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Let Γ be a family of paths inX. A non–negative Borel function ρ isM–admissible,
or simply admissible, for Γ if ∫

γ
ρ ds ≥ 1

for every γ ∈ Γ. For p ∈ [1,∞) the Mp–modulus of Γ is defined as

Mp(Γ) = inf

∫
X
ρp dµ

where the infimum is taken over all admissible functions ρ.
A sequence of non–negative Borel functions ρi, i = 1, 2, ... , is AM–admissible,

or simply admissible, for Γ if

(2.1) lim inf
i→∞

∫
γ
ρi ds ≥ 1

for every γ ∈ Γ. The approximation modulus, AMp–modulus for short, of Γ is
defined as

(2.2) AMp(Γ) = inf
(ρi)

{
lim inf
i→∞

∫
X
ρpi dµ

}
where the infimum is taken over all AM–admissible sequences (ρi) for Γ. We use
the phrase ”almost every path”, a.e. for short, to mean every path except a family
of Mp– or AMp–modulus zero.

If the space X is proper (closed bounded sets are compact), instead of admissible
Borel functions it is possible to use lower semicontinuous non–negative functions as
admissible for the Mp– and AMp–modulus, see [6, Proposition 7.14].

The following lemma contains the most important properties of the AMp– and
Mp–modulus. See [14] and [13] for the properties of the AMp–modulus, [1] for (f)
and [3] and [7] for those of the Mp–modulus.

Lemma 2.1. Suppose that X is a metric space equipped with a Borel measure µ and
p ∈ [1,∞) unless otherwise stated. The AMp– and Mp–modulus are outer measures
in the set of path families in X, i.e.

(a) AMp(∅) = 0,
(b) Γ1 ⊂ Γ2 =⇒ AMp(Γ1) ≤ AMp(Γ2),
(c) Γ =

∪∞
j=1 Γj =⇒ AMp(Γ) ≤

∑∞
i=j AMp(Γj).

(d) If every γ ∈ Γ has a subpath γ̃, then AMp(Γ) ≤ AMp(Γ̃) where Γ̃ is the
family of these subpaths.

The properties (a)–(d) also hold for the Mp–modulus, p ≥ 1.

(e) AM1(Γ) ≤ M1(Γ) and AMp(Γ) = Mp(Γ), p > 1, for every path family Γ.
(f) p > 1 and Γ1 ⊂ Γ2 ⊂ ... =⇒ limi→∞Mp(Γi) = Mp(∪iΓi).
(g) Mp(Γ) = 0 ⇐⇒ there is a Borel function ρ ∈ Lp(X) such that∫

γ
ρ ds = ∞ for every γ ∈ Γ.



MODULUS AND CAPACITY 533

(h) AM1(Γ) = 0 ⇐⇒ there is a sequence (ρi) of non–negative Borel functions
such that

lim
i→∞

∫
γ
ρi ds = ∞ for every γ ∈ Γ and lim inf

i→∞

∫
X
ρi dµ < ∞.

3. Modulus measures

In this section we assume that X is a metric space and µ is a Borel measure in
X.

We employ the following notation for path families associated with arbitrary sets
E, F ⊂ X: Γ(E) denotes the family of all paths in X which meet E, ΓE is the
family of all paths in E and Γ(E,F ) is the family of paths which meet both E and
F . We mostly use the path family Γ(E,X \ E) which consists of paths meeting
both E and its complement.

To the Mp–modulus and AMp–modulus, p ≥ 1, we associate the corresponding
modulus measures E 7→ Mp(Γ(E)) and E 7→ AMp(Γ(E)) where E is an arbitrary
subset of X. By the properties of the Mp– and AMp–modulus in Lemma 2.1 it
is easy to see that the modulus measures are outer measures in X and, moreover,
metric outer measures, see Theorem 1 in [11]. Hence all Borel sets are measurable.
Since for p > 1, Mp(Γ(E)) = AMp(Γ(E)) for every set E, only the AM1–modulus
measure is of interest. Note that AM1(Γ(E)) ≤ M1(Γ(E)) for E ⊂ X.

Remark 3.1. (a) If µ(E) = 0 or E is totally disconnected or, more generally, does
not contain rectifiable paths, then Mp(Γ

E) = AMp(Γ
E) = 0 for p ∈ [1,∞). Note

also that Mp(Γ
E) = 0 does not imply µ(E) = 0.

(b) Let coHp denote the p–codimensional Hausdorff meassure, p ≥ 1, defined as

coHp(E) = sup
δ>0

coHp
δ(E)

where for δ > 0

coHp
δ(E) = inf

{ ∞∑
j=1

µ(B(xj , rj))

rpj
: E ⊂

∞∪
j=1

B(xj , rj), sup
j

rj < δ
}
.

If µ is a doubling measure, i.e.

0 < µ(B(x, 2r)) ≤ Cµ µ(B(x, r)) < ∞ for all balls B(x, r),

then

(3.1) Mp(Γ(E)) ≤ C coHp(E)

where E is an arbitrarary set and C depends only on the doubling constant Cµ, see
Theorem 2.1 in [13]. The standard (n− p)–dimensional Hausdorff measure Hn−p in
Rn satisfies Hn−p ≈ coHp.
(c) If X is a good metric space, then Mp(Γ(E)) = 0 implies µ(E) = 0 and this
yields Mp(Γ

E) = 0, see Proposition 4.9 in [3] and for the measurability question of
E see Proposition 1.5 in [2].

Next we show that the Mp–modulus measure, p ≥ 1, degenerates to either 0 or
∞ on every set E and thus all sets E are Mp–measurable.
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Lemma 3.2. For p ≥ 1 either Mp(Γ
E) = 0 or Mp(Γ

E) = ∞ and the same is true
for AMp(Γ

E).

Proof. We consider the AMp–modulus measure. The proof for the Mp–modulus
measure is simpler.

Suppose that AMp(Γ
E) ∈ (0,∞). Let (ρi) be an admissible sequence for ΓE with

lim inf
i→∞

∫
X
ρpi dµ < ∞.

Then there is a path γ ∈ ΓE such that

(3.2) lim inf
i→∞

∫
γ
ρi ds = M ∈ [1,∞)

since otherwise AMp(Γ
E) = 0, see Lemma 2.1 (h). Choose an integer m > M and

then disjoint intervals Ij ⊂ [0, ℓ(γ)], j = 1, 2, ...m. Let γj = γ|Ij . Since each
γj ∈ ΓE

lim inf
i→∞

∫
γj

ρi ds ≥ 1

and so

lim inf
i→∞

∫
γ
ρi ds ≥ lim inf

i→∞

m∑
j=1

∫
γj

ρi ds ≥
m∑
j=1

lim inf
i→∞

∫
γj

ρi ds ≥ m > M

which contradicts (3.2). □
Theorem 3.3. If p ≥ 1 and E ⊂ X is an arbitrary set, then Mp(Γ(E)) ∈ {0,∞}.
Proof. Note first that Γ(E) = Γ(E,X \ E) ∪ ΓE .

If Mp(Γ
E) = ∞, then Mp(Γ(E)) = ∞ and thus by Lemma 3.2 we can assume

that Mp(Γ
E) = 0 and it suffices to show that Mp(Γ(E,X \ E)) ∈ (0,∞) leads to

contradiction. Let ρ be an admissible function for Γ(E,X \ E) with∫
X
ρp dµ < ∞.

Now for a.e. path γ ∈ Γ(E,X \ E)

(3.3)

∫
γ
ρ ds < ∞

because the family of those paths in Γ(E,X \ E) for which the above integral is
= ∞ has zero Mp–modulus., see Lemma 2.1 (g).

Let γ ∈ Γ(E,X \ E) satisfy (3.3). If γ has a subpath which belongs to ΓE ,
then by Lemma 2.1 (d) the family of these paths γ has zero Mp–modulus because
Mp(Γ

E) = 0. If γ does not belong to this subfamily, then there is t0 ∈ [0, ℓ(γ)] such
that γ(t0) ∈ E and also a sequence of points ti ∈ [0, ℓ(γ)] with γ(ti) ∈ X \ E and
ti → t0. The paths γi obtained by restricting γ to the intervals generated by the
points ti and t0 belong to Γ(E,X \ E) and hence∫

γi

ρ ds ≥ 1

and this contradicts (3.3) by the absolute continuity of an integral. □
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Theorem 3.3 is not true for the AM1–modulus measure. In [12] it is shown that
in a good metric space AM1(Γ(E)) ≈ coH1(E) for each Suslin set E.

4. CapMp –capacity

In this section we assume that X is a proper metric space with a Borel regular
measure µ which is finite on compact sets. In a proper space closed bounded sets
are compact. Since the concept of the CapMp –capacity is based on the modulus
theory, it is essential that X contains plenitude of paths and we assume that X is
qusiconvex. This means that there is c ∈ [1,∞) such that for all x and y in X,
x 6= y, there is a path γ joining x to y with ℓ(γ) ≤ c d(x, y). We do not assume that
X supports the p–Poincaré inequality nor that the measure µ is doubling.

We first recall the basic properties of the CapMp –capacity from [15].
For a Lipschitz function u a non-negative Borel function g is an upper gradient

of u if for every path γ in X

|u(γ(ℓ))− u(γ(0))| ≤
∫
γ
g ds,

see [3, Chapters 1–2] for the properties of functions and their upper gradients. The
lower pointwise dilatation

|∇u(x)| = lim inf
r→0

sup
y∈B(x,r)

|u(y)− u(x)|
r

is an upper gradient of u, see [3, Proposition 1.14]. In Rn, |∇u(x)| is a unique
minimal upper gradient for a Lipschitz function u, see [3, Examples A1].

Let G be a fixed bounded open set in X and E an arbitrary subset of G. An in-
creasing sequence (ui) of non–negative Lipschitz functions in X is called admissible,
(ui) ∈ Ad(E,G), for the condenser (E,G) if ui = 0 in X \G and limi→∞ ui(x) ≥ 1
for x ∈ E. For p ≥ 1 we define

CapMp (E,G) = inf
{
lim inf
i→∞

∫
G
gpi dµ : (ui) ∈ Ad(E,G) and

gi is an upper gradient of ui

}
.

The next theorem contains the basic properties of the CapMp (E,G)-capacity from
[15] and for (d) see Lemma 3.3 in [13].

Theorem 4.1. Let E and Ei, i = 1, 2, ... be subsets of G and p ≥ 1.

(a) E1 ⊂ E2 ⊂ G =⇒ CapMp (E1, G) ≤ CapMp (E2, G) (monotonicity).
(b) K1 ⊃ K2 ⊃ ... compact sets in G =⇒

lim
i→∞

CapMp (Ki, G) = CapMp (
∩
i

Ki, G).

(c) There is a Borel set E′ such that E ⊂ E′ ⊂ G and

CapMp (E′, G) = CapMp (E,G).

(d) CapMp (K,G) = Mp(Γ(K,X \G)) if K ⊂ G is compact.
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(e) AMp(Γ(E,X \ G)) ≤ CapMp (E,G) ≤ Mp(Γ(E,X \ G)) and for p > 1 the
inequalities are equalities.

Since for p > 1, CapMp (E,G) = Mp(Γ(E,X\G)) for all sets E ⊂ G, the properties
of the Mp–modulus imply the following.

Theorem 4.2. If p > 1 then:

(a) CapMp is subadditive. i.e. if Ei ⊂ G, i = 1, 2, ... , then

CapMp (
∪
i

Ei, G) ≤
∑
i

CapMp (Ei, G).

(b) CapMp is a Choquet capacity, i.e. for a Suslin set E ⊂ G,

CapMp (E,G) = sup
{
CapMp (K,G) : K ⊂ E compact

}
.

Proof. The subadditivity of the Mp–modulus, see Lemma 2.1 (c), implies (a). By
the Choquet capacitibility theorem, see [5] and [4], for (b) it suffices subadditivity,
monotonicity and (b) in Theorem 4.1. □

5. Sets of zero Mp–modulus measure and zero CapMp –capacity

In this section we assume that X is proper, quasiconvex and the measure µ
supports the Vitali covering theorem. Note that if µ is doubling, then this comes
for free, see Theorem 1.6 and Remark 1.13 in [9].

A set E ⊂ X has zero p–capacity if for all bounded open sets G, CapMp (E∩G,G) =

0. It is clear that a subset of a set of zero capacity has also zero CapMp –capacity.

Theorem 5.1. Suppose that p > 1 and E ⊂ X is an arbitrary set. Then E has
zero CapMp –capacity if and only if Mp(Γ(E)) < ∞ or, in order words, E has zero
Mp–modulus measure.

Proof. Suppose that E has zero CapMp –capacity. We first show that Mp(Γ
E) = 0.

For each x ∈ E and for r > 0 the set S(x, r) = {z : |z−x| = r} has zero µ–measure
for at most countably many values of r > 0. Hence by the Vitali covering theorem

for each j = 1, 2, ... there is a collection of closed balls B(xji , r
j
i ), i = 1, 2, ... such

that rji < 1/j, µ(S(xji , r
j
i )) = 0 and

µ(Fj) = 0 where Fj = E \
∪
i

B(xji , r
j
i ).

Let Γj be the family of all paths γ in ΓE with diam〈γ〉 > 2/j. Now Γj = Γ1
j ∪ Γ2

j

where γ ∈ Γ1
j meets B(xji , r

j
i ) ∩ E for some i and γ ∈ Γ2

j lies in the set Fj ∩ E.

Now Mp(Γ
2
j ) = 0 because µ(Fj) = 0. On the other hand each γ ∈ Γ1

j meets both

S(xji , r
j
i ) and B(xji , r

j
i )∩E for some i and hence γ ∈ Γ(E∩B(xji , r

j
i ), X \B(xji , r

j
i )).

Now
Mp(Γ

1
j ) = Mp(

∪
i

Γ(E ∩B(xji , r
j
i ), X \B(xji , r

j
i ))) = 0

because by Theorem 4.1 (e) for each i

Mp(Γ(E ∩B(xji , r
j
i ), X \B(xji , r

j
i ))) = 0
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and hence Mp(Γj) = 0 for each j. By the subadditivity of the Mp–modulus
Mp(Γ

E) = 0 because ΓE = ∪jΓj .
Now it suffices to show that Mp(Γ(E,X \ E) = 0. Since X is proper for each

integer j we can choose a covering of E by balls B(xji , r
j
i ) such that rji < 1/j for every

i. Let Γj
i be the family of all paths in Γ(E,X\E) which belong to Γ(E∩B(xji , r

j
i ), X\

B(xji , r
j
i )). Since E has zero CapMp –capacity, Mp(Γ(E∩B(xji , r

j
i ), X \B(xji , r

j
i )) = 0

and thus by Theorem 4.1(e), Mp(Γ
j
i ) = 0 for each i. By the subadditivity of the

Mp–modulus Mp(Γ
j) = 0 where Γj = ∪iΓ

j
i . Let Γ̃j be the family of all paths

γ ∈ Γ(E,X \ E) with diam(〈γ〉) > 2/j. Since each path γ ∈ Γ̃j belongs to Γj ,

Mp(Γ̃j) = 0. Now we obtain

Mp(Γ(E,X \ E)) = Mp(
∪
j

Γ̃j)) = 0

and hence Mp(Γ(E)) = 0.
If Mp(Γ(E)) < ∞, then from Theorem 3.3 it follows that Mp(Γ(E)) = 0 and then

by Theorem 4.1 (e), CapMp (E ∩ G,X \ G) = 0 for each bounded open set G and

consequently E has zero CapMp –capacity. □

Lemma 5.2. If K ⊂ X is compact and has zero CapM1 –capacity, then M1(Γ
K) = 0.

Proof. We first show that

(5.1) M1(Γ(K ∩B(x, r), X \B(x, r))) = 0

for every ball B(x, r). Choose 0 < t1 < t2 ... < r with limi ti = r. Now K ∩B(x, ti)
is compact and by Theorem 4.1 (d)

M1(Γ(K ∩B(x, ti), X \B(x, r))) = CapM1 (K ∩B(x, ti), B(x, r)) = 0

because each subset of a set of zero CapM1 –capacity has zero CapM1 –capacity. On
the other hand∪

i

Γ(K ∩B(x, ti), X \B(x, r))) = Γ(K ∩B(x, r), X \B(x, r))

and by the subadditivity of the M1–modulus we obtain (5.1).
Now we can proceed as in the proof of Theorem 5.1 to conclude M1(Γ

K) = 0. □
The next theorem gives a sufficient condition for zero CapMp –capacity in the case

of compact sets. This result is well known in Rn, see Lemma 2.34 in [8].

Theorem 5.3. If K ⊂ X is compact, Mp(Γ
K) = 0, p > 1 and for some sequence

of bounded open sets

G1 ⊃ G2 ⊃ ... ⊃ K,
∩
i

Gi = K and CapMp (K,Gi) ≤ M < ∞

for all i, then K has zero CapMp –capacity and Mp(Γ(K)) = 0.

Proof. Since

Γ(K,X \Gi) ⊂ Γ(K,X \Gi+1) and
∪
i

Γ(K,X \Gi) = Γ(K,X \K),
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by Lemma 2.1 (f)

M ≥ lim
i→∞

Mp(Γ(K,X \Gi)) = Mp(Γ(K,X \K)),

and because Mp(Γ
K) = 0 we have Mp(Γ(K)) = 0 by Theorem 3.3. Now Theorem

5.1 implies that K has zero CapMp –capacity. □
Remark 5.4. (a) Theorem 5.3 is not true for p = 1. For the simplest example take
X = R, K = {0}, and Gi = (−1/i, 1/i). Then M1(Γ

K) = 0 because K does not
contain paths and it easily follows CapM1 (K,Gi) = 2 for all i but

M1(Γ(K,R \K)) ≥ lim
i
M1(Γ(K,R \Gi)) = 2

and hence M1(Γ(K)) > 0.
(b) The subspace X = {(x, y) ∈ R2 : 0 ≤ y ≤ |x| ≤ 1} of R2 equipped with the
Lebesgue measure m2 is a proper, 2–quasiconvex metric space and m2 is a doubling
measure in X. Set Gi = {(x, y) ∈ X : x > −1/i} and K = {(x, y) ∈ X : x ≥ 0}.
Now for each i and 1 ≤ p ≤ 2, CapMp (K,Gi) = 0, since Γ(K,X \ Gi) ⊂ Γ({(0, 0)})
and Mp(Γ({(0, 0)})) = 0, see e.g. (3.1). In this case Mp(Γ

K) = ∞ and thus
Mp(Γ

K) = 0 is a necessary condition in Theorem 5.3. Note that m2(K) > 0 and X
does not support the p–Poincaré inequality.

6. Sets of zero M1–modulus measure and zero CapM1 –capacity

Relations between the CapM1 –capacity and the M1–modulus measure are more
complicated than those in the case p > 1. However, Theorem 4.1 (d) makes it
possible to extend Theorem 5.3 to the M1–modulus measure with slightly stronger
assumptions. We assume that X is a proper quasiconvex metric space with a Borel
regular measure µ finite on compact sets.

Theorem 6.1. Suppose that a compact set K ⊂ X satisfies M1(Γ
K) = 0. Then K

has zero CapM1 –capacity if and only if M1(Γ(K,X \K)) = 0 or M1(Γ(K)) = 0, i.e.
K has zero M1–modulus measure.

Proof. Suppose first that K has zero CapM1 –capacity. Since M1(Γ
K) = 0 it suffices

to show that M1(Γ(K,X \K)) = 0. Choose bