ), and its total variation in RN+1 is equal to the curvature force, i.e.

|Dt|(IL) = VarRN+1(t) = TC∗(c) .

Notice that the curve c from Example 2.1 satisfies TC∗(c) = TC(c), compare [1].
Therefore, the occurrence of a Cantor-part in the derivative of the tantrix does not
change the computation when considering the total variation in S1 or in R2.

The curvature force comes into play when computing the first variation of length.
In fact, let c : [0, L] → RN+1 parameterized in arc length, and let cε a variation
of c under which the motion of each point c(s) is smooth in time and with initial
velocity ξ(s), where ξ : [0, L] → RN+1 is a Lipschitz continuous function of arc
length. The first variation formula gives

δξL(c) :=
d

dε
L(cε)|ε=0 =

∫ L

0
t(s) • ξ̇(s) ds

where t(s) = ċ(s) and ξ̇(s) are defined for a.e. s, by Rademacher’s theorem. If c is
of class C2, integrating by parts one gets

δξL(c) = −
∫ L

0
ṫ(s) • ξ(s) ds+

(
t(L) • ξ(L)− t(0) • ξ(0)

)
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where in terms of the (positive) first curvature k and first unit normal n(s) one has
ṫ(s) = k(s) n(s).

More generally, if c is a rectifiable curve with finite total curvature, then t is
a function of bounded variation, the right and left limits t(s±) ∈ SN−1 are well
defined for each s ∈]0, L[, and the distributional derivative Dt is a finite vector-
valued measure. Therefore, if in addition ξ(0) = ξ(L) = 0

δξL(c) =
∫ L

0
t(s) • ξ̇(s) ds = −〈Dt, ξ〉

whence the first variation δξL(c) of the length has distributional order one.
The measure K := Dt is called in [6] curvature force, and in the smooth case one

has K = k n ds. If c is a piecewise smooth function, one has the decomposition K =
Ka+Ks, where the absolutely continuous component Ka is equal to k n dL1 ]0, L[,
whereas the singular component Ks is given by a sum of Dirac masses concentrated
at the corner points of the curve c.

More precisely, if s ∈]0, L[ is such that t(s−) 6= t(s+), then K({c(s)}) = (t(s+)−
t(s−)) δc(s). Therefore, if θ ∈]0, π] is the shortest angle in the Gauss sphere SN be-
tween t(s±), so that dS2(t(s+), t(s−)) = θ, one has |K|({c(s)}) = ‖t(s+)− t(s−)‖ =
2 sin(θ/2).

2.5. Integral-geometric formulas. Several classical properties of curves in Eu-
clidean spaces can be proved in a somewhat cleaner way by exploiting suitable
integral-geometric formulas, that we now recall.

For 0 ≤ j ≤ N −1 integer, denote by Gj+1RN+1 the Grassmannian of unoriented
(j + 1)-planes in RN+1. It is a compact group, and it can be equipped with a unique
rotationally invariant probability measure µj+1. For p ∈ Gj+1RN+1, we denote by
πp the orthogonal projection of RN+1 onto p.

If c is a (rectifiable) curve in RN+1, the integral-geometric formula for the length
reads as

L(c) = σj
σN

·
∫
Gj+1RN+1

L(πp(c)) dµj+1(p)

where σj and σN are positive constants only depending on j and N , respectively,
see e.g. [3, Sec. 4.8].

Let us also recall the average result due to Fáry [13], who showed that the total
curvature of a curve (with finite total curvature) is the average of the total curvatures
of all its projections onto (j + 1)-planes:

TC(c) =

∫
Gj+1RN+1

TC(πp(c)) dµj+1(p) ∀j = 0, . . . , N − 1 .

Following [28, Prop. 4.1], it suffices to prove the average formula for an angle, hence
for the rotation k∗(P ) of a polygonal P , and then use the monotone convergence
theorem.

Example 2.4. We e.g. readily check that if a curve c in RN+1 has compact support
and finite total curvature, then c is a rectifiable curve. In fact, one has L(πp(c)) ≤
d (TC(πp(c)) + 1) for µ1-a.e. p ∈ G1RN+1, where d is the diameter of c. Therefore,
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the previous average formulas (with j = 0) yield

L(c) = σ0
σN

∫
G1RN+1

L(πp(c)) dµ1(p)

≤ σ0 d

σN

∫
G1RN+1

(TC(πp(c)) + 1) dµ1(p) =
σ0 d

σN
(TC(c) + 1) <∞ .

We now deal with polygonal curves in the sphere SN . Following [3], given x ∈ SN
we denote by ηp(x) the nearest point to x on the j-dimensional sphere Sjp := SN ∩p.
It is well-defined by

(2.3) ηp(x) :=
πp(x)

|πp(x)|

provided that x is not orthogonal to the (j + 1)-plane p, i.e., if x does not belong

to the (N − j − 1)-sphere Sjp
⊥

of SN given by the polar to Sjp. Therefore, if γ is a
polygonal curve in SN , it turns out that the projected curve ηp(γ) is well-defined
for µj+1-a.e. p ∈ Gj+1RN+1.

The geodesic rotation Kg(γ) of a polygonal curve γ in SN is given by the sum of
the turning angles at the edges of γ, see [3], so that clearly TC(γ) = LSN (γ)+Kg(γ).
The following integral-geometric formulas, that are proved in [3, Thm. 6.2.2, p. 190]
for j = 1, actually hold true for larger ranges of values of j.

Theorem 2.5. Given a polygonal curve γ in SN , for any integer 1 ≤ j ≤ N − 1
one has

LSN (γ) =

∫
Gj+1RN+1

LSjp
(ηp(γ)) dµj+1(p)

Kg(γ) =

∫
Gj+1RN+1

Kg(ηp(γ)) dµj+1(p) .

As a consequence, since TC(ηp(γ)) = LSjp
(ηp(γ)) +Kg(ηp(γ)), one gets:

TC(γ) =

∫
Gj+1RN+1

TC(ηp(γ)) dµj+1(p) .

The average formula concerning the length of spherical curves was proved in [3,
Thm. 4.8.3, p. 108].

Proposition 2.6. Given a rectifiable curve c in SN , for any integer 1 ≤ j ≤ N − 1
one has

L(c) =
∫
Gj+1RN+1

L(ηp(c)) dµj+1(p) .

In the sequel, we shall also consider polygonal curves in RPN , the real projective
space. It is given by the quotient RPN := SN/ ∼, the equivalence relation being
y ∼ ỹ ⇐⇒ y = ỹ or y = −ỹ. We denote by [y] an element of RPN , and by
Π : SN → RPN the canonical projection Π(y) := [y]. Recall that RPN is a complete
metric space, when equipped with the induced metric

dRP2([y], [ỹ]) := min{dSN (y, ỹ), dSN (y,−ỹ)} .
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Now, denote by RPj
p the projective j-space corresponding to the j-sphere Sjp, for

any p ∈ Gj+1RN+1, and let η̃p denote the nearest point projection of RPN onto

RPj
p, i.e., η̃p([x]) := [ηp(x)], for x ∈ SN \ Sjp

⊥
, where ηp is given by (2.3). Following

the proof of Theorem 2.5 from [23], one similarly obtains:

Proposition 2.7. Given a polygonal curve γ in RPN , for any integer 1 ≤ j ≤ N−1
we have

LRPN (γ) =

∫
Gj+1RN+1

LRPj
p
(η̃p(γ)) dµj+1(p)

Kg(γ) =

∫
Gj+1RN+1

Kg(η̃p(γ)) dµj+1(p)

and hence

TC(γ) =

∫
Gj+1RN+1

TC(η̃p(γ)) dµj+1(p) .

2.6. Curves into Riemannian surfaces. Let now M be a smooth (of class C3),
closed, and compact immersed surface in RN+1, with N ≥ 2.

If c is a smooth and regular curve in M, parameterized by arc-length, the unit
tangent vector t(s) := ċ(s) satisfies ṫ • t ≡ 0, whence the curvature vector k(s) :=
ṫ(s) is orthogonal to t(s), and decomposes as

k(s) = Kg(s)u(s) + Kn(s)n(s) .

When N = 2, the triad (t,n,u), where n(s) := ν(c(s)), ν(p) being the unit
normal to the tangent 2-space TpM in R3, and u(s) := n(s) × t(s) is the unit
conormal, is called the Darboux frame along c, whereas Kg := k•u and Kn := k•n
are called the geodesic and normal curvature of c, respectively. The Frenet-Serret
formulas in R3, see (3.4), yield to the Darboux system:

(2.4) ṫ = Kgu+ Knn , ṅ = −Knt− Tgu , u̇ = −Kgt+ Tgn

where Tg := ṅ• (t×n) is the geodesic torsion of the curve. If c is a geodesic on M,
we have Kg ≡ 0, whence the Darboux frame agrees (up to the sign) with the Frenet
frame, and the conormal u with the bi-normal vector. In particular, the normal
curvature Kn and the geodesic torsion Tg are equal (up to the sign) to the scalar
curvature and to the torsion of c in R3, respectively.

If N ≥ 3, the unit conormal u : [0, L] → SN is obtained through a positive
rotation of t on the tangent space TcM along c, so that t•u ≡ 0, and n : [0, L] → SN
is a smooth normal unit vector field (a section of the normal bundle of M). Finally,
the projection Kgu of k onto the tangent bundle is an intrinsic object.

Let X denote a tangent vector field along the smooth curve c in M, so that
X : [0, L] → RN+1 satiisfies X(s) ∈ Tc(s)M for each s. Then, X is a parallel

transport along c if Ẋ(s) ⊥ Tc(s)M for each s. Since d
ds |X(s)|2 = 2X(s) • Ẋ(s) = 0,

a parallel transport preserves the length of the initial tangent vector X(0). We shall
then assume |X(0)| = 1, so that |X(s)| = 1 for each s.

It is well-known that the geodesic curvature of c satisfies

(2.5) Kg(s) = Θ̇(s) ∀ s ∈ [0, L]
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where Θ(s) is the oriented angle from the parallel transport X(s) to the tangent
vector t(s) to c, so that

(2.6) X(s) = cosΘ(s) t(s)− sinΘ(s)u(s) , s ∈ [0, L]

compare e.g. [26, 13.6.1] for a proof. We thus get the formula for the total intrinsic
curvature of c, namely:

(2.7) TCM(c) =

∫ L

0
|Kg(s)| ds =

∫ L

0
|Θ̇(s)| ds

compare e.g. [7]. In particular, when N = 2 and X(s) • t(s) 6= 0, by (2.6) one gets

(2.8) tanΘ(s) = −X(s) • u(s)
X(s) • t(s)

.

The parallel transport (2.6) is a well-defined smooth vector field for each regular
and piecewise smooth curve c, once the initial position X(0) is prescribed. More-
over, the angle Θ is a function of bounded variation, with a finite number of Jump
points in correspondence to the values {si | i = 1, . . .m} of the arc-length parameter
s ∈ IL where c(s) fails to be smooth, the corner points c(si) of c. More precisely, Θ
is a special function of bounded variation in SBV(IL), i.e., D

CΘ = 0, and its distri-

butional derivative decomposes as DΘ = Θ̇L1+DJΘ . The derivative Θ̇ agrees with
the geodesic curvature Kg outside the corner points of c, and the Jump component
DJΘ is a sum of Dirac masses centered at the related points si, with weight given
by the oriented turning angles αi between the incoming and outcoming unit tangent
vectors at each corner point of c, i.e.

DΘ = Kg L1 +
n∑

i=1

αi δsi , |DΘ|(IL) =
∫ L

0
|Kg| ds+

n∑
i=1

|αi|

If N = 2, since the Darboux formulas (2.4) hold true outside the points si, by
the smoothness of X

Ẋ = − sinΘ Θ̇ t− cosΘ Θ̇u+ cosΘ ṫ− sinΘ u̇

and the parallel transport of piecewise smooth curves satisfies, for s 6= si,

Ẋ = (cosΘKn − sinΘTg)n .

If N ≥ 3, on account of (2.6), by decomposing the derivative

u̇ = (u̇ • t) t+ u̇⊥

of the unit conormal into the tangential and normal component to M, and recalling
that u̇ • t = −t • u = −Θ̇, the parallel transport of (piecewise) smooth curves this
time satisfies

Ẋ = cosΘKn n− sinΘ u̇⊥ ,

where u̇⊥ = u̇ when c is a geodesic arc.

Example 2.8. If M = S2, the unit sphere in R3, taking polar coordinates

r(θ, ϕ)T = (sin θ cosϕ, sin θ sinϕ, cos θ) , θ ∈ [0, π] , ϕ ∈ [0, 2π]

a smooth spherical curve c can be parameterized by c(s) = r(θ(s), ϕ(s))T for
suitable angle functions θ(s) and ϕ(s). In terms of the usual frame eθ, eφ, and
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n(θ, ϕ) = eθ × eφ, the outward unit normal, and letting v(s) := v(θ(s), ϕ(s)), for
v = eθ, eφ, or n, we thus have for any s ∈ [0, L]

(2.9)
t(s) := ċ(s) = θ̇(s) eθ(s) + sin θ(s) ϕ̇(s) eφ(s) ,

θ̇(s)2 + sin2 θ(s) ϕ̇(s)2 = 1 .

Taking a tangent vector field X along c, say X(s) := α(s) eθ(s)+ β(s) eφ(s), where
s ∈ [0, L], the condition for a parallel transport turns out to be equivalent to the
first order system for the unknown coefficients:

(2.10)

{
α̇(s) = cos θ(s) ϕ̇(s)β(s)

β̇(s) = − cos θ(s) ϕ̇(s)α(s)
s ∈ [0, L]

which has a unique solution for any given initial position X(0) ∈ Tc(0)S2.
On account of (2.8), and since by (2.9) the unit conormal along c is

(2.11) u(s) := n(s)× t(s) = − sin θ(s) ϕ̇(s) eθ(s) + θ̇(s) eφ(s)

one then computes

Θ̇ = sin θ (ϕ̈ θ̇ − θ̈ ϕ̇) + cos θ ϕ̇ (sin2 θ ϕ̇2 + 2θ̇2) .

On the other hand, recalling formula (2.9), the curvature vector of c is

(2.12) k = ṫ = (θ̈ − sin θ cos θ ϕ̇2) eθ + (2 cos θ θ̇ ϕ̇+ sin θ ϕ̈) eφ − n

and hence by (2.11) the geodesic curvature becomes

(2.13) Kg = k • u = sin θ (ϕ̈ θ̇ − θ̈ ϕ̇) + cos θ ϕ̇ (sin2 θ ϕ̇2 + 2θ̇2)

where (sin2 θ ϕ̇2 + 2θ̇2) = (1 + θ̇2), so that one recovers equation (2.5).

Example 2.9. If c = cθ0 is the parallel with constant co-latitude θ0 ∈]0, π/2], we
choose θ(s) ≡ θ0 and ϕ(s) = s/ sin θ0, where s ∈ [0, L], with L := L(cθ0) = 2π sin θ0.
By (2.9) and (2.11), one has

t(s) = eφ(θ0, s/ sin θ0) , u(s) = −eθ(θ0, s/ sin θ0) ∀ s

and by solving the system (2.10) as above, on account of (2.12) and (2.13) one
obtains

Θ(s) = cot θ0 · s , Kg = Θ̇ ≡ cot θ0 ∀ s .
Therefore, according to (2.7) one recovers for any θ0 ∈]0, π/2] the formula

TCS2(cθ0) =

∫ 2π sin θ0

0
|Θ̇(s)| ds = 2π cos θ0

for the total intrinsic curvature of the parallel, compare e.g. [7]. In particular,
TCS2(cθ0) is equal to zero when θ0 = π/2, i.e., when cθ0 is a great circle, whence a
geodesic in S2.

3. Weak binormal and total absolute torsion

In this section, we collect our results from [22] concerning irregular curves in the
Euclidean space R3.
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3.1. Total absolute torsion of polygonal curves. Assume now N = 2, and let
P a polygonal curve in R3 with consecutive vertices vi, i = 0, . . . ,m, where m ≥ 3
and P is not closed, i.e., v0 6= vm. Without loss of generality, we assume that
every oriented segment σi := [vi−1, vi] has positive length L(σi) := ‖vi − vi−1‖, for
i = 1, . . . ,m, and that two consecutive segments are never aligned, i.e., the vector
product σi×σi+1 6= 0R3 for each i = 1, . . . ,m− 1. If the vector product σi×σi+1 is
null, we replace σi+1 with the oriented segment [vi, vj+1], where j is the first index
greater than i such that σj × σj+1 6= 0R3 . If σj × σj+1 = 0R3 for each j > i, we set
bi = bi−1 in (3.1) below.

In the definition by M. A. Penna [25], the discrete unit binormal is the unit vector
given at each interior vertex vi of P by the formula:

(3.1) bi :=
σi × σi+1

‖σi × σi+1‖
, i = 1, . . . ,m− 1 .

The torsion of P is a function τ (σi) of the interior oriented segments σi defined as
follows. Let i = 2, . . . ,m− 1. If the three segments σi−1, σi, σi+1 are coplanar, i.e.,
if bi−1 × bi = 0R3 , one sets τ (σi) = 0. Otherwise,

τ (σi) :=
θi

L(σi)

where θi denotes the angle between −π/2 and π/2 whose magnitude is the undi-
rected angle between the binormals bi−1 and bi, and whose sign is equal to the sign
of the scalar product between the linearly independent vectors bi−1 × bi and σi.
Penna then defined the total torsion of P through the sum:

m−1∑
i=2

τ (σi) · L(σi) =
m−1∑
i=2

θi .

In a similar way, we define the total absolute torsion of P by:

TAT(P ) :=
m−1∑
i=2

|τ (σi)| · L(σi) =
m−1∑
i=2

|θi| .

We thus consider angles between unoriented osculating planes. In fact, it may
happen that the planes span (σi−1, σi) and span (σi, σi+1) are almost parallel, but
the directed angle between the binormal vectors bi and bi+1 is equal to π − ε for
ε > 0 small. However, one gets |θi| = ε, since in general

|θi| = min{arccos(bi−1 • bi), arccos(−bi−1 • bi)} ∈ [0, π/2] .

Notice that the total absolute torsion of P can be equivalently defined through
the formula:

TAT(P ) :=

m−1∑
i=2

θ̃i

where θ̃i ∈ [0, π/2] is the shortest angle in S2 between the unoriented geodesic
arcs γi−1 and γi meeting at the edge ti of tP . Therefore, any reasonable notion of
binormal (for non-smooth curves) naturally lives in the projective plane RP2.
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3.2. Binormal indicatrix of polygonal curves. Approaching the matter from
another viewpoint, W. Fenchel [14] in the 1950’s exploited the spherical polarity
of the tangent and binormal indicatrix in order to analyze differential geometric
properties of smooth curves in R3. In his survey, Fenchel proposed a general method
that gathers several results on curves in a unified scheme. We point out that Fenchel
deals with C4 rectifiable curves (parameterized by arc-length) such that at each
point it is well-defined the osculating plane, that is, a plane containing the linearly
independent vectors t := ċ and c̈, such that its suitably oriented normal unit vector
b, the binormal vector, is of class C2, and the two vectors ṫ and ḃ never vanish
simultaneously. He then defines the principal normal by the vector product

(3.2) n := b× t .

Since the derivatives of t and b are perpendicular to both t and b, the curvature k
and torsion τ are well-defined through the formulas:

ṫ = k n , ḃ = −τ n .

As a consequence, one has

ṅ = −k t+ τ b

and hence the Frenet-Serret formulas hold true, but Fenchel allows both curvature
and torsion to be zero or negative. Related arguments have been treated in [5, 11,
12, 19, 29].

By melting together the approaches due to Penna and Fenchel, we define binormal
indicatrix bP of a polygonal P in R3 as the arc-length parameterization bP of the
polar in RP2 of the tangent indicatrix tP .

For this purpose, we recall that the support of tP is the union of m− 1 geodesic
arcs γi, where γi has initial point ti and end point ti+1, for i = 1, . . . ,m−1. Since we
assumed that consecutive segments of P are never aligned, each arc γi is non-trivial
and well-defined. Then, the discrete unit binormal bi ∈ S2 from definition (3.1) is
the “north pole” corresponding to the great circle passing through γi and with the
same orientation as γi.

For any i = 2, . . . ,m − 1, we denote by Γi the geodesic arc in RP2 with initial
point [bi−1] and end point [bi]. Then Γi is degenerate when bi−1 = ±bi, i.e., when
the three segments σi−1, σi, σi+1 are coplanar. We thus have LRP2(Γi) = θ̃i = |θi|
for each i, and hence

m−1∑
i=2

LRP2(Γi) = TAT(P ) .

Also, for i < m− 2 the end point of Γi is equal to the initial point of Γi+1. Finally,
if TAT(P ) = 0, i.e., if the polygonal P is coplanar, all the arcs Γi degenerate to a
point [b] ∈ RP2, which actually identifies the binormal to P .

Definition 3.1. Polar of the tangent indicatrix tP is the oriented curve in RP2

obtained by connecting the consecutive geodesic arcs Γi, for i = 2, . . . ,m− 1.

The polar of tP connects by geodesic arcs in RP2 the consecutive discrete binor-
mals [bi] of the polygonal P , and its length is equal to the total absolute torsion
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Figure 1. An example of a polygonal curve with tangent indicatrix
moving as in the left figure. The weak binormal indicatrix moves
as in the right figure. Since the weak binormal indicatrix lives in
the projective space RP2, in the figure we have drawn one of its two
possible liftings into S2.

TAT(P ) of P . In particular, it is a rectifiable curve. This property allows us to
introduce a suitable weak notion of binormal.

Definition 3.2. We denote binormal indicatrix of the polygonal P the arc-length
parameterization bP of the polar in RP2 of the tangent indicatrix tP (see Figure 1).

We thus have bP : [0, T ] → RP2, where T := LRP2(bP ) = TAT(P ). Moreover,

bP is Lipschitz-continuous and piecewise smooth, with |ḃP | = 1 everywhere except
to a finite number of points. Therefore, the total absolute torsion TAT(P ) of P is
equal to the length of the curve bP . We remark that a similar definition has been
introduced by T. F. Banchoff in his paper [5] on space polygons.

However, differently from what happens for length and total curvature, the mono-
tonicity formula fails to hold. More precisely, if P ′ is a polygonal inscribed in P ,
by the triangular inequality we have L(P ′) ≤ L(P ) and TC(P ′) ≤ TC(P ), compare
e.g. [28, Cor. 2.2], but it may happen that TAT(P ′) > TAT(P ). This is due to the
fact that the total absolute torsion of a polygonal P can be computed as the sum
of min{θi, π− θi}, where θi is the turning angle of the tantrix tP at the i-th vertex.

Example 3.3. The polygonal P is made of six segments σi, for i = 1, . . . , 6, where
the first three ones and the last three ones lay on two different planes Π1 and
Π2. Then the tantrix tP connects with geodesic arcs in S2 the consecutive points
vi := σi/L(σi), for i = 1, . . . , 6, where the triplets v1, v2, v3 and v4, v5, v6 lay on two
geodesic arcs, which are inscribed in the great circles corresponding to the vector
spaces spanning the planes Π1 and Π2, respectively. If both the angles α and β of
tP at the points v3 and v4 are small, then TAT(P ) = α+ β.

Let P ′ be the inscribed polygonal obtained by replacing the segments σ3 and σ4
of P with the segment σ between the first point of σ3 and the last point of σ4.
The tantrix tP ′ connects with geodesic arcs the consecutive points v1, v2, w, v5, v6,
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Figure 2. The tantrix of the polygonal P , in blue color, and of the
inscribed polygonal P ′, in red color. The drawing is courtesy offered
by the young artist Sofia Saracco.

where the point w lays in the minimal geodesic arc between v3 and v4. Now, assume
that the turning angle ε of tP ′ at the point v5 satisfies α < ε < π/2, and that the
two geodesic triangles with vertices v2, v3, w and w, v4, v5 have the same area. By
suitably choosing the position of the involved vertices, and by using Gauss-Bonnet
theorem in the computation, it turns out that TAT(P ′)− TAT(P ) = 2(ε− α) > 0,
see Figure 2.

3.3. Total absolute torsion and weak binormal. For the above reasons, the
total absolute torsion TAT(c) of a curve c in R3 is defined by following the ap-
proach due to Alexandrov-Reshetnyak [3], that involves the notion ofmodulus µc(P ),
namely:

TAT(c) := lim
ε→0+

sup{TAT(P ) | P � c , µc(P ) < ε} .

The modulus µc(P ) of a polygonal P inscribed in c is the maximum of the
diameter of the arcs of c determined by the consecutive vertices in P . Notice that if
c is a polygonal curve itself, there exists ε > 0 such that any polygonal P inscribed
in c and with modulus µc(P ) < ε satisfies tP = tc, whence bP = bc and definitely
we get TAT(P ) = TAT(c). It suffices indeed to take ε lower than half of the mesh
of the polygonal c, so that in every segment of c there are at least two vertices of
P .

Therefore, if TAT(c) <∞, for any sequence {Ph} of polygonal curves inscribed in
c and satisfying µc(Ph) → 0, one has suphTAT(Ph) <∞, and one can also find an
optimal sequence as above in such a way that TAT(Ph) → TAT(c). The following
result is proved in [22].

Theorem 3.4. Let c be a rectifiable curve in R3 with finite total curvature TC(c)
and finite (and non-zero) total absolute torsion T := TAT(c). Then, there exists a
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rectifiable curve bc : [0, T ] → RP2 parameterized by arc-length, so that

(3.3) LRP2(bc) = TAT(c)

holds, satisfying the following property. For any sequence {Pn} of inscribed polyg-
onal curves, let bn : [0, T ] → RP2 denote for each h the parameterization with
constant velocity of the binormal indicatrix bPn of Pn. If µc(Pn) → 0, then bn → bc
uniformly on [0, T ] and LRP2(bn) → LRP2(bc).

Our weak binormal bc only depends on the curve c. Recalling that LRP2(bh) =
TAT(Ph), we indeed obtain:

Proposition 3.5. Let c be a rectifiable curve in R3 with both finite total curvature
TC(c) and total absolute torsion TAT(c). Then for any sequence {Pn} of inscribed
polygonal curves such that µc(Pn) → 0, one has TAT(Pn) → TAT(c).

3.4. Relationship with the smooth binormal. Let now c be a smooth regular
curve in R3 defined through arc-length parameterization. Assuming c̈ 6= 0 every-
where, and letting t := ċ, n := ṫ/|ṫ|, k := |ṫ|, b := t × n, the classical Frenet-Serret
formulas for the spherical frame (t, n, b) of c give:

(3.4) ṫ = k n , ṅ = −k t+ τ b , ḃ = −τ n

where k is the (positive) curvature and τ the torsion of the curve.

Remark 3.6. Notice that a rectifiable curve may have unbounded total curvature
but zero torsion (just consider a planar curve). Conversely, by taking s ∈ [0, 1] and
letting k(s) ≡ 1 and τ (s) = (1 − s)−1, solutions to the Frenet-Serret system (3.4)
are rectifiable curves c such that

∫
c k ds = 1 but

∫
c |τ | ds = +∞.

For smooth curves, the total absolute torsion, which agrees with the length of
the smooth binormal curve b in the Gauss sphere S2, actually agrees with the total
geodesic curvature of the smooth tantrix t in S2. In fact, on account of the density
result from [25, Prop. 4], by Proposition 3.5 one readily obtains

(3.5) TAT(c) =

∫
c
|τ | ds .

As the following example shows, the (absolute value of the) torsion may be seen as
the curvature of the tantrix, when computed in the sense of the spherical geometry.

Example 3.7. Given R > 0 and K ≥ 0, we let c : [−L/2, L/2] → R3 denote the
helicoidal curve

c(s) := (R cos(s/v), R sin(s/v),Ks/(2πv)) , s ∈ [−L/2, L/2]

where we denote v := (R2 + (K/2π)2)1/2 and choose L := 2πv, so that |ċ| ≡ 1 and
the length L(c) = L. Moreover, c(±L/2) = (±R, 0,±K/2), and c(0) = (R, 0, 0).
We thus have

t(s) = v−1(−R sin(s/v), R cos(s/v),K/2π)
n(s) = (− cos(s/v),− sin(s/v), 0)
b(s) = v−1((K/2π) sin(s/v),−(K/2π) cos(s/v), R)
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so that both curvature and torsion are constant, k ≡ Rv−2, τ ≡ v−2(K/2π). There-
fore, the integral of the curvature and of the torsion of c are:∫

c
k ds = L · k =

2πR

v
,

∫
c
|τ | ds = L · τ =

K

v
, v := (R2 + (K/2π)2)1/2.

We can compute the spherical curvature kS2(t) of the tantrix t, a closed curve
embedded in the Gauss sphere S2 and parameterizing (when K > 0) a small circle
whose radius depends on R and K. To this aim, we first consider a sequence of
(strongly converging) polygonal curves {tn} in S2 inscribed in the tantrix t. Namely,
for each n ∈ N+ we let tn(i) := t(si), where si = (L/n)i and i ∈ Z ∩ [−n, n],
and consider the closed spherical polygonal generated by the consecutive points
tn(i) ∈ S2. The total curvature of tn is equal to the sum of the width in S2 of the
angles between consecutive segments. The turning angle in S2 of two consecutive
geodesic segments tn(i − 1)tn(i) and tn(i)tn(i + 1), agrees with the angle between
the two planes in R3 spanned by 0R3 and the end points of the above segments, i.e.,
between the normals tn(i− 1)× tn(i) and tn(i)× tn(i+ 1). By symmetry, such an
angle θn does not depend on the choice of i. The total spherical curvature of the
polygonal being equal to n · θn, one obtains:

lim
n→∞

n · θn =
K

v
.

Here, we have considered a sequence {tn} of polygonal curves in S2 inscribed
in the tantrix t of c and converging to t in the sense of the Hausdorff distance. In
general, each tn is not the tangent indicatrix of a polygonal inscribed in c. However,
the total spherical curvature n · θn of tn clearly agrees with the length in RP2 of the
polar of tn, which is constructed as above, see Definition 3.1.

Now, one may similarly consider a sequence {Pn} of polygonals inscribed in c,
each one made of n segments with the same length, so that meshPn → 0. The
total absolute torsion TAT(Pn) of Pn agrees with the length in RP2 of the binormal
indicatrix bPn , see Definition 3.2. One can similarly show that LRP2(bPn) → K/v
as n → ∞, in accordance with the formula in (3.5). By uniform convergence, we
have thus obtained the total curvature of t in S2. In conclusion, we have:∫

t
kS2(t) ds =

K

v
=

∫
c
|τ | ds .

We now see that the binormal b(s) of c agrees with the value of a suitable lifting
of the weak binormal bc in S2, when computed at the expected point.

Theorem 3.8. In the latter smoothness hypotheses, for each s ∈]0, L[ there exists
t(s) ∈ [0, T ] such that

b(s) = b̃c(t(s))

for a unique lifting b̃c of bc in S2. Moreover, t(s) is equal to the total absolute
torsion TAT(c|[0,s]) of the curve c|[0,s] : [0, s] → R3. In particular, we have:

(3.6) t(s) =

∫ s

0
|τ (λ)| dλ ∀ s ∈ [0, L] .
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Notice that if in particular the torsion τ of c (almost) never vanishes, the function
t(s) : [0, L] → [0, T ] in equation (3.6) is strictly increasing, and its inverse s(t) :
[0, T ] → [0, L] gives

b̃c(t) = b(s(t)) ∀ t ∈ [0, T ] , T = TAT(c) .

Therefore, in this case, the weak binormal bc in RP2, when suitably lifted to S2,
agrees with the arc-length parameterization of the binormal b of c.

Remark 3.9. The hypothesis TC(c) <∞ in Theorem 3.4 may sound a bit unnat-
ural, and actually a technical point, since it allows us to prove that bc has constant
velocity one, so that (3.3) holds true.

To this purpose, we recall that the definition of complete torsion CT(P ) of polyg-
onals P given by Alexandrov-Reshetnyak [3], who essentially take the distance in S2
between consecutive discrete binormals, implies that planar polygonals may have
positive torsion at “inflections points”. Defining the complete torsion CT(c) of
curves c in R3 as the supremum of the complete torsion of the inscribed polygonals,
they obtain in [3, p. 244] that any curve with finite complete torsion and with no
points of return must have finite total curvature.

With our definition of torsion, the above implication clearly fails to hold, see
Remark 3.6. On the other hand, equality (3.5) is violated if one considers the
complete torsion from [3], since for a smooth planar curve with inflection points,
one has CT(c) > 0.

We finally notice that a curve with finite total curvature and total absolute torsion
may have infinite complete torsion in the sense of [3]: just take a smooth planar
curve with a countable set of inflection points.

3.5. Complete tangent indicatrix. Similar features concerning the tantrix hold.
Our curve tc is strictly related with the complete tangent indicatrix in the sense of
Alexandrov-Reshetnyak [3].

Proposition 3.10. Let c be a rectifiable curve in R3 with finite total curvature
C := TC(c) and with no points of return. Then, there exists a rectifiable curve
tc : [0, C] → S2, parameterized by arc-length, so that LS2(tc) = TC(c), satisfying
the following property. For any sequence {Pn} of inscribed polygonal curves such
that meshPn → 0, denoting by tn : [0, C] → S2 the parameterization with constant
velocity of the tangent indicatrix tPn of Pn, then tn → tc uniformly on [0, C] and
LS2(tn) → LS2(tc).

If c has points of return, i.e., if e.g. for some s ∈]0, L[ we have t(s−) = −t(s+), the
curve tc is uniquely determined up to the choice of the geodesic arc in S2 connecting
t(s−) and t(s+). In the smooth case, we also have:

Proposition 3.11. Let c : [0, L] → R3 be a curve of class C2 parameterized in
arc-length, so that L = L(c), and let tc : [0, C] → S2 the rectifiable curve in S2
defined in Proposition 3.10, so that C = TC(c). Then, for each s ∈]0, L[ there
exists k(s) ∈ [0, C] such that the tangent indicatrix t := ċ satisfies

t(s) = tc(k(s)) .
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Moreover, k(s) is equal to the total curvature TC(c|[0,s]) of the curve c|[0,s] : [0, s] →
R3, whence:

(3.7) k(s) =

∫ s

0
k(λ) dλ ∀ s ∈ [0, L]

where k(λ) := ‖c̈(λ)‖ is the curvature of c at the point c(λ).

As before, if the curvature k of c (almost) never vanishes, the function k(s) :
[0, L] → [0, C] in equation (3.7) is strictly increasing, and its inverse s(k) : [0, C] →
[0, L] gives

tc(k) = t(s(k)) ∀ k ∈ [0, C] , C = TC(c) .

3.6. Weak principal normal. When looking for a possible weak notion of prin-
cipal normal, a drawback appears. In fact, in Penna’s approach [25], the curvature
of an open polygonal P is a non-negative measure µP concentrated at the interior
vertices, whereas the torsion is a signed measure νP concentrated at the interior
segments. Since these two measures are mutually singular, in principle there is no
way to extend Fenchel’s formula (3.2) in order to define the principal normal.

To overcome this problem, we proceed as follows. Firstly, for a polygonal P

we choose two suitable curves t̃P , b̃P : [0, C + T ] → RP2, where C = TC(P ) and
T = TAT(P ), that on one side inherit the properties of the tangent and binormal
indicatrix tP and bP , respectively, and on the other side take account of the order
in which curvature and torsion are defined along P . More precisely, one of the two
curves is constant when the other one parameterizes a geodesic arc, whose length
is equal to the curvature or to the (absolute value of the) torsion at one vertex or
segment of P , respectively. As in Fenchel’s approach, by exploiting the polarity of

the curves t̃P and b̃P , the weak normal of the polygonal is well-defined by the inner
product

nP (s) := b̃P (s)× t̃P (s) ∈ RP2 , s ∈ [0, T + C]

see Figure 3. Notice that by our definition we have:

LRP2(nP ) = TC(P ) + TAT(P ) .

As a consequence, using again an approximation procedure, the weak principal
normal of a rectifiable curve c with finite total curvature and finite complete torsion
is well-defined as a rectifiable curve nc in RP2. We recall that condition CT(c) <∞
is stronger than the more natural assumption TAT(c) <∞. Moreover, it turns out
that the product formula (3.2) continues to hold in a suitable sense, and we also
have:

LRP2(nc) = TC(c) + TAT(c) .

In particular, for smooth curves whose curvature (almost) never vanishes, the
principal normal n agrees with a lifting of a suitable parameterization of the weak
normal nc. More precisely, we obtain:

[n(s(t))] = nc(t) ∈ RP2 ∀ t ∈ [0,TC(c) + TAT(c)]

where s(t) is the inverse of the increasing and bijective function

t(s) :=

∫ s

0
(k(λ) + |τ (λ)|) dλ , s ∈ [0,L(c)] .
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Figure 3. The weak normal indicatrix of the curve whose tangent
and binormal indicatrix are those in Figure 1 of page 567. Again,
for the sake of the illustration we consider one of the two liftings of
the normal indicatrix into the sphere S2.

3.7. Spherical indicatrices of smooth curves. The trihedral (t, n, b) is well-
defined everywhere in case of regular curves γ in R3 of class C2 such that γ′(t) and
γ′′(t) are always independent vectors, and the Frenet-Serret formulas (3.4) hold true
if in addition γ is of class C3. On the other hand, Fenchel in [14] used a geometric
approach in order to define (under weaker hypotheses on the curve) the osculating
plane. He chooses the binormal b as a smooth function. Therefore, the principal
normal is the smooth function given by n = b × t. The Frenet-Serret formulas
continue to hold, but this time the curvature may vanish and even be negative. He
also calls k-inflection or τ -inflection a point of the curve where the curvature or the
torsion changes sign, respectively.

Assume now that γ : [a, b] → R3 satisfies the following properties:

(1) γ is differentiable at each t ∈ [a, b] and γ′(t) 6= 0R3 , i.e., γ is a regular curve;
(2) for each t0 ∈]a, b[, the function γ is of class Cn in a neighborhood of t0, for

some n ≥ 2, and γ(n)(t0) 6= 0R3 , but γ(k)(t0) = 0R3 for 2 ≤ k ≤ n − 1, if
n ≥ 3.

In that case, denoting as above by c(s) the arc-length parameterization of the
curve γ, it turns out that the Frenet-Serret frame (t, b, n) is well-defined for each
s0 ∈ [0, L] by:

(3.8)
t(s0) := ċ(s0) , b(s0) :=

ċ(s0)× c(n)(s0)

‖c(n)(s0)‖
,

n(s0) := b(s0)× t(s0) =
c(n)(s0)

‖c(n)(s0)‖
where s0 = s(t0) and n ≥ 2 as above. Furthermore, c̈(s0) = 0R3 at a finite or
countable set of points, and if c̈(s0) 6= 0R3 , then n(s0) = c̈(s0)/‖c̈(s0)‖. Finally, [b]
and [n] are continuous functions with values in RP2.
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If in addition we assume that γ is of class C3, it turns out that the Frenet-Serret
formulas (3.4) hold true outside the at most countable set of inflection points. In
fact, c̈(s) = 0R3 only at isolated points s ∈ [0, L].

Example 3.12. Let c : [−1, 1] → R3 be a regular curve with derivative

ċ(s) =
1√
2

(
1, s2,

√
1− s4

)
, s ∈ [−1, 1]

so that ‖ċ(s)‖ ≡ 1 and hence t(s) = ċ(s). For s ∈]− 1, 1[, we compute

c̈(s) =

√
2s√

1− s4

(
0,
√

1− s4,−s2
)
, c(3)(s) =

√
2
(
0, 1,

s2(s4 − 3)

(1− s4)3/2

)
.

Therefore, if 0 < |s| < 1 we have c̈(s) 6= 0R3 and hence

n(s) =
s

|s|
(
0,
√

1− s4,−s2
)
, b(s) =

s

|s|
1√
2

(
−1, s2,

√
1− s4

)
.

In particular, the normal and binormal can be extended by continuity at s = ±1
by letting n(±1) := (0, 0,∓1) and b(±1) := 2−1/2(∓1,±1, 0). Furthermore, for
0 < |s| < 1 we get:

k(s) := ‖c̈(s)‖ =

√
2|s|√

1− s4
, τ (s) :=

(
ċ(s)× c̈(s)

)
• c(3)(s)

‖c̈(s)‖2
= −

√
2s√

1− s4

and hence k(s) → 0 and τ (s) → 0 as s → 0, whereas both k and τ are summable
functions in L1(−1, 1). Moreover, the Frenet-Serret formulas (3.4) hold true in the
open intervals ]− 1, 0[ and ]0, 1[.

Since t(0) = 2−1/2(1, 0, 1), c̈(0) = 0R3 , and c(3)(0) = 2−1/2(0, 1, 0), by the formu-
las in (3.8) we get:

b(0) :=
ċ(0)× c(3)(0)

‖c(3)(0)‖
=

1√
2
(−1, 0, 1) , n(0) := b(0)× t(0) = (0, 1, 0)

and hence both the unit normal and binormal are not continuous at s = 0. However,
since [n(s)] → [n(0)] and [b(s)] → [b(0)] as s → 0, they are both continuous as
functions with values in RP2. Notice also that

(3.9)
ṅ(s)

‖ṅ(s)‖
=

s

|s|
(
0, −s2,−

√
1− s4

)
, s 6= 0 .

We finally compute the total curvature and the total absolute torsion of c. With
t = s2, we have:

TC(c) =

∫ 1

−1
k(s) ds =

∫ 1

−1

√
2|s|√

1− s4
ds =

√
2

∫ 1

0

1√
1− t2

dt =
π√
2

and similarly

TAT(c) =

∫ 1

−1
|τ (s)| ds =

∫ 1

−1

√
2|s|√

1− s4
ds =

π√
2
.

In fact, c is regular at s = 0, whence there is no turning angle at c(0), whereas
b(0−) = −b(0+), so that also the total absolute torsion is zero at c(0). On the other
hand, due to the occurrence of an inflection point at c(0), the complete torsion in
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the sense of Alexandrov-Reshetnyak [3] yields a contribution equal to π at c(0), so
that CT(c) = TAT(c) + π.

With the assumptions written above, the statements of Theorem 3.8 and Propo-
sition 3.11 continue to hold. More precisely, using that the non-negative curvature
k(λ) and the torsion τ (λ) may vanish only at a negligible set of inflection points,
we readily obtain the following relations concerning the trihedral (t, b, n) :

(1) t(s1(k)) = tc(k) ∈ S2 for k ∈ [0, C], where s1 : [0, C] → [0, L] is the inverse
of the function

(3.10) k(s) :=

∫ s

0
k(λ) dλ , s ∈ [0, L] ;

(2) [b(s2(t))] = bc(t) ∈ RP2 for t ∈ [0, T ], where s2 : [0, T ] → [0, L] is the inverse
of the function

t(s) :=

∫ s

0
|τ (λ)| dλ , s ∈ [0, L] ;

(3) [n(s3(ρ))] = nc(ρ) ∈ RP2 for ρ ∈ [0, C + T ], where s3 : [0, C + T ] → [0, L] is
the inverse of the function

ρ(s) :=

∫ s

0
(k(λ) + |τ (λ)|) dλ , s ∈ [0, L] .

Example 3.13. Going back to Example 3.12, we compute

k(s) :=

∫ s

−1
k(λ) dλ =

1√
2

(π
2
+

s

|s|
arcsin(s2)

)
, s ∈ [−1, 1]

and hence s1(k) = | cos(
√
2k)|1/2, where k ∈ [0, C], with C = π/

√
2, so that

tc(k) := t(s1(k)) =
1√
2

(
1, | cos(

√
2k)|, sin(

√
2k)

)
, k ∈ [0, π/

√
2]

with k(0) = π/(2
√
2) and tc(k(0)) = 2−1/2(1, 0, 1). Notice moreover that

ṫc(k) =

{ (
0,− sin(

√
2k), cos(

√
2k)

)
if k ∈ [0, π/(2

√
2)[(

0, sin(
√
2k), cos(

√
2k)

)
if k ∈]π/(2

√
2), π/

√
2]

so that ṫc(k(0)±) = (0,±1, 0). We also get

bc(t) =
[
2−1/2

(
−1, | cos(

√
2t)|, sin(

√
2t)

)]
, k ∈ [0, T ] , T = π/

√
2

where t(0) = π/(2
√
2) and bc(t(0)) =

[
2−1/2 (−1, 0, 1)

]
. Finally,

ḃc(t) =

{ [(
0,− sin(

√
2k), cos(

√
2k)

)]
if t ∈ [0, π/(2

√
2)[[

(0, sin(
√
2k), cos(

√
2k)

]
if t ∈]π/(2

√
2), π/

√
2]

so that ḃc(t(0)+) = ḃc(t(0)−) = [(0, 1, 0)], whence bc has no corner points.
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3.8. Torsion force. Similarly to the curvature force K, a torsion force measure
T can be obtained by means of tangential variations of the length LS2(tc) of the
tangent indicatrix tc that we built up in Proposition 3.10, for any rectifiable curve
c with finite total curvature.

For this purpose, we assume that tc, ε is a variation of tc under which the motion of
each point tc(k) is smooth in time and with initial velocity ξ(s), where ξ : [0, C] → R3

is a Lipschitz continuous function of arc length k, with ξ(0) = ξ(C) = 0. Since we
deal with tangential variations, we assume in addition that ξ(k) ∈ Ttc(k)S2 for each
k. The first variation formula gives:

δξLS2(tc) :=
d

dε
LS2(tc, ε)|ε=0 =

∫ C

0
ṫc(k) • ξ̇(k) dk

where ṫc(k) and ξ̇(k) are defined for a.e. k. Therefore, in general we obtain:

(3.11) δξLS2(tc) =

∫ C

0
ṫc(k) • ξ̇(k) dk =: −〈Dṫc, ξ〉

and hence the first variation δξLS2(tc) has distributional order one if and only if the

arc-length derivative ṫc of the tantrix tc is a function of bounded variation. By the
way, this condition is satisfied if in addition the curve c has finite complete torsion,
CT(c) <∞. In this case, there exists a finite measure T , that we call torsion force,
such that 〈T , ξ〉 = 〈Dṫc, ξ〉 for each smooth tangential vector field ξ along tc.

If c is of class C3 and c̈(s) 6= 0R3 for each s ∈]0, L[, we compute

ẗc(k) = n′(s1) ṡ1(k) = −t(s1) +
τ (s1)

k(s1)
b(s1) , s1 = s1(k)

for each k ∈ [0, C], where s1 : [0, C] → [0, L] is the inverse of the function k(s) in
(3.10). Moreover, the tangential component to S2 of the second derivative ẗc(k),
i.e., the geodesic curvature of tc at the point tc(k), agrees with the quotient between
the torsion and the scalar curvature of the initial curve c at the point c(s1), where
s1 = s1(k).

In fact, the Darboux frame along tc is the triad (T,N,U), where T(k) := ṫc(k),
N(k) := ν(tc(k)), ν(p) being the unit normal to the tangent 2-space TpS2, and

U(k) := N(k)×T(k) is the unit conormal. The curvature vector K(k) := Ṫ(k) =
ẗc(k) is orthogonal to T(k), and thus decomposes as

K(k) = Kg(k)U(k) + Kn(k)N(k)

where Kg := K •U and Kn := K •N denote the geodesic and normal curvature of
tc, respectively. By changing variable, we get

T(k) = n(s1) , N(k) = t(s1) , U(k) = b(s1)

and hence we obtain for each k ∈ [0, C]

Kg(k) =
τ (s1)

k(s1)
, Kn(k) ≡ −1 , s1 = s1(k) .

As a consequence, integrating by parts in (3.11) we get

〈Dṫc, ξ〉 =
∫ C

0
Kg(k) b(s1(k)) • ξ(k) dk =

∫ C

0

τ (s1)

k(s1)
b(s1) • ξ(k) dk
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where, we recall, ξ(k) ∈ Ttc(k)S2 for each k. Therefore, by changing variable s =

s1(k), since ds = k(s1(k))
−1 dk we recover the expected formula:

〈Dṫc, ξ〉 =
∫ L

0
τ (s) b(s) • ξ(k(s)) ds .

Therefore, if c is smooth we have obtained

(3.12) T = k#
(
τ b dL1 ]0, L[

)
i.e., T is the push forward of the measure τ b dL1 ]0, L[ by the function k(s) defined
in (3.10), and its total mass is equal to

∫
c |τ | ds.

If c is piecewise smooth, we obtain again the decomposition T = T a + T s. By
Proposition 3.11, the absolutely continuous component T a takes the same form as
in the right-hand side of (3.12), where this time k(s) := TC(c|[0,s]). Moreover,

using that t(s) = tc(k(s)), if c is smooth at s we have t′(s) = ṫc(k(s)) · k′(s), with
k′(s) = k(s), hence by the first formula in (3.4) we get ṫc(k(s)) = n(s). If in addition
c has no points of return, the torsion force T only depends on c, and the singular
component T s is a sum of Dirac masses concentrated at the corner points x = tc(k)
of the curve tc, with weight ṫc(k+) − ṫc(k−). If θ is the turning angle of tc at x,
then ‖ṫc(k+)− ṫc(k−)‖ = 2 sin(θ/2).

In Example 3.13, at x = tc(k(0)) = 2−1/2(1, 0, 1) we have ṫc(k(0)±) = (0,±1, 0),
so that θ = π and ‖ṫc(k(0)+)− ṫc(k(0)−)‖ = 2.

4. Weak curvatures of high order

In this section, we survey our results from [23] concerning weak curvatures of
rectifiable curves in high dimension Euclidean spaces RN+1, where N ≥ 3.

4.1. Gram-Schmidt procedure. When dealing with polygonal curves P in high
dimension Euclidean spaces, the polarity argument we exploited in the previous
section fails to hold. Therefore, we follow a different approach, based on the or-
thonormalization procedure.

To this purpose, we recall that the extension of the classical notions by Frenet-
Serret to smooth curves c in RN+1, where N ≥ 3, goes back to the contribution by
C. Jordan [17]. He noticed that by applying the Gram-Schmidt procedure to the

independent vectors ċ(s), c(2)(s), . . . , c(N)(s) one obtains a moving frame e(s) :=
(t(s),n1(s), . . . ,nN (s)) along the curve, where t is the tantrix and nj is the j-th
curvature, for j = 1, . . . , N . Assuming c parameterized by arc-length s, the Jordan
system ė(s) = F (s) e(s) involves a skew-symmetric and tri-diagonal square matrix
F (s) of order N + 1, whose entries depend on the curvature functions kj(s), where
j = 1, . . . , N .

In this framework, H. Gluck [15] produced an algorithm for computing the higher
order curvatures, whereas more recently E. Gutkin [16] studied curvature estimates,
natural invariants, and discussed the case of curves contained in Riemannian mani-
folds and homogeneous spaces. Finally, in the last section of his more recent survey
paper [27], Reshetnyak also discussed possible ways to extend their theory of irreg-
ular curves to the high codimension case.
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Coming bach to Jordan’s approach, we now consider a curve c : [a, b] → RN+1 of

class C3 parameterized by arc-length, so that ‖ċ‖ = 1. Denoting by c(k) the k-th

arc-length derivative of c, assume that the triplet (ċ(s), c(2)(s), c(3)(s)) is linearly
independent for each s. The first two Jordan formulas give

ṫ = k1 n1 , ṅ1 = −k1 t+ k2 n2

where t := ċ ∈ SN is the unit tangent vector, k1 := ‖c(2)‖ the first curvature,

n1 := c(2)/‖c(2)‖ ∈ SN the first unit normal, k2 ∈ R the second curvature, and
n2 ∈ SN the second unit normal. Notice that when N = 2 one has k2 = τ , the
torsion of the curve, and n2 = b, the binormal vector b := t×n. We thus compute

k2 n2 = k1 t+ ṅ1 = ‖c(2)‖ ċ+ d

ds

( c(2)

‖c(2)‖

)
=

1

‖c(2)‖

(
‖c(2)‖2 ċ+ c(3) − c(2) • c(3)

‖c(2)‖2
c(2)

)
.

Recalling that ċ • c(2) = 0 and ċ • c(3) = −‖c(2)‖2, according to the Gram-Schmidt
procedure one has:

n2 =
c(3)⊥

‖c(3)⊥‖
, c(3)⊥ := c(3) − c(3) • ċ

‖ċ‖2
ċ− c(3) • c(2)

‖c(2)‖2
c(2) .

We wish to write Taylor expansions at a given point s ∈]a, b[. Therefore, for each
h > 0 small enough we consider the three vectors

(4.1)
v0(h) :=

c(s+ h)− c(s− h)

2h
, v1(h) :=

c(s− 3h)− c(s− h)

2h
,

v2(h) :=
c(s+ 3h)− c(s+ h)

2h
.

In the sequel, we omit to write the dependence on s, and denote by o(hn) a continu-
ous vector function such that ‖o(hn)‖ = o(hn), for each n ∈ N, i.e., ‖o(hn)‖/hn → 0
as h→ 0.

By taking the third order expansions of c(s) and by applying the Gram-Schmidt
procedure, we obtain the following formulas:

t(h) :=
v0(h)

‖v0(h)‖
= ċ+

1

6

(
‖c(2)‖2 ċ+ c(3)

)
h2 + o(h2)

N1(h) := v1(h)−
v1(h) • v0(h)

‖v0(h)‖2
v0(h) = 2c(2) h− 2

(
‖c(2)‖2ċ+ c(3)

)
h2 + o(h2)

n1(h) :=
N1(h)

‖N1(h)‖
=

c(2)

‖c(2)‖
+
(
−‖c(2)‖ ċ+ c(3) • c(2)

‖c(2)‖3
c(2) − 1

‖c(2)‖
c(3)

)
h+ o(h)

N2(h) := v2(h)−
v2(h) • v0(h)

‖v0(h)‖2
v0(h)−

v2(h) • n1(h)

‖n1(h)‖2
n1(h)

= 4
(
‖c(2)‖2ċ− c(3) • c(2)

‖c(2)‖2
c(2) + c(3)

)
h2 + o(h2) = 4c(3)⊥h2 + o(h2)

n2(h) :=
N2(h)

‖N2(h)‖
=

c(3)⊥

‖c(3)⊥‖
+ o(h0) .
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In case of high codimension N ≥ 3, we wish to extend the previous formulas to
the higher normals. For this purpose, the curve c is said to be smoothly turning
at order j + 1, for j ∈ {1, . . . , N}, if c is of class Cj+2 and at any point s ∈ [a, b]

the vectors (ċ(s), c(2)(s), . . . , c(j+1)(s)) are linearly independent. When j = N , the
curve is said to be smoothly turning. If the curve c is closed, the same condition is
required at any s ∈ R, once the curve is extended by periodicity.

If a curve is smoothly turning, we set:

t = n0 := ċ , n1 :=
c(2)

‖c(2)‖
,

c(j+1)⊥ := c(j+1) −
j−1∑
k=0

(
c(j+1) • nk

)
nk , nj :=

c(j+1)⊥

‖c(j+1)⊥‖
, j = 2, . . . , N .

The Jordan frame (t,n1, . . . ,nN ) of the curve c satisfies the system:

(4.2) ṫ = k1 n1 , ṅ1 = −k1 t+ k2 n2 , ṅj = −kj nj−1 + kj+1 nj+1

for j = 2, . . . , N − 1, where kj is the j-th curvature of the curve at c(s).
The last equation ṅN = −kN nN−1 holds true since the curve c is differentiable

(N + 2)-times at the point s. When N = 2, it agrees with the third Frenet-Serret

equation, ḃ = −τ n. Since moreover the vectors (ċ(s), c(2)(s), . . . , c(N+1)(s)) are
linearly independent, the last curvature kN is always non-zero. More generally, if c
is smoothly turning at order j+1, where j < N , only the first j+1 Jordan formulas
in (4.2) are satisfied.

Following the notation from (4.1), for k = 0, 1, . . . , N and for h > 0 small we
define:

(4.3) vk(h) :=


c(s+ (k + 1)h)− c(s+ (k − 1)h)

2h
if k is even

c(s− (k + 2)h)− c(s− kh)

2h
if k is odd .

By performing the Gram-Schmidt procedure to (v0(h),v1(h), . . . ,vN (h)), we also
denote as before

t(h) = n0(h) :=
v0(h)

‖v0(h)‖
,

N1(h) := v1(h)−
(
v1(h) • t(h)

)
t(h) , n1(h) :=

N1(h)

‖N1(h)‖
and for j = 2, . . . , N

Nj(h) := vj(h)−
j−1∑
k=0

(
vj(h) • nk(h)

)
nk(h) , nj(h) :=

Nj(h)

‖Nj(h)‖
.

If c is a smoothly turning curve, and (t,n1, . . . ,nN ) is the Jordan frame of c at
a given point s ∈]a, b[, then we have:

t(h) = t+ o(1) , nj(h) = nj + o(1) ∀ j = 1, . . . , N .

In general, the higher order coefficients of the expansions of the terms nj(h)
depend on the choice of the vectors vk(h) we made in (4.3), and their existence
requires more regularity on the curve c.
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4.2. Discrete normals to polygonal curves. Let P be a polygonal curve in
RN+1, for which we follow the previous notation, and assume that P does not lay
in a line segment of RN+1. For any i = 1, . . . ,m, we let v1i denote the first unit
vector vh, with h > i, such that [vh] 6= [vi], so that the linearly independent vectors
(vi, v

1
i ) span a 2-dimensional vector space Π2(P, vi), that may be called the discrete

osculating 2-space of P at vi. We then choose the orthogonal direction to v1i in
Π2(P, vi). Therefore, by the Gram-Schmidt procedure, we let

N1(P, i) := vi −
(
vi • v1i

)
v1i , n1(P, i) :=

N1(P, i)

‖N1(P, i)‖
and consider the equivalence class [n1(P, i)] in RPN . If P is closed, we trivially
extend the notation by listing the vectors vi in a cyclical way. If P is not closed
and for some i > 1 there are no vectors vh, with h > i, such that [vh] 6= [vi], we let
[n1(P, i)] := [n1(P, i− 1)].

In a similar way, if N ≥ 3 we can define the discrete j-th normal of P , for each
j = 2, . . . , N − 1. We thus assume that P does not lay in an affine subspace of
RN+1 of dimension lower than j+1. For any i, we choose v1i as above. By iteration

on k = 2, . . . , j, once we have defined vk−1
i = vl, we let vki denote the first unit

vector vh, with h > l, such that v1i , v
2
i , . . . , v

k
i are linearly independent. Therefore,

the vectors (vi, v
1
i , v

2
i , . . . , v

j
i ) span a (j + 1)-dimensional vector space Πj+1(P, vi),

that may be called the discrete osculating (j + 1)-space of P at vi.
By means of the Gram-Schmidt procedure, we then choose the orthogonal direc-

tion nj(P, i) ∈ SN to (v1i , v
2
i , . . . , v

j
i ) in Πj+1(P, vi), and consider the equivalence

class [nj(P, i)]. If P is closed, we trivially extend the notation by listing the vectors
vi in a cyclical way. If P is not closed and for some i > 1 there are no j vectors
satisfying the linear independence as above, we let [nj(P, i)] := [nj(P, i− 1)].

Finally, if P does not lay in an affine subspace of RN+1 of dimension lower than N ,
the last discrete normal [nN (P, i)] is given by the equivalence class of the orthogonal
directions to the discrete osculating N -space ΠN (P, vi) of P at vi.

Definition 4.1. With the previous notation, for any j = 1, . . . , N , we call discrete
j-th normal of P the curve [nj ](P ) in RPN obtained by connecting [nj(P, i)] with

[nj(P, i+1)] by means of a minimal geodesic arc in RPN , for each i = 1, . . . ,m, and
also [nj(P,m)] with [nj(P, 1)], if P is closed.

When N = 2, i.e., for polygonal curves in R3, the last discrete normal [n2](P )
agrees with the discrete binormal analyzed in the previous section, whence

LRP2([n2](P )) = TAT(P ) .

On the other hand, the first discrete normal [n1](P ) is different from the weak
normal from the previous section, where we exploited the polarity in the Gauss
sphere S2.

The following convergence result implies that our notion of j-th normal to a
polygonal curve is the discrete counterpart of the j-th normal to a smooth curve.

Theorem 4.2. Let c : [a, b] → RN+1 a smoothly turning curve at order j + 1, for
some j ∈ {1, . . . , N}. Then, there exists a sequence {Pn} of inscribed polygonals,
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with meshPn → 0, such that the length LRPN ([nj ](Pn)) of the discrete j-th normal
to Pn converges to the length LSN (nj) of the j-th normal nj to the curve c, i.e.,

lim
n→∞

LRPN ([nj ](Pn)) =

∫ b

a
‖ṅj(s)‖ ds .

We recall that by the Jordan formulas (4.2), for each s ∈]a, b[ one has

‖ṅj(s)‖ =
√
k2
j (s) + k2

j+1(s)

if j < N , whereas for the last normal ‖ṅN (s)‖ = |kN (s)|. Moreover, when N = 2,
the last normal n2 and curvature k2 agree with the binormal and torsion of the
curve c in R3, respectively.

4.3. Total curvature estimates for the discrete normals. Let c be a smoothly
turning curve, so that the last Jordan equation ṅN = −kN nN−1 holds, where the
last curvature kN is always non-zero. If T denotes the unit tangent vector to the

curve nN in SN , one has T = −nN−1, whence by (4.2) we get |Ṫ| =
√
k2
N−1 + k2

N

and hence the total curvature of nN is equal to the length of the (N −1)-th normal:

TC(nN ) = L(nN−1) =

∫ b

a

√
k2
N−1(s) + k2

N (s) ds .

If e.g. N = 2, then n2 = b, n1 = n, k1 = k, and k2 = τ , and we thus get:

TC(b) = L(n) =
∫ b

a

√
k2(s) + τ 2(s) ds .

We now consider polygonal curves P in RN+1. An analogous inequality concern-
ing the discrete last curvature holds true, provided that P does not lay in an affine
subspace of RN+1 of dimension lower than N , namely:

TC([nN ](P )) ≤ LRPN ([nN−1](P )) + LRPN ([nN ](P )) .

Moreover, referring to the first section for the notation, for any 1 ≤ j ≤ N − 1
and for µj+1-a.e. p ∈ Gj+1RN+1, the projection formulas

[nj ](πp(P )) = η̃p([nj ](P ))

hold, and for j ≥ 2, also:

[nj−1](πp(P )) = η̃p([nj−1](P )) .

Using Proposition 2.7, we thus readily obtain for any 1 ≤ j ≤ N − 1

LRPN ([nj ](P )) =

∫
Gj+1RN+1

LRPj
p
([nj ](πp(P ))) dµj+1(p) .

and for j = 1 also:

(4.4) LRPN ([n1](P )) ≤ TC(P ) .

Finally, using again Proposition 2.7, we are able to extend the total curvature
estimate to the intermediate normals, namely:

TC([nj ](P )) ≤ LRPN ([nj−1](P )) + LRPN ([nj ](P ))
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for every j = 2, . . . , N , whereas for j = 1

TC([n1](P )) ≤ LSN (tP ) + LRPN ([n1](P )) , LSN (tP ) = TC(P ) .

4.4. Relaxed total variation of the normals to a curve. We now introduce a
relaxed notion of total variation of the j-th normal to a curve. Due to the lack of
monotonicity, see Example 3.3, we make use again of the notion of modulus.

Definition 4.3. Let c be a curve in RN+1. The relaxed total variation of the j-th
normal to c is given by

Fj(c) := lim
ε→0+

sup{LRPN ([nj ](P )) | P ≺ c , µc(P ) < ε} j = 1, . . . , N

where [nj ](P ) is the discrete j-th normal to the inscribed polygonal P , see Defini-
tion 4.1.

Notice that when N = 2, the relaxed total variation of the last normal agrees
with the notion of total absolute torsion for curves c in R3, namely

F2(c) = TAT(c) .

If Fj(c) < ∞ for some j = 1, . . . , N , one has supn LRPN ([nj ](Pn)) < ∞ for any
sequence {Pn} of polygonal curves inscribed in c and satisfying µc(Pn) → 0. Also,
one can find an optimal sequence as above in such a way that LRPN ([nj ](Pn)) →
Fj(c) as n → ∞. Moreover, by the observations that we made in the previous
section, for any polygonal curve P in RN+1 we obtain:

Fj(P ) = LRPN ([nj ](P )) ∀ j = 1, . . . , N

and hence we can re-write the integral-geometric formulas for polygonals as:

(4.5) Fj(P ) =

∫
Gj+1RN+1

Fj(πp(P )) dµj+1(p) , 1 ≤ j ≤ N − 1 .

However, in order to extend formula (4.5) to the relaxed total variation of the
normals to a curve c, we cannot argue as for the total curvature, where one applies
the monotone convergence theorem to a sequence of approximating polygonals with
Pn ≺ Pn+1 ≺ c for each n, compare e.g. [28, Prop. 4.1]. In fact, we have seen that
the monotonicity property fails to hold.

Remark 4.4. For any curve c in RN+1, the relaxed total variation of the first
normal is always lower than the total curvature:

(4.6) F1(c) ≤ TC(c) .

In fact, if c has finite total curvature, one has:

TC(c) = lim
ε→0+

sup{TC(P ) | P ≺ c , µc(P ) < ε}

and hence (4.6) readily follows from (4.4). Notice moreover that in general, strict
inequality holds in (4.6). In fact, for e.g. a polygonal curve P in R2, in the quantity
LRP1([n1](P )) we take distances in the projective line, so that a contribution of
TC(P ) given by a turning angle θ greater than π/2, corresponds to a contribution
π − θ for the length of [n1](P ).
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4.5. Weak normals to non-smooth curves. For curves c in RN+1 such that
Fj(c) <∞, we obtain a weak notion of j-th normal.

Theorem 4.5. Let 2 ≤ j ≤ N , and let c a curve in RN+1 such that Fj(c) <∞ and

Fj−1(c) <∞. There exists a rectifiable curve [nj ](c) : [0, Lj ] → RPN parameterized
by arc-length, where Lj := Fj(c), so that

LRPN ([nj ](c)) = Fj(c)

satisfying the following property. For any sequence {Pn} of inscribed polygonal

curves, let γj
n : [0, Lj ] → RPN denote for each n the parameterization with constant

velocity of the discrete j-th normal [nj ](Pn) to Pn, see Definition 4.1. If µc(Pn) → 0,

then γj
n → [nj ](c) uniformly on [0, Lj ] and

LRPN (γj
n) = LRPN ([nj ](Pn)) → LRPN ([nj ](c))

as n → ∞, where, we recall, LRPN ([nj ](Pn)) = Fj(Pn). Moreover, the arc-length
derivative of the curve [nj ](c) is a function of bounded variation. Finally, in the
case j = 1, for any curve c in RN+1 satisfying TC(c) < ∞, one has F1(c) < ∞
and the same conclusion as above holds true.

The curve [nj ](c) in Theorem 4.5 may be called weak j-th normal to the curve
c. In fact, under the hypotheses of Theorem 4.5, a continuity property holds: for
any sequence {Pn} of inscribed polygonals satisfying µc(Pn) → 0

lim
n→∞

LRPN ([nj ](Pn)) = Fj(c) .

Moreover, by Theorem 4.5 we get the integral-geometric formula:

Fj(c) =

∫
Gj+1RN+1

Fj(πp(c))) dµj+1(p) .

In particular, if c : [a, b] → RN+1 is a smoothly turning curve at order j + 1, we
obtain:

Fj(c) =

∫ b

a
‖ṅj(s)‖ ds

where, we recall, ‖ṅj(s)‖ =
√
k2
j (s) + k2

j+1(s), when j < N , and ‖ṅN (s)‖ = |kN (s)|,
when j = N .

4.6. Relationship with the smooth normals. If c : [a, b] → RN+1 is a smoothly
turning curve at order j + 1, the weak j-th normal [nj ](c) agrees (up to a lifting

from RPN to SN ) with the arc-length parameterization of the smooth j-th normal
nj to c. More precisely, recalling that Π : SN → RPN is the canonical projection,
one has

[nj ](c)(t) = Π(nj(ψj(t))) ∀ t ∈ [0, Lj ]

where ψj : [0, Lj ] → [a, b] is the inverse of the bijective and C1-class transition
function

(4.7) ϕj(s) :=

∫ s

a
‖ṅj(λ)‖ dλ , s ∈ [a, b] .
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Now, we have already noticed that existence of the osculating plane to a smooth
curve c in R3 is guaranteed by the requirement that at each point s there exists
a non-zero higher order derivative c(k)(s). The continuity of the osculating plane
Π2(c, s) as a function of arc-length parameter, indeed, ensures that the normal
vector n (and hence the binormal vector b = t × n, too) is continuous when seen
as a function in the projective plane RP2, compare Example 3.12.

In order to deal with high dimension osculating spaces, the analogous sufficient
condition is existence of j+1 independent derivatives c(k)(s) of the curve near each
point c(s).

To this purpose, an open rectifiable curve c : [a, b] → RN+1, parameterized in
arc-length, is called mildly smoothly turning at order j + 1 if for each s ∈ [a, b]
the function c is of class Cm in a neighborhood of s, for some integer m ≥ j + 2,
and there exist j integers 1 < i2 < . . . < ij+1 < m such that the (j + 1)-vector

(ċ∧c(i2)∧· · ·∧c(ij+1))(s) is non-trivial. When j = N , the curve is said to be mildly
smoothly turning.

Extending the approach by Jordan [17], if 1 < i2 < . . . < ij+1 are the smallest

integers such that the (j + 1)-vector (ċ ∧ c(i2) ∧ · · · ∧ c(ij+1))(s) is non-trivial, the
j-th normal nj(s) is defined by the last term in the Gram-Schmidt procedure to

the ordered list of independent vectors ċ, c(i2), . . . , c(ij+1) computed at s. If c is a
mildly smoothly turning curve, we also set nN := ∗(t∧n1 ∧ · · · ∧nN−1), where ∗ is
Hodge operator.

The main feature is the existence and continuity of the osculating (j + 1)-spaces
along the curve. In fact, if a curve c is mildly smoothly turning at order j + 1, we
have:

(1) equipping the set of unoriented (j + 1)-planes with the canonical metric,
the osculating (j + 1)-space Πj+1(c, s) is well-defined and continuous, as
s ∈]a, b[;

(2) there exists a finite set Σ of points in ]a, b[ such that the (j + 1)-vector

(ċ ∧ c(2) ∧ · · · ∧ c(j+1))(s) is non-trivial on ]a, b[\Σ;
(3) the first j formulas in the Jordan system (4.2) are satisfied in each connected

component of ]a, b[\Σ;
(4) the corresponding curvature terms kh are continuous functions on ]a, b[, that

may possibly be equal to zero only at the singular points si ∈ Σ.

Now, at each point si ∈ Σ the normals may be discontinuous. However, the
continuity of the osculating (j + 1)-space along the curve implies that

nk(si−) = ±nk(si+) ∀ k = 1, . . . , j

and hence the first j unit normals are continuous when seen as a function into the
projective space RPN .

Moreover, it turns out that the osculating (j+1)-space function s 7→ Πj+1(c, s) is
of class C1(]a, b[), w.r.t. the canonical metric of unoriented (j +1)-spaces in RN+1.
In addition, the curvature terms kj−1 and kj are always non-zero on ]a, b[\Σ. We
thus obtain:

ṅj(si−)

‖ṅj(si−)‖
= ± ṅj(si+)

‖ṅj(si+)‖
∈ SN
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according to formula (3.9) from Example 3.12. Finally, if the curve is mildly
smoothly turning, the last formula in the Jordan system (4.2) holds true, too, on
]a, b[\Σ.

We now extend the convergence result obtained in Theorem 4.2.

Proposition 4.6. Let c be a mildly smoothly turning curve at order j + 1, for
some 1 ≤ j ≤ N . Then there exists a sequence {Pn} of inscribed polygonals, with
meshPn → 0, such that

lim
n→∞

LRPN ([nj ](Pn)) =

∫ b

a
‖ṅj(s)‖ ds .

Moreover, we have

Fj(c) =

∫ b

a
‖ṅj(s)‖ ds <∞ .

Finally, denoting by ψj : [0, Lj ] → [a, b] the inverse of the bijective and absolutely
continuous transition function (4.7), we obtain:

[nj ](c)(t) = Π(nj(ψj(t))) ∀ t ∈ [0, Lj ]

We finally remark that if a smooth curve fails to satisfy the previous linear in-
dependence property, then the osculating (j + 1)-space fails to be continuous, in
general.

Example 4.7. Let f : R → R be the C∞ but not analytic function

f(x) :=

{
e−1/x2

if x 6= 0
0 if x = 0 .

The function f has all derivatives vanishing in zero. Let us consider the curve
γ : [−1, 1] → R3 defined as

γ(t) :=

{ (
t, f(t), 0

)
if t ≤ 0(

t, 0, f(t)
)

if t ≥ 0 .

It is smooth (C∞), but all its derivatives vanish in zero, whence it does not satisfy
the previous assumptions. The same is true if one considers a re-parametrization c
of γ in arc-length.

Since for t ≤ 0 the curve lies in the plane π1 = {z = 0} and for t ≥ 0 it lies in
the plane π2 = {y = 0}, the torsion of the curve is always zero, b is constant out
of t = 0, and b and n jump of an angle of π/2 at t = 0. By modifying the plane
π2, it is immediate to find an example in which the curve has both the normal n
and binormal b jumping of an arbitrary angle α at t = 0. Notice that since t is
continuous and b = t× n, the jump angle α must be the same for both n and b.

The previous example is easily adapted to curves in RN+1 having an arbitrary
number of normals jumping of arbitrary angles. Notice, though, that since the last
normal nN is determined by the vectors t,n1, . . . ,nN−1, the angle of jump of nN is
determined by those of the other normals.
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4.7. Curvature measures. Similar arguments to the ones concerning the torsion
force, can be repeated for the weak j-th normals of open curves. To this purpose,
we recall that in Theorem 4.5, we also showed that the arc-length derivative of the
curve [nj ](c) in RPN is a function of bounded variation. For simplicity, we denote

here by γj : [0, Lj ] → SN a continuous lifting of the curve [nj ](c), so that γ̇j is a

function of bounded variation, with ‖γ̇j‖ ≡ 1. Moreover, we have:

LSN (γ
j) = LRPN ([nj ](c)) = Fj(c) .

We assume that γj
ε is a variation of γj under which the motion of each point

γj(t) is smooth in time and with initial velocity ξ(t), where ξ : [0, Lj ] → RN+1 is a

Lipschitz continuous function with ξ(0) = ξ(Lj) = 0, so that ξ̇(t) is defined for a.e.
t, by Rademacher’s theorem.

Denoting by Dγ̇j the finite measure given by the distributional derivative of γ̇j ,
the first variation formula of the length of the curve γj gives:

(4.8) δξLSN (γ
j) :=

d

dε
LSN (γ

j
ε)|ε=0 =

∫ Lj

0
γ̇j(t) • ξ̇(t) dt =: −〈Dγ̇j , ξ〉 .

If c is a polygonal curve P , the weak j-th normal agrees with the discrete j-th
normal [nj ](P ) from Definition 4.1, obtained by connecting the consecutive points

[nj(P, i)] with minimal geodesic arcs in RPN . Therefore, the arc-length derivative
of the lifting γj has a discontinuity in correspondence eventually to the points
[nj(P, i)], where the norm of the jump is equal to the turning angle between the
consecutive geodesic arcs meeting at [nj(P, i)]. Therefore, the total variation of the
measure Dγ̇j is equal to the total curvature of the curve γ̇j in RN+1, and hence
to the sum LRPN ([nj ](P )) + TCRPN ([nj ](P )), where TCRPN is the intrinsic total

curvature of the curve in RPN .
Assume now that the curve c is smoothly turning at order j + 1. Possibly con-

sidering the antipodal continuous lifted function of [nj ](c), by Proposition 4.6, for
every t ∈ [0, Lj ] we have γj(t) = nj(ψj(t)). Then, by changing variable t = ϕj(s)
we can write

〈Dγ̇j , ξ〉 = −
∫ b

a
γ̇j(ϕj(s)) •

d

ds
[ξ(ϕj(s))] ds

and hence, using that

(4.9) γ̇j(t) =
ṅj(s)

‖ṅj(s)‖
, t = ϕj(s)

and integrating by parts, since ξ(ϕj(a)) = ξ(ϕj(b)) = 0 we obtain:

〈Dγ̇j , ξ〉 = −
∫ b

a

ṅj(s)

‖ṅj(s)‖
• d

ds
[ξ(ϕj(s))] ds =

∫ b

a

d

ds

ṅj(s)

‖ṅj(s)‖
• ξ(ϕj(s)) ds .

Therefore, the function γ̇j is of class C1(]a, b[), and the distributional derivative of
γ̇j is an absolutely continuous measure

(4.10) Dγ̇j = ϕj#µj , µj :=
d

ds

ṅj(s)

‖ṅj(s)‖
L1 ]a, b[

given by the push forward of the measure µj by the function t = ϕj(s).
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In general, when j < N the denominator ‖ṅj‖ in formula (4.9) involves two
curvatures. Therefore, the explicit computation of the density of the measure µj
involves five normals and four curvatures. We now consider in particular the simpler
case of the last normal.

Example 4.8. When j = N , we recall the last two Jordan formulas:

ṅN−1 = −kN−1 nN−2 + τ nN , ṅN = −τ nN−1

where we have denoted τ := kN , the last curvature (that is, the torsion, when
N = 2, in which case the Frenet-Serret formulas give n0 = t, n1 = n, k1 = k, and
n2 = b). Denoting by sgn τ the constant sign of the non-zero smooth function τ (s),
we thus obtain:

ṅN (s)

‖ṅN (s)‖
= − sgn τ · nN−1(s) ,

d

ds

ṅN (s)

‖ṅN (s)‖
= sgn τ ·

(
kN−1 nN−2 − τ nN

)
(s) .

Now, we restrict to consider tangential variations in formula (4.8), i.e., we assume
in addition that ξ(t) ∈ Tγj(t)SN for each t. We correspondingly deduce that the

tangential component D⊤γN of the measure DγN satisfies:

D⊤γN = sgn τ · ϕN #

(
kN−1 nN−2 dL1 ]a, b[

)
where, we recall, ϕN (s) :=

∫ s
a ‖ṅN (λ)‖ dλ =

∫ s
a |τ (λ)| dλ.

If the curve c is mildly smoothly turning at order j + 1, then the distributional
derivative of the arc-length derivative of [nj ](c) is an absolutely continuous measure,
and on account of (4.10) we get to:

D
d

dt
[nj ](c) = ϕ#

j µ̃j , µ̃j :=
d

ds

(
Π ◦ ṅj(s)

‖ṅj(s)‖

)
L1 ]a, b[

a formula that makes sense by means of an isometric embedding of RPN into some
Euclidean space.

5. Intrinsic curvature of curves into Riemannian surfaces

In this section we collect our results from [24] concerning the intrinsic curvature
of irregular curves supported in a Riemannian surface.

We thus let M be a smooth (at least of class C3), closed, and compact immersed
surface in RN+1, with N ≥ 2. We remark that M is not assumed to be oriented,
when N ≥ 3.

5.1. Total intrinsic curvature. The (intrinsic) rotation kM(P ) of a polygonal
P in M is the sum of the turning angles between the consecutive geodesic arcs
of P . The polygonal P is said to be inscribed in a curve c : [a, b] → M if P is
obtained by choosing a partition a ≤ t0 < t1 < · · · < tm ≤ b and connecting with
geodesic segments the consecutive points c(ti) of the curve. For a general curve c
supported in M, we shall denote by PM(c) the class of polygonals in M which are
inscribed in c. Also, if c is rectifiable (and parameterized in arc-length) the mesh
of a polygonal P in PM(c) is equivalently given by the maximum of the length of
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the arcs of c bounded by the consecutive vertexes of P . Notice that one clearly has
kM(P ) ≤ TC(P ), and that the difference TC(P ) − kM(P ) is equal to the sum of
the integrals of the modulus of the normal curvature Kn of the geodesic arcs of P .

If e.g. M = SN , the unit hyper-sphere in RN+1, then Kn ≡ −1 and hence
TC(P ) = kS2(P ) + L(P ). In general, by smoothness and compactness of M, the
normal curvature of geodesic arcs of M is uniformly bounded, and hence there
exists a constant cM > 0 depending on M such that for each polygonal P in M

TC(P ) ≤ kM(P ) + cM · L(P ) .

The following property has been proved in [7].

Theorem 5.1. ([7, Thm. 3.4]) Let c be a regular curve in M of class C2, parameter-
ized by arc-length. Then, for any sequence {Pn} ⊂ PM(c) such that meshPn → 0,
one has

lim
n→∞

kM(Pn) =

∫
c
|Kg| ds =

∫ L

0
|Kg(s)| ds .

As a consequence, for a curve c in M, one is tempted to define its total intrinsic
curvature as in the Euclidean case, i.e., as the supremum of the intrinsic rotation
kM(P ) computed among all the polygonals P in PM(c). However, as observed
in [7], if M has positive sectional (Gauss) curvature, as e.g. M = S2, the latter
definition does not work. In fact, if P, P ′ ∈ PM(c), and P ′ is obtained by adding a
vertex in c to the vertices of P , then the monotonicity inequality kM(P ) ≤ kM(P ′)
holds true in general provided that M has non-positive sectional curvature. In fact,
it relies on the fact that in this case the sum of the interior angles of a geodesic
triangle of M is not greater than π, see [7, Lemma 4.1].

Example 5.2. If e.g. M = S2, and c is a parallel which is not a great circle, then
the opposite inequality kS2(P ) ≥ kS2(P ′) holds, and for any P ∈ PS2(c) one has
kS2(P ) >

∫
c |Kg| ds, see Example 2.9.

In order to overcome this drawback, the good intrinsic notion turns out to be the
one proposed by S. B. Alexander and R. L. Bishop [2], that goes back to the one
considered by Alexandrov-Reshetnyak [3]. For this purpose, compare e.g. [18], we
recall that the modulus µc(P ) of a polygonal P in PM(c) is the maximum of the
geodesic diameter of the arcs of c determined by the consecutive vertexes in P . For
ε > 0, we also let

Σε(c) := {P ∈ PM(c) | µc(P ) < ε} .

Definition 5.3. The total intrinsic curvature of a curve c in M is

TCM(c) := lim
ε→0+

sup{kM(P ) | P ∈ Σε(c)} .

Clearly, the above limit is equal to the infimum as ε > 0 of sup{kM(P ) | P ∈
Σε(c)}. Moreover, arguing as in [18, Prop. 2.1], for a polygonal P in M we always
have TCM(P ) = kM(P ). Also, since M is compact, a curve with finite total
curvature TCM(c) < ∞ is rectifiable, too (cf. [18, Prop. 2.4]). Most importantly,
making use of a result by Dekster [8], as a consequence of [18, Prop. 2.4] one obtains:
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Proposition 5.4. The total curvature TCM(c) of any curve c in M is equal to
the limit of the rotation kM(Ph) of any sequence of polygonals {Ph} ⊂ PM(c) such
that µc(Ph) → 0.

Proposition 5.4 is proved in [3, Thm. 6.3.2], when M = S2, and in [7, Prop. 4.3],
when M has non-positive Gauss curvature. The proof for general smooth surfaces
M is obtained by arguing as in [18, Prop. 2.4], where it is firstly proved for curves
in CAT(K) spaces. It suffices to observe that the Gauss curvature of M is bounded,
provided that M is smooth and compact. A crucial step is the following result (cf.
[3, Thm. 2.1.3]): if TCM(c) < ∞, for each ε > 0 there exists δ > 0 such that if γ
is an arc of c with geodesic diameter lower than δ, the length of γ is smaller than
ε. As a consequence, if {Pn} ⊂ PM(c) is such that the modulus µc(Pn) → 0, then
also meshPn → 0, the converse implication being trivial.

Proposition 5.4 fills the gap given by the lack of monotonicity observed e.g. in
Example 5.2, yielding to the conclusion that Definition 5.3 involves a control on the
modulus and not on the mesh, at least when the sectional curvature of M fails to
be non-negative.

As a consequence, by Theorem 5.1 one infers that for smooth curves c in M one
has TCM(c) =

∫
c |Kg| ds. By [7, Cor. 3.6], for piecewise smooth curves c in M one

similarly obtains that

(5.1) TCM(c) =

∫ L

0
|Kg(s)| ds+

∑
i

|αi| .

In this formula, the integral is computed separately outside the corner points of c,
where the geodesic curvature Kg is well-defined, and the second addendum denotes
the finite sum of the absolute value of the oriented turning angles αi between the
incoming and outcoming unit tangent vectors at each corner point of c. Therefore,
for piecewise smooth curves we can rewrite formula (5.1) as

TCM(c) =

∫ L

0
|ṫ • u| ds+

∑
s∈Jt

dSN (t(s+), t(s−)) .

For a curve c in M, we clearly have TCM(c) ≤ TC(c), but it is false in general
that if TCM(c) < ∞, then also TC(c) < ∞. If one e.g. takes a curve in S2 that
winds around an equator infinitely many times, its total intrinsic curvature is zero
but its length and total curvature are both infinite.

To this purpose, we recently found a flaw in [3, Thm. 6.3.1], where the authors
erroneously stated that if the geodesic turn of a spherical curve is finite, then its
spatial turn is also finite. This is true if the spherical diameter of the curve is
smaller than a dimensional constant δ0. In this case, in fact, for polygonal curves
in S2 they obtain the inequality k∗(P ) ≤ π + 2kS2(P ) between Euciledan and
geodesic rotation. Therefore, their statement holds true provided that the curve
can be divided in a finite number of arcs with spherical diameter smaller than δ0.
However, the latter property is false, in general, if the curve fails to be rectifiable,
as the previous example shows.

Dealing with rectifiable curves c in M, one instead has

TCM(c) <∞ ⇐⇒ TC(c) <∞ .
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In fact, the normal curvature of geodesic arcs of M being uniformly bounded, we
recover the nontrivial implication ⇒ in the previous equivalence by arguing as in
the model case M = S2 considered in [3].

As a consequence, in the sequel we shall always assume that c : IL → M ⊂ RN+1

is a rectifiable curve parameterized in arc-length, where IL = (0, L) and L = L(c).
If in addition TCM(c) < ∞, moreover, the curve is one-sidedly smooth in the

sense of [3, Sec. 3.1], i.e., it has a left and a right tangent T±(s) at all the points
c(s) in the so called “strong sense”. This implies that for each s ∈ [0, L[ and δ > 0
we can find ε > 0 such that any secant inscribed in the arc c| [s,s+ε] forms with the
straight line T+(s) an angle less than δ, and similarly for the left tangent.

In addition, recalling that the tantrix t is a function of bounded variation, the
weak conormal u ∈ BV(IL, SN ) is well defined, and u(s) ∈ Tc(s)M for a.e. s ∈ IL,
and one has

DCt = u (u •DCt)

i.e., the Cantor component DCt of the distributional derivative of the tantrix is
tangential to M.

5.2. Weak parallel transport. The following compactness property holds:

Theorem 5.5. Let c be a rectifiable curve in M with finite total intrinsic curvature,
parameterized by arc-length. Let {Pn} ⊂ PM(c) be such that the modulus µc(Pn) →
0. For each n, let Pn : [0, L] → M be parameterized with constant velocity, and
let Xn : IL → R3 be the parallel transport along Pn, with constant initial condition
Xn(0) = t(0) ∈ SN . Then, possibly passing to a subsequence, the sequence {Xn}
strongly converges in W 1,1 to some function X ∈W 1,1(IL,RN+1) satisfying

X(s) = cosΘ(s) t(s)− sinΘ(s)u(s)

for L1-a.e. s ∈ IL, where t = ċ is the unit tangent vector, and the conormal u
agrees with the weak-∗ BV-limit of the sequence {un} of conormals to a subsequence
of {Pn}. Furthermore, t and u are functions in BV(IL, S2), and the angle function
Θ has bounded variation in BV(IL).

In principle, the angle function Θ depends on the subsequence corresponding to
the approximating sequence {Pn}. In order to overcome this drawback, we introduce
the energy functional:

(5.2) F(t) :=

∫ L

0
|ṫ • u| ds+ |DCt|(IL) +

∑
s∈Jt

dSN (t(s+), t(s−))

where, we recall, ṫ • u is the tangential component of the differential of the tantrix
t := ċ, so that |ṫ| ≥ |ṫ • u|, as M is “curved”. Therefore, by (2.1) we clearly have
F(t) ≤ VarSN (t), where strict inequality holds in general.

Remark 5.6. In Theorem 5.5, we may and do assume that at each Jump point
s ∈ JΘ, the Jump

[Θ]s := Θ(s+)−Θ(s−)

is bounded by π, i.e., |[Θ]s| ≤ π.
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The optimal angle function Θ this way obtained is essentially unique, and hence
the parallel transport X along irregular curves c with finite total curvature is well-
defined in the W 1,1 setting. In fact, we have

Theorem 5.7. Under the hypotheses of Theorem 5.5, and on account of Remark 5.6,
we have

|DΘ|(IL) = F(t) .

More precisely, by decomposing |DΘ|(IL) we have:

|DaΘ|(IL) =
∫ L

0
|ṫ • u| ds , |DCΘ|(IL) = |DCt|(IL) ,

|DJΘ|(IL) =
∑
s∈Jt

dSN (t(s+), t(s−)) .

5.3. Gauss-Bonnet theorem. Gauss-Bonnet formula holds true in the setting of
domains in M bounded by simple and closed curves with finite total curvature:

Theorem 5.8. Let M be a smooth, closed, compact, and immersed surface in
RN+1, where N ≥ 3. Let c : [0, L] → M be a simple and closed rectifiable curve
with finite total curvature, TCM(c) < ∞. Let k(s) ds := DΘ[0, s), where Θ is the
left-continuous representative of the optimal angle function of the parallel transport
along c, see Theorems 5.5 and 5.7, so that∫ L

0
k(s) ds = Θ(L)−Θ(0) .

Let U be the open set in M enclosed by the oriented curve c. Moreover, assume that
U is simply connected, and that for a.e. s ∈ IL the tangent vector t(s) is positively
oriented w.r.t. the natural orientation on the boundary of U at c(s). Finally, let K
denote the Gauss curvature of M, and α the oriented angle from t(L−) to t(0+)
at the junction point c(0) = c(L). Then we have:∫

U
K dA = 2π −

∫ L

0
k(s) ds− α .

Notice that if c is smooth, we know that DΘ = Θ̇L1, with Θ̇(s) = Kg(s) for each

s, so that we recover the classical formula, as
∫ L
0 k(s) ds =

∫
c Kg(s) ds. In a similar

way one may proceed in the case of piecewise smooth curves, this time obtaining
an extra term given by the sum of the oriented turning angles at the corner points
of c, in correspondence to the Jump points of the angle function Θ in IL, plus a
possible extra term at the junction point c(0) = c(L). Therefore, our Theorem 5.8
extends the classical Gauss-Bonnet theorem to the wider class of curves with finite
total curvature.

If TCM(c) = ∞, in fact, we expect that there is no way to find a finite measure
that contains the information (given by the derivative DΘ of the angle function of
the parallel transport along the curve) on the “signed geodesic curvature” of the
curve c.

Finally, a more general result could be obtained if U fails to be simply-connected,
assuming M oriented. This time, the term 2π ·χ(U) appears, χ(U) being the Euler-
Poincaré characteristic of U .
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5.4. Representation formula. By the sequential lower-semicontinuity of the total
variation w.r.t. the weak-∗ convergence, in Theorem 5.5 (that holds true for curves
contained in surfaces M of RN+1) we only have

|DΘ|(IL) ≤ lim
h→∞

|DΘh|(IL) = lim
h→∞

kM(Ph) = TCM(c)

where the last equality follows from Proposition 5.4. As a consequence, by Theo-
rem 5.7 we obtain:

(5.3) TCM(c) ≥ F(t)

where F(t) is the energy functional given by (5.2), and we expect that equality
holds in (5.3) in full generality.

In fact, for piecewise smooth and regular curves c in M, one has:

F(t) =

∫ L

0
|Kg(s)| ds+

∑
i

|αi|

so that it suffices to apply Theorem 5.1 and (5.1).

Remark 5.9. It is readily checked that equality holds in (5.3) for convex or concave
curves with finite total intrinsic curvature, i.e., for simple and closed curves c such
that the right-hand (or left-end) side region with boundary the trace of c is a
geodesically-convex subset of M. For non-closed curves, this means that all the
length minimizing arcs connecting two points of the curve lie on the same side
w.r.t. the tantrix of the curve. In this case, in fact, for any polygonal Pn in
M inscribed in c, the angle Θn of the parallel transport along Pn is a monotone
function. Therefore, for each (a, b) ⊂ IL we have |DΘh|(a, b) = |Θh(b−)−Θh(a+)|.
The a.e. convergence of Θn to Θ, that holds true for a subsequence, yields that the
angle Θ is a monotone function, too, whence |DΘ|(a, b) = |Θ(b−) − Θ(a+)|. As a
consequence, we obtain the strict convergence |DΘh|(I) → |DΘ|(I), which implies
the equality sign in (5.3), on account of Theorem 5.7.

By exploiting (in Proposition 5.11) the generalized Gauss-Bonnet theorem 5.8,
we are able to prove that equality holds in (5.3), even in the non trivial case of
surfaces M with positive Gauss curvature.

Theorem 5.10. Let M a smooth (at least of class C3), closed, and compact (not
necessarily oriented) immersed surface in RN+1. For every rectifiable curve c in M
with finite total curvature, TCM(c) <∞,

TCM(c) = F(t)

where F(t) is given by (5.2) and t = ċ is the tantrix of the curve.

Theorem 5.10 holds true as a consequence of the following

Proposition 5.11. Let c : [0, L] → M be a rectifiable curve with finite total curva-
ture (parameterized by arc-length), and let Θ denote the left-continuous representa-
tive of the optimal angle of the parallel transport X along c, with initial condition
X(0) = t(0). Let {Pn} ⊂ PM(c) with modulus µc(Pn) → 0. Assume that Pn is
generated by the consecutive vertexes c(si), where 0 = s0 < s1 < · · · < sm = L
(with {si} and m depending on n), and that every si is not a Jump point of the
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angle function Θ. Also, let Θn denote the angle of the parallel transport Xn along
Pn, with initial condition Xn(0) = t(0). Then, for n sufficiently large there exists a

piecewise constant function Θ̃n : IL → R such that:

(a) for each i = 1, . . . ,m, there exists a parameter s̃i ∈ [si−1, si[ such that

Θ̃h(s) = tiΘ(s̃i+) + (1− ti)Θ(s̃i−)

for any s ∈]si−1, si[, where ti ∈ [0, 1] ;

(b) Var(Θn) ≤ Var(Θ̃n) + εn, where εn → 0+ as n→ ∞.

Proposition 5.11 is proved by exploiting Theorem 5.8, and it is based on the
following localization result, which is illustrated in Figure 4.

Lemma 5.12. Given any one-sidedly smooth curve γ : [0, L] → M, parameterized
in arc length, there is ε0 > 0 such that for any [a, b] ⊂ [0, L] satisfying b − a < ε0
we can find a simply-connected closed set Ω ⊂ M for which γ([a, b]) ⊂ Ω and
γ(a), γ(b) ∈ ∂Ω, in such a way that the minimal geodesic arcs connecting any couple
of points in the curve γ([a, b]) are contained in Ω. In particular, the geodesic arc
connecting γ(a) and γ(b) divides Ω in two connected components.

Figure 4. The simply-connected closed set Ω = B ∩ Ωa+ ∩ Ωb− of
Lemma 5.12. The arc γ is drawn with a continuous line, and the
geodesic arc connecting γ(a) and γ(b) with a dashed line.

The argument outlined in Remark 2.2 is the starting point to takle the proof
of Proposition 5.11 where, moreover, we have to consider the angle of the parallel
transport, and to deal with the extra term given by the integral of the Gauss
curvature.

In order to illustrate our strategy, for a planar curve c in R2, we thus denote
by ω(s) the oriented angle from t(s) to the fixed direction t(0), where we choose
t equal to the left-continuous representative of the BV-function ċ. We assume
moreover that Pn : [0, L] → R2 is parameterized with constant velocity on each
interval ]si−1, si[, in such a way that Pn(si) = c(si) for each i, and that every si is
not a Jump point of t.
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If ωh(s) is the oriented angle from tn(s) to t(0), then ωn(s) is constant on each
interval ]si−1, si[. In order to show that Var(ωh) → Var(ω), by [27, Lemma 1] we
may and do assume that c is a simple arc. Also, by Lemma 5.12 we can reduce to
the following situation, for h large enough.

Denote by ∠t(s)vi the oriented angle from t(s) to vi, where s ∈ [si−1, si[, and
vi is the oriented segment of Pn from c(si−1) to c(si). For i = 1, . . . ,m, letting
αi := ∠t(si−1)vi, if αi 6= 0, we choose the first parameter si in the interval ]si−1, si]
such that c(si) ∈ vi. Then, by Lemma 5.12, the angle βi := ∠t(si)vi cannot have
the same sign as αi, i.e., αi · βi ≤ 0. Moreover, denoting by γi the oriented closed
curve given by the join of the arc ci := c|[si−1,si] plus the segment of Pn from c(si)
to c(si−1), the index of γi on the open set Ui enclosed by γi is equal to the sign of
αi, see Figure 4. Whence:

ω(si)− ω(si−1) = αi − βi , αi 6= 0 , αi · βi ≤ 0 .

Letting now fi(s) := ω(s)− ω(si−1), we get fi(si−1) < αi and fi(si) ≥ αi, when
αi > 0 and βi ≤ 0, whereas fi(si−1) > αi and fi(si) ≤ αi, when αi < 0 and βi ≥ 0.
Therefore, using that ω is a function of bounded variation, we find s̃i ∈]si−1, si[
such that either αi = ti fi(s̃i+) + (1− ti)fi(s̃i−) for some ti ∈ [0, 1], if s̃i is a Jump
point of fi, or αi = fi(s̃i), otherwise. When αi = 0, we clearly have αi = fi(0).

Recall that ω(s0) = 0 and αi := ∠t(si−1)vi. Setting βi := ∠t(si)vi, by the
previous discussion based on Lemma 5.12, we also get:

ω(sj)− ω(sj−1) = αj − βj ∀ j = 1, . . . ,m .

Moreover, for j = 1, . . . ,m − 1, the oriented turning angle of the polygonal Pn at
the corner point c(sj) is equal to αj+1 − βj . We thus have ωn(s) = α1 if s ∈]s0, s1[,
whereas if s ∈]si−1, si[, and i = 2, . . . ,m, then

ωh(s) = α1 +

i−1∑
j=1

(αj+1 − βj) = αi +

i−1∑
j=1

(αj − βj)

= αi +
i−1∑
j=1

(ω(sj)− ω(sj−1)) = αi + ω(si−1) .

We thus conclude that for each i = 1, . . . ,m there exists s̃i ∈ [si−1, si[ and ti ∈ [0, 1]
such that

ωh(s) = ti ω(s̃i+) + (1− ti)ω(s̃i−) ∀ s ∈]si−1, si[ .

The above property, that actually expresses the parallelism condition in terms of
angle functions, implies that ωm is a competitor to the computation of the essential
variation of ω, whence Var(ωn) ≤ Var(ω). By the weak-∗ BV convergence of ωn to
ω, which ensures that Var(ω) ≤ lim infnVar(ωn), we obtain the strict convergence
Var(ωn) → Var(ω).

5.5. Curves into Riemannian surfaces. Our previous results extend the more
general case of curves into Riemannian surfaces, i.e., 2-dimensional Riemannian

manifolds (M̃, g). We assume that M̃ is smooth (at least of class C3), closed,
and compact. Recall that we can always find a smooth isometric embedding F :

M̃ ↪→ RN+1 of M̃ into a surface M = F (M̃) immersed in the (N +1)-dimensional
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Euclidean space, for some N ≥ 3. Since the total intrinsic curvature of piecewise
smooth curves involves the geodesic curvature and the turning angles at corner

points, we do not need M̃ to be oriented.

We first extend Definition 5.3, by saying that the total intrinsic curvature of any

curve γ in M̃ is

TCM̃(γ) := lim
ε→0+

sup{kM̃(P̃ ) | P̃ ∈ Σε(γ)}

where Σε(γ) is the class of polygonals P̃ in M̃ inscribed in γ and with modulus

µγ(P̃ ) < ε, and kM̃(P̃ ) is the rotation of P̃ , both modulus and rotation being

defined as in the case of surfaces M in RN+1.

Theorem 5.13. For every curve γ in M̃ with finite total intrinsic curvature, we
have

TCM̃(γ) = F(t)

where the energy functional F(t) is defined by (5.2) in correspondence to the tangent

indicatrix t = ċ of c = F ◦ γ, and F is any isometric embedding of M̃ as above.

In order to prove Theorem 5.13, following e.g. [10, Sec. 4.12], on small open do-

mains U of M̃ homeomorphic to a disk, we introduce the geodesic polar coordinates
ds2 = dr2 + g(r, φ) dφ2, where g is a non-negative smooth function on U . We shall
denote by f,r, f,ϕ, f,rr, f,rϕ, and f,ϕϕ the partial first and second derivatives of a
function f(r, φ) on U . The coefficient g of the Riemannian metric satisfies

lim
r→0

g = 0 , lim
r→0

(
√
g),r = 1 ∀φ

compare [9, Sec. 4.6]. Also, in coordinates the non-trivial Christoffel coefficients of
the Levi-Civita connection ∇g of the Riemannian metric are

Γ1
22 = −1

2
g,r , Γ2

12 = Γ2
21 =

1

2g
g,r , Γ2

22 =
1

2g
g,ϕ .

Let γ : I → M̃ be a smooth and regular curve parameterized by arc-length.

Assume that γ(Ĩ) ⊂ U for some open interval Ĩ ⊂ I. Also, we choose the pole of

the coordinates not lying on the trace γ(Ĩ) of the curve. Therefore, there exists a

positive real constant c such that g(r, φ) ≥ c > 0 for every (r, φ) ∈ γ(Ĩ).
In coordinates, we thus have γ(s) = (r(s), φ(s)) for some smooth functions r(s)

and φ(s) satisfying 〈γ̇(s), γ̇(s)〉g = ṙ2 + g(r, φ) φ̇2 = 1 for every s ∈ Ĩ. Therefore,
the unit tangent vector and unit conormal are

γ̇ = (ṙ, φ̇) , γ̇⊥ := (−g1/2φ̇, g−1/2ṙ) .

The acceleration vector ∇γ̇ γ̇ can be written in components as (∇γ̇ γ̇)
k = γ̈k +

Γk
ij γ̇

iγ̇j , for k = 1, 2, so that in the previous local coordinates we get

(5.4) (∇γ̇ γ̇)
1 = r̈ − 1

2
g,r φ̇

2 , (∇γ̇ γ̇)
2 = φ̈+

1

g
g,r ṙ φ̇+

1

2g
g,ϕ φ̇

2 .
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We have 〈∇γ̇ γ̇, γ̇〉g = 0, whence ∇γ̇ γ̇ = Kg γ̇
⊥, where Kg := 〈∇γ̇ γ̇, γ̇

⊥〉g is the
geodesic curvature of γ, so that |Kg| = |∇γ̇ γ̇|g. This yields to the local expression:

(5.5)
Kg =

√
g
[
−φ̇ (∇γ̇ γ̇)

1 + ṙ (∇γ̇ γ̇)
2
]

=
√
g
[
(ṙ φ̈− φ̇ r̈) +

1

2

(
g,r φ̇

3 + 2
g,r
g
ṙ2 φ̇+

g,ϕ
g
ṙ φ̇2

)]
.

Example 5.14. If e.g. M̃ = M = S2 and g(r, φ) = sin2 r, with r = θ and φ = ϕ,
using that

Γ1
22 = − sin θ cos θ , Γ2

12 = Γ2
21 = cot θ , Γ2

22 = 0

we recover the formula (2.13) for Kg.

Remark 5.15. We also recall that if ω denotes the angle between γ̇ and the fixed
direction (1, 0), we find

tanω =
√
g
φ̇

ṙ
, ω̇ = Kg − (

√
g),r φ̇ .

Therefore, if the curve γ parameterizes the positively oriented boundary of the
smooth domain U , by Stokes theorem, compare [10, Sec. 4.12], one has∮

∂U
(
√
g),r φ̇ ds = −

∫
U
K dA , K = − 1

√
g
(
√
g),rr

where K is the Gauss curvature of (M̃, g), yielding to the local formula of Gauss-
Bonnet theorem: ∫

U
K dA = 2π −

∮
∂U

Kg ds .

Now, given an isometric embedding F : M̃ ↪→ M ⊂ RN+1, we let g and ∇ denote
the (Gaussian) metric and (Levi-Civita) connection induced by the Euclidean metric
of RN+1 on M. The pull-back of g and of ∇ through F agree with the metric g
and Levi-Civita connection ∇g on M, respectively. Therefore, in local coordinates
as above, writing F = F (r, φ) : U → RN+1, we have

(5.6) F,r • F,r = 1 , F,r • F,ϕ = 0 , F,ϕ • F,ϕ = g .

By computing the partial second derivatives, we thus obtain the six formulas for
the scalar products in RN+1

(5.7)
F,r • F,rr = 0 , F,r • F,rϕ = 0 , F,r • F,ϕϕ = −1

2
g,r ,

F,ϕ • F,rr = 0 , F,ϕ • F,rϕ =
1

2
g,r , F,ϕ • F,ϕϕ =

1

2
g,ϕ .

Letting c(s) := F ◦ γ(s), where s ∈ Ĩ, the unit tangent vector and conormal
corresponding to γ̇ and γ̇⊥ take the expression

t = ṙ F,r + φ̇ F,ϕ , u = −g1/2φ̇ F,r + g−1/2ṙ F,ϕ .

The curvature vector of the curve c in RN+1 then becomes

(5.8) k = ṫ = r̈ F,r + φ̈ F,ϕ + ṙ2 F,rr + 2 ṙ φ̇ F,rϕ + φ̇2 F,ϕϕ .
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Computing the geodesic curvature of c in M through the formula Kg := ṫ • u, by
(5.6) and (5.7) we obtain:

Kg = −g1/2 φ̇
(
r̈ + φ̇2

(
−1

2
g,r

))
+ g−1/2ṙ

(
g φ̈+ 2 ṙ φ̇

(1
2
g,r

)
+ φ̇2

(1
2
g,ϕ

))
=

√
g
[
(ṙ φ̈− φ̇ r̈) +

1

2

(
g,r φ̇

3 + 2
g,r
g
ṙ2 φ̇+

g,ϕ
g
ṙ φ̇2

)]
which agrees with the local expression (5.5) for the geodesic curvature of γ in M̃.

Remark 5.16. If γ is a geodesic in M̃, the curve c = F ◦ γ is a geodesic in M,
whence the curvature vector ṫ is orthogonal to both F,r and F,ϕ. By (5.8), (5.6)
and (5.7) we have

0 = ṫ • F,r = r̈ − 1

2
g,r φ̇

2 , 0 = ṫ • F,ϕ = g φ̈+ g,r ṙ φ̇+
1

2
g,ϕ φ̇

2

and hence for a geodesic c one recovers the local expressions of the equations ∇γ̇ γ̇ =
0 from (5.4) :

(5.9) r̈ =
1

2
g,r φ̇

2 , φ̈ = − 1

2g

(
2g,r ṙ φ̇+ g,ϕ φ̇

2
)
.

Summing up, length, angles and geodesics are preserved by isometries, and the
intrinsic local expression (5.5) does not depend on the choice of isometric embedding.

In a similar way, one checks that the rotation of a polygonal P̃ in M̃ is an intrinsic
notion. As a consequence, we obtain:

Proposition 5.17. For any piecewise smooth curve γ in M̃, we have

TCM̃(γ) = TCM(c) if c := F ◦ γ
independently of the chosen isometric embedding F .

Moreover, all the previous results obtained for curves c in surfaces M of RN+1

extend to curves γ in a Riemannian surface (M̃, g). In fact, it suffices to work with
c = F ◦ γ for any isometric embedding F , and to use standard arguments based on
local geodesic coordinates and partition of unity.

We point out that a bit of care is needed when checking the validity of the
compactness theorem 5.5. In fact, by a quick inspection it turns out that its proof
is the unique point of the previous theory where we used non-intrinsic quantities.
On account of Proposition 5.17 and Theorem 5.10, we finally conclude with the
validity of Theorem 5.13.

5.6. Development of curves. The original idea of parallel transport by Tullio
Levi-Civita involves the concept of development of a curve on a surface. If e.g.
M = S2, it corresponds to drawing in a plane the points of the trace of the oriented
curve in S2 as the 2-sphere rolls without slipping or spinning in the plane, while
staying tangent to the plane at the points of the curve. The above construction
implies that the scalar curvature of the developed curve on R2 is equal to the
modulus of the geodesic curvature of the given curve in S2, see Example 5.18.

We now wish to analyze the relationship between the definition of total intrinsic
curvature and the notion of development of a smooth curve. We point out that
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similar arguments, based on considering iterations of the development of the “com-
plete tangent indicatrix”, are proposed by Reshetnyak [27] as a way to treat the
“curvatures” of an irregular curve in RN+1.

Following e.g. [9], if γ : I → M is a regular, smooth, and simple curve on
a surface M ⊂ R3, and ṅ(s) 6= 0, where, we recall, n(s) is the unit normal
n(s) := γ̇(s)/‖γ̇(s)‖, then the envelope of the tangent planes is the ruled surface Σ
parameterized by

X(s, v) := γ(s) + v
n(s)× ṅ(s)

|ṅ(s)|
that in case M = S2 clearly becomes X(s, v) := γ(s) + v u(s). Around the trace of
the curve, the ruled surface Σ has zero Gauss curvature, and hence, by Minding’s
theorem, it is locally isometric to a planar domain. The parallel transport of tangent
fields X(s) along the curve is the same, when considering γ either as a curve on
M or as a curve on Σ. In particular, when X(s) = t(s), one can use either local
coordinates on M or on Σ in order to obtain the geodesic curvature Kg of the curve
γ. As a consequence, the parallel transport can be computed locally by pulling back
the parallel transport along the development of the curve on the plane R2.

Moreover, we can define a tubular neighborhood (a strip) Σ of the envelope of the
tangent planes to M along γ, in such a way that Σ is a surface with Gauss curvature
equal to zero. As a consequence, the total curvature TCΣ(γ) of γ as a curve in Σ is

well-defined, according to Definition 5.3, by taking inscribed polygonals P̃ in Σ with
modulus sufficiently small (according to the width of the strip Σ, which actually
depends on the maximum of the modulus of the geodesic curvature of the curve).

By means of the same vertexes as for P̃ , we may correspondingly consider the
polygonal P in M inscribed in γ. However, in general the rotation of P in M is

different from the rotation of P̃ in Σ, i.e.,

kM(P ) 6= kΣ(P̃ ) .

In fact, if e.g. γ is a parallel of the 2-sphere M = S2, and the vertexes of P

are taken at equidistant points along γ, then the angles between P̃ and γ are equal
to the angles between the developed curve in R2 and the corresponding polygonal,
whence they are smaller than the angles between P and γ.

Example 5.18. Following Example 2.9, if M = S2 and γ = cθ0 is the parallel with
constant co-latitude θ0 ∈]0, π/2], the geodesic polar coordinates on S2 give g =
sin2 r, so that r(s) ≡ θ0 and φ(s) = s/ sin θ0, where s ∈ [0, 2π sin θ0]. The geodesic
polar coordinates on Σ give instead g = r2, whence r(s) ≡ tan θ0 and φ(s) = cot θ0·s,
where again s ∈ [0, 2π sin θ0]. Therefore, the corresponding developed curve γ̃ in
R2 is the arc of a circle of radius tan θ0 and length 2π sin θ0, i.e.,

γ̃(s) = tan θ0
(
cos(cot θ0 · s), sin(cot θ0 · s)

)
, s ∈ [0, 2π sin θ0] .

The pointwise scalar curvature of γ̃ is the reciprocal of the curvature radius of γ̃,
and hence it is equal to the pointwise geodesic curvature Kg ≡ cot θ0 of the parallel
c = cθ0 , whereas the total curvature of γ̃ is equal to 2π cos θ0, i.e., to the total
curvature TCS2(cθ0) of the parallel.
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Notwithstanding, the total curvature TCΣ(γ) of γ in the strip Σ can be computed
by means of its development:

Proposition 5.19. Let γ be a regular, smooth, and simple curve on a smooth
surface M ⊂ R3, with ṅ 6= 0 everywhere. We have:

TCΣ(γ) =

∫
γ
|Kg| ds .

Now, for any smooth curve γ as in Proposition 5.19, Theorem 5.1 says that
the total curvature TCM(γ) agrees with the integral on the right-hand side of the
previous formula, whence we get:

TCM(γ) = TCΣ(γ) .

In particular, if {Pn} ⊂ PM(γ) satisfies µγ(Pn) → 0, and {P̃n} is (for n large
enough) the corresponding sequence of inscribed polygonals in Σ, even if in general

one has kM(Pn) 6= kΣ(P̃n), we conclude that

lim
n→∞

kM(Pn) = lim
n→∞

kΣ(P̃n) =

∫
γ
|Kg| ds .
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Schröder, Sullivan, and Ziegler, eds.), Oberwolfach Seminars, vol. 38, Birkäuser, 2008.
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delle Scienze 53/A, I-43124 Parma, Italy

E-mail address : domenico.mucci@unipr.it

A. Saracco
Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Università di Parma, Parco Area
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