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The special cases 1 ≤ q < p =∞ and q = n− 1 < p = n were studied in details in
[13].

Remark 1.1. In the recent work [1], the weak (p, n− 1)-quasiconformal mappings
were considered, but the article [1] repeats some results from works [13, 35, 41, 42].
In the our present work, we recall the basic properties of the weak quasiconfor-
mal mappings and we consider its applications to the weighted Poincaré-Sobolev
inequalities.

In the frameworks of the geometric function theory generalizations of quasicon-
formal mappings base on (weighted) moduli inequalities and are called Q-mappings
[25]. In the recent articles [10, 28], it was proved that the weak (p, n−1)-quasiconformal
mappings are Q-homeomorphisms with Q ∈ L1(Ω).

The weighted Poincaré-Sobolev inequalities represent the significant part of the
geometric analysis of PDEs, see, for example, [26]. The applications of the weak
(p, q)-quasiconformal mappings to the weighted Sobolev embedding theory base on
weights which are generated by the weak quasiconformal geometry of domains. The
weights which are Jacobians of (quasi)conformal mappings represent natural weights
of the weighted Poincaré-Sobolev inequalities and were considered in [14, 15]. The
weighted Poincaré-Sobolev inequalities with quasiconformal weights were considered
in [20]. In the present paper we prove the weighted Poincaré-Sobolev inequalities
with weights which are (inverse) Jacobians of weak (p, q)-quasiconformal mappings:

Let a bounded domain Ω̃ ⊂ Rn be such that there exists a weak (p, q)-quasiconformal

mapping φ : Ω → Ω̃, 1 ≤ q ≤ p < ∞, where Ω ⊂ Rn is a bounded (s, q)-Poincaré-
Sobolev domain, and φ has the Luzin N -property if p > n. Then the weighted
(s, p)–Poincaré-Sobolev inequality

inf
c∈R

∫
Ω̃

|f(y)− c|sw(y) dy


1
s

≤ Bw
s,p(Ω̃)

∫
Ω̃

|∇f(y)|p dy


1
p

holds for any function f ∈ W 1
p (Ω̃) with the weight w(y) = Jφ−1(y), where Jφ−1(y)

is a volume derivative of the inverse mapping φ−1 : Ω̃→ Ω.

In the second part of the article we consider applications of two-dimensional
weak (p, q)-quasiconformal mappings, in the limit case q = 1 < p = 2, to the theory
of elliptic operators. Spectral estimates of Neumann eigenvalues of the Laplace
operator in non-convex domains are the long-standing complicated problem [30, 31].
The approach, which allows to obtain estimates in non-convex domains, is based on
the geometric theory of composition operators on Sobolev spaces [41, 42] and was
suggested in [16, 17]. In the present article, we give estimates of the first non-trivial
eigenvalue of the Neumann-Laplacian in two-dimensional Hölder cusp domains:

Let Qα ⊂ R2 be the Hölder cusp domain. Then the first non-trivial Neumann
eigenvalue of the Laplace operator satisfies

µ1(Qα) ≥
4(α+ 1)

9π3α
.
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The applications of the weak (p, q)-quasiconformal mappings to the Sobolev ex-
tension theory can be found in the recent works [22, 43].

2. Sobolev spaces and weighted embedding theorems

2.1. Sobolev spaces. Let us recall the basic notions of Sobolev spaces and the
change of variables formula. Let Ω be an open subset of the Euclidean space Rn.
The Sobolev space W 1

p (Ω), 1 ≤ p ≤ ∞, is defined [26] as a Banach space of locally
integrable weakly differentiable functions f : Ω → R equipped with the following
norm:

∥f |W 1
p (Ω)∥ = ∥f | Lp(Ω)∥+ ∥∇f | Lp(Ω)∥,

where ∇f is the weak gradient of the function f , i. e. ∇f = ( ∂f
∂x1

, ..., ∂f
∂xn

). In

accordance with the non-linear potential theory [27] we consider elements of Sobolev
spacesW 1,p(Ω) as equivalence classes up to a set of p-capacity zero [26]. The Sobolev
space W 1

p,loc(Ω) is defined as a space of functions f ∈ W 1
p (U) for every open and

bounded set U ⊂ Ω such that U ⊂ Ω.
The homogeneous seminormed Sobolev space L1

p(Ω), 1 ≤ p ≤ ∞, is defined as a
space of locally integrable weakly differentiable functions f : Ω→ R equipped with
the following seminorm:

∥f | L1
p(Ω)∥ = ∥∇f | Lp(Ω)∥.

Let Ω and Ω̃ be domains in the Euclidean space Rn. Then a homeomorphism

φ : Ω→ Ω̃ belongs to the Sobolev spaceW 1
p,loc(Ω), if its coordinate functions belong

to W 1
p,loc(Ω). In this case, the formal Jacobi matrix Dφ(x) and its determinant

(Jacobian) J(x, φ) are well defined at almost all points x ∈ Ω. We use |Dφ(x)| to
denote the operator norm of Dφ(x).

Let us recall the change of variables formula for homeomorphisms φ : Ω→ Ω̃. It

can be found, for example, in [19]. Suppose that φ : Ω → Ω̃ is a homeomorphism.
We define a volume derivative of the inverse mapping by

Jφ−1(y) := lim
r→0

|φ−1(B(y, r))|
|B(y, r)|

,

where B(y, r) is a ball with a center at a point x and with a radius r. This function

Jφ−1 belongs to the space L1,loc(Ω̃) and, if φ−1 ∈ W 1
n,loc(Ω̃), then this volume

derivative coincides with the Jacobian a.e. in Ω̃: Jφ−1(y) = J(y, φ−1) for almost all

y ∈ Ω̃ (see, for example, [18, 38]).

Let, in addition, the homeomorphism φ : Ω→ Ω̃ possess the Luzin N−1-property
(the preimage of a set of measure zero has measure zero), then the following change
of variables formula

(2.1)

∫
Ω

f ◦ φ(x)dx =

∫
Ω̃

f(y)Jφ−1(y)dy,

holds for every nonnegative measurable function f : Ω̃→ R.
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2.2. Composition operators on Sobolev spaces. Let Ω and Ω̃ be domains in

the Euclidean space Rn. Then a homeomorphism φ : Ω → Ω̃ generates a bounded
composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

by the composition rule φ∗(f) = f ◦ φ, if for any function f ∈ L1
p(Ω̃), the compo-

sition φ∗(f) ∈ L1
q(Ω) is defined quasi-everywhere in Ω and there exists a constant

Kp,q(φ; Ω) <∞ such that

∥φ∗(f) | L1
q(Ω)∥ ≤ Kp,q(φ; Ω)∥f | L1

p(Ω̃)∥.
The analytic description of composition operators

φ∗ : L1
p(Ω̃)→ L1

q(Ω),

was obtained in [35, 40] and in the limit case p =∞ in [13]. This description is given
in terms of integral characteristics of mappings of finite distortion and represents
the solution of the generalized Reshetnyak Problem. Recall that a homeomorphism

φ : Ω → Ω̃ of the class W 1
1,loc(Ω) is a mapping of finite distortion if Dφ(x) = 0 for

almost all x in Z = {x ∈ Ω : J(x, φ) = 0} [38].
In the case of homeomorphisms φ : Ω→ Ω̃ of the class W 1

1,loc(Ω), one can define

the p-dilatation [5] at a point x ∈ Ω as

Kp(x) = inf{k(x) : |Dφ(x)| ≤ k(x)|J(x, φ)|
1
p }.

Theorem 2.1. A homeomorphism φ : Ω → Ω̃ between two domains Ω and Ω̃
generates a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

if and only if φ ∈W 1
q,loc(Ω), φ has finite distortion, and

Kp,q(φ; Ω) := ∥Kp | Lκ(Ω)∥ <∞, 1/κ = 1/q − 1/p.

The norm of the operator φ∗ has the upper bound ∥φ∗∥ ≤ Kp,q(φ; Ω).

Composition operators on Sobolev spaces have the capacitary description also
[35]. This description, in particular, allows us to establish a connection of the
composition operators theory with the theory of Q-homeomorphisms, as it was
mentioned in the introduction.

First of all, we recall the notion of a variational p-capacity [38]. A condenser
in a domain Ω ⊂ Rn is the pair (F0, F1) of connected disjoint closed relatively to
Ω sets F0, F1 ⊂ Ω. Then a continuous function f ∈ L1

p(Ω) is called an admissible
function for the condenser (F0, F1), if the set Fi ∩Ω is contained in some connected
component of the set Int{x|f(x) = i}, i = 0, 1.

The p-capacity of the condenser (F0, F1) relatively to domain Ω is the following
quantity:

capp(F0, F1; Ω) = inf ∥f |L1
p(Ω)∥p.

Here the greatest lower bound is taken over all admissible functions for the condenser
(F0, F1) ⊂ Ω. If the condenser has no admissible functions we put the capacity equal
to infinity.
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The next two theorems give the capacitary description of composition operators
on Sobolev spaces. The first theorem was not formulated, but proved in [35] by
using the approximation by extremal functions [37].

Theorem 2.2. Let 1 < p <∞. A homeomorphism φ : Ω→ Ω̃ generates a bounded
composition operator

φ∗ : L1
p(Ω̃)→ L1

p(Ω)

if and only if for every condenser (F0, F1) ⊂ Ω̃ the inequality

cap1/pp (φ−1(F0), φ
−1(F1); Ω) ≤ Kp,p(φ; Ω) cap

1/p
p (F0, F1; Ω̃)

holds.

In the case q < p the capacitory description requires set functions introduced in
[35].

Theorem 2.3. [35] Let 1 < q < p <∞. A homeomorphism φ : Ω→ Ω̃ generates a
bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω)

if and only if there exists a bounded monotone countable-additive set function Φ̃p,q

defined on open subsets of Ω̃ such that for every condenser (F0, F1) ⊂ Ω̃ the inequal-
ity

cap1/qq (φ−1(F0), φ
−1(F1); Ω) ≤ Φ̃p,q(Ω̃ \ (F0 ∪ F1))

p−q
pq cap1/pp (F0, F1; Ω̃)

holds.

Recall that a homeomorphism φ : Ω → Ω̃ of domains Ω, Ω̃ ⊂ Rn is called a
(p,Q)-homeomorphism (see, for example, [25, 32]), with a non-negative measurable
function Q, if

Mp (φΓ) ⩽
∫
Ω

Q(x) · ρp(x)dx

for every family Γ of rectifiable paths in Ω and every admissible function ρ for
Γ. The following connection between composition operators on Sobolev spaces and
(p,Q)-homeomorphisms was proved in [28] in the case p = n and it was generalized
for the case n− 1 < p <∞ in [10].

Theorem 2.4. Let Ω and Ω̃ be domains in Rn. Suppose that a homeomorphism

φ : Ω → Ω̃ is a weak (p, n − 1)-quasiconformal mapping. Then φ is a (p′, Q)-
homeomorphism with p′ = p/(p− n+ 1) and Q ∈ L1(Ω).

The weak (p, q)-quasiconformal mappings, 1 ≤ q ≤ p ≤ n, have the following
measure distortion properties [39, 40]:

Proposition 2.5. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal mapping, 1 ≤
q ≤ p ≤ n. Then the inverse mapping φ−1 : Ω̃ → Ω has the Luzin N -property (an

image of a set of measure zero has measure zero) and Jφ−1 ∈ Lt(Ω̃), t =
p

p−q
n−q
n .

In the case n − 1 ≤ q ≤ p ≤ ∞ we have the following differential properties of
the inverse mapping [35, 13].
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Proposition 2.6. Let φ : Ω→ Ω̃ be a weak (p, q)-quasiconformal mapping, n−1 ≤
q ≤ p ≤ ∞, and has the Luzin N -property if q = n− 1. Then the inverse mapping

φ−1 : Ω̃ → Ω belongs to the Sobolev space W 1
p′,loc(Ω̃), has finite distortion and

differentiable a.e. in Ω̃ if p ≤ (n− 1)2/(n− 2).

Remark 2.7. In the case p = (n−1)2/(n−2) we have p′ = n−1 and differentiability

a.e. in Ω̃ follows from [34].

2.3. Weighted Poincaré-Sobolev inequalities. In this section we prove the
weighted Poincaré-Sobolev inequality with weights, which are volume derivatives of
the mappings which inverse to the corresponding weak (p, q)-quasiconformal homeo-
morphisms. Note that by Proposition 2.5, this weight w = Jφ−1 is locally integrable
function.

Let us recall that a bounded domain Ω ⊂ Rn is said to be an (s, q)-Poincaré-
Sobolev domain (see, for example, [12, 16]), 1 ≤ q ≤ s ≤ ∞, if the following
Poincaré-Sobolev inequality

inf
c∈R
∥g − c | Ls(Ω)∥ ≤ Bs,q(Ω)∥∇g | Lq(Ω)∥

holds for any function g ∈W 1
q (Ω) with the best constant Bs,q(Ω) <∞.

Theorem 2.8. Let a bounded domain Ω̃ ⊂ Rn be such that there exists a weak
(p, q)-quasiconformal mapping φ : Ω → Ω̃, 1 ≤ q ≤ p < ∞, where Ω ⊂ Rn is a
bounded (s, q)-Poincaré-Sobolev domain, and φ has the Luzin N -property if p > n.
Then the weighted (s, p)–Poincaré-Sobolev inequality

inf
c∈R

∫
Ω̃

|f(y)− c|sw(y) dy


1
s

≤ Bw
s,p(Ω̃)

∫
Ω̃

|∇f(y)|p dy


1
p

holds for any function f ∈ W 1
p (Ω̃) with the weight w(y) = Jφ−1(y), where Jφ−1(y)

is a volume derivative of the mapping φ−1 : Ω̃→ Ω.

Proof. Let a function f ∈ W 1
p (Ω̃). Since there exists a weak (p, q)-quasiconformal

mapping φ : Ω→ Ω̃, then the composition φ∗(f) belongs to L1
q(Ω) and

(2.2) ∥φ∗(f) | L1
q(Ω)∥ ≤ Kp,q(φ; Ω)∥f | L1

p(Ω̃)∥, f ∈W 1
p (Ω̃).

Because Ω is the bounded (s, q)-Poincaré-Sobolev domain, s ≥ q, then by the
embedding theorem [26] the composition φ∗(f) belongs to Lq(Ω) and so the function
φ∗(f) ∈W 1

q (Ω).
By [39, 40] it is known that weak (p, q)-quasiconformal mappings possess the

Luzin N−1-property, if 1 ≤ q ≤ p ≤ n. Hence by the change of variable formula
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(2.1) and by using that Ω is a bounded (s, q)-Sobolev–Poincaré domain, we have

inf
c∈R

∫
Ω̃

|f(y)− c|sJφ−1(y) dy


1
s

= inf
c∈R

∫
Ω

|f(φ(x))− c|s dx

 1
s

≤ Bs,q(Ω)

∫
Ω

|∇f(φ(x))|q dx

 1
q

,

where Bs,q(Ω) is a best constant in the (s, q)-Sobolev–Poincaré inequality.
By the inequality (2.2) we obtain

inf
c∈R

∫
Ω̃

|f(y)− c|sJφ−1(y) dy


1
s

≤ Bs,q(Ω)

∫
Ω

|∇f(φ(x))|q dx

 1
q

≤ Bs,q(Ω)Kp,q(Ω;φ)

∫
Ω̃

|∇f(y)|p dy


1
p

= Bw
s,p(Ω̃)

∫
Ω̃

|∇f(y)|p dy


1
p

,

for any function f ∈W 1
p (Ω̃).

The constant Bw
s,p(Ω̃) has the following estimate:

Bw
s,p(Ω̃) ≤ Bs,q(Ω)Kp,q(Ω;φ).

□

3. Spectral estimates of elliptic operators

In this section we give spectral estimates of the two-dimensional Laplace operator
in Hölder cusp domains. The detailed description of applications of the geometric
theory of composition operators on Sobolev spaces to the spectral theory of non-
linear elliptic operators, see for example [8, 16, 17].

In this section we consider the two-dimensional weak (p, q)-quasiconformal map-
pings in the limit case 1 = q < p = 2. The two-dimensional weak (2, 1)-quasicon-
formal mappings we will call as weak quasiconformal mappings. Namely, a homeo-

morphism φ : Ω→ Ω̃ we call a weak quasiconformal mapping, if φ ∈W 1
1,loc(Ω), has

finite distortion, and

K(φ; Ω) =

∫
Ω

|Dφ(x)|2

|J(x, φ)|
dx

 1
2

<∞.

Recall that weak quasiconformal mappings coincide with Q-homeomorphisms, Q ∈
L1(Ω).

In the case of bounded domains Ω, Ω̃ ⊂ R2, by the measurable Riemann mapping

theorem [2], there exists a K-quasiconformal mapping φ : Ω → Ω̃, which will be a
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weak quasiconformal mapping, since

K(φ; Ω) =

∫
Ω

|Dφ(x)|2

|J(x, φ)|
dx

 1
2

≤

∫
Ω

K dx

 1
2

= (K|Ω|)
1
2 <∞.

Note, that the class of weak quasiconformal mappings wider than the class of
usual quasiconformal mappings and such mappings can be easily constructed ex-
plicitly.

Now we consider the Neumann spectral problem for the Laplace operator{
−∆u = µu in Qα,
∂u
∂ν = 0 on ∂Qα,

in the Hölder cusp domains Qα ⊂ R2, 1 < α <∞, which are the images of the square
Q = {(x, y) : |x|+ |y| ≤ 1} under locally Lipschitz homeomorphisms φ : Q→ Qα of
the form

φ(x, y) =

{
(x, yα), y ≥ 0,

(x,−yα), y < 0.

By the Min-Max Principle the first non-trivial Neumann eigenvalue in the do-
mains Ω which satisfy the quasihyperbolic boundary condition [23] can be charac-
terized as

µ1(Ω) = (B2,2(Ω))
−2 ,

where B2,2(Ω) is the best constant in the corresponding Poincaré-Sobolev inequality.
The Hölder cusp domains Qα ⊂ R2 satisfy this quasihyperbolic boundary con-

dition. Therefore, we need estimate B2,2(Qα) in the Hölder cusp domain Qα. To
do this we first provide the estimate for the constants B2,2(ΩL) in the Lipschitz
domain ΩL ⊂ R2. The following version of the critical Poincaré -Sobolev inequality
on disks with the upper estimates of the sharp constant was proven in [9].

Theorem 3.1 ([9]). Let f ∈W 1
1 (Ω), Ω ⊂ R2. Then for any r > 0 and any z0 ∈ Ω,

such that D(z0, r) ⊂ Ω, the following inequality holds:

(3.1)

∫∫
D(z0,r)

|f(z)− fD(z0,r)|
2 dxdy


1
2

≤ 3
√
π3

4

∫∫
D(z0,r)

|∇f(z)| dxdy.

Remark 3.2. Theorem 3.1 in [9] contains an additional assumption dist(z0, ∂Ω) >
2r instead of D(z0, r) ⊂ Ω. In fact, authors of [9] proved the theorem without this
additional assumption. Indeed, in the proof authors considered an extension by
reflection of a function f defined on a disk D(z0, r) ⊂ Ω to a disk D(z0, 2r). But
it is irrelevant whether the initial function f is well defined on the disk D(z0, 2r)
or not, because an extension E(f) of f is well defined on the disk of double radii
by its definition. Therefore, we need not additionally assume, that f is defined on
D(z0, 2r) and it is enough to assume that D(z0, r) ⊂ Ω only.

By using the bi-Lipschitz change of variables, we can extend this result from a
disk to a general domain with the Lipschitz boundary and obtain an estimate for
the constant B2,2(ΩL).
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Theorem 3.3. Suppose that there exists a bi-Lipschitz mapping ψ : D(0, r) → ΩL

and that f ∈W 1
1 (ΩL). Then the following inequality holds:

(3.2)

∫∫
ΩL

|f(x, y)− fΩL
|2 dxdy


1
2

≤ 3L2
√
π3

4

∫∫
ΩL

|∇f(x, y)| dxdy,

where L is the bi-Lipschitz constant of the mapping ψ.

Proof. Without loss of generality we can assume, that fΩL
= 0. Note, that in this

case by the Min-Max Principle we have thatinf
c∈R

∫∫
ΩL

|f(u, v)− c|2 dudv


1
2

=

∫∫
ΩL

|f(u, v)|2 dudv


1
2

,

where ∫∫
ΩL

f(u, v) dudv = 0.

Since the function f belongs to the space W 1
1 (ΩL), the composition f ◦ ψ of the

function f with a bi-Lipschitz mapping ψ : D(0, r) → ΩL belongs to W 1
1 (D(0, r)),

and we can apply the change of variables formula.

∫∫
ΩL

|f(u, v)|2 dudv


1
2

=

inf
c∈R

∫∫
ΩL

|f(u, v)− c|2 dudv


1
2

=

inf
c∈R

∫∫
D(0,r)

|f(ψ(x, y))− c|2|J((x, y), ψ)| dxdy


1
2

≤ esssup
(x,y)∈D(0,r)

|J((x, y), ψ)|
1
2

∫∫
D(0,r)

|f(ψ(x, y))− fD(0,r)|2 dxdy


1
2

By Theorem 3.1, we obtain the following estimate:

∫∫
ΩL

|f(u, v)|2 dudv


1
2

≤ 3
√
π3

4
esssup

(x,y)∈D(0,r)
|J((x, y), ψ)|

1
2

∫∫
D(0,r)

|∇f(ψ(x, y))| dxdy.

Using the chain rule and the change of variables formula a second time, we infer
that
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∫∫
ΩL

|f(u, v)|2 dudv


1
2

≤ 3
√
π3

4
esssup

(x,y)∈D(0,r)
|J((x, y), ψ)|

1
2 esssup
(x,y)∈D(0,r)

|Dψ(x, y)|
|J((x, y), ψ)|

∫∫
Ω

|∇f(u, v)| dudv.

By the Hadamard inequality, we can choose a constant L such that

0 < L−1 ≤ |J((x, y), ψ)|1/2 ≤ |Dψ(x, y)| ≤ L.
Then ∫∫

ΩL

|f(u, v)|2 dudv


1
2

≤ 3L2
√
π3

4

∫∫
ΩL

|∇f(u, v)| dudv.

□
Now we are ready to formulate and proof the lower estimates for the first non-

trivial Neumann eigenvalue of the Laplace operator in Hölder cusp domains Qα.

Theorem 3.4. Let Qα ⊂ R2 be the Hölder cusp domain. Then the first non-trivial
Neumann eigenvalue of the Laplace operator satisfies

µ1(Qα) ≥
4(α+ 1)

9π3α
.

Proof. We need estimate the constant B2,2(Qα) in the Poincaré-Sobolev inequality.
The estimate is based on the following anti-commutative diagram [6, 12]:

W 1
2 (Qα)

φ∗
−−−−→ W 1

1 (Q)y y
L2(Qα)

(φ−1)∗←−−−− L2(Q)
First note, that the weak quasiconformal mapping φ : Q → Qα generates a

bounded composition operator

φ∗ : L1
2(Qα)→ L1

1(Q).

Indeed, φ ∈W 1
1,loc(Q) and we have the following calculations:

|Dφ(x, y)| = αyα−1, J((x, y), φ) = αyα−1.

Hence

K(φ;Q) =

4

1∫
0

dx

x∫
0

αyα−1 dy


1
2

=

(
4

α+ 1

) 1
2

and
sup

(x,y)∈Q
|J((x, y), φ)|

1
2 =
√
α.
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Therefore, φ is a weak quasiconformal mapping and, by Theorem 2.1, φ∗ is the
bounded composition operator with ∥φ∗∥ ≤ K(φ;Q). Moreover, as we know that

inf
(x,y)∈Q

|J((x, y), φ−1)| = sup
(x,y)∈Q

|J((x, y), φ)| <∞,

The Poincaré-Sobolev inequality (3.2) implies

inf
c∈R

∫∫
Qα

|f(x, y)− c|2 dxdy


1
2

≤ Bw
2,2(Qα)

1

inf
(x,y)∈Q

|J((x, y), φ−1)|

∫∫
Qα

|∇f(x, y)|2 dxdy


1
2

,

and we conclude

B2,2(Qα) ≤ Bw
2,2(Qα)

1

inf
(x,y)∈Q

|J(x, y, φ−1)|
= B2,1(Q)K2,1(φ;Q) sup

(x,y)∈Q
|J(x, y, φ)|.

It remains to calculate the constant B2,1(Q) in inequality (3.2) for the square
Q = {(x, y) : |x| + |y| ≤ 1}. As the bi-Lipschitz mapping, we consider the radial
transformation ψ : D(0, 1)→ Q, defined by the rule

ψ(x, y) = (l(x, y)x, l(x, y)y), l(x, y) =

√
x2 + y2

|x|+ |y|
.

By calculations, we obtain

|Dψ(x, y)| = l(x, y), J(x, y, ψ) = l2(x, y).

Then, for (x, y) ∈ D(0, 1),

sup
(x,y)
|J((x, y), ψ)|

1
2 sup
(x,y)

|Dψ(x, y)|
J((x, y), ψ)

= 1.

Substituting these values to inequality (3.2) with the bi-Lipschitz mapping ψ, we
obtain

B2,1(Q) =
3
√
π3

4

By combining all the estimates, we infer that

µ1(Qα) ≥
4(α+ 1)

9π3α
.

□
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Poincaré domains, Math. Ann., 323 (2002), 811–830.
[24] L. G. Lewis, Quasiconformal mappings and Royden algebras in space, Trans. Amer. Math.

Soc., 158 (1971), 481–492.
[25] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer

Monographs in Mathematics. Springer, New York, 2009.
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Mech. Anal., 5 (1960), 286–292.
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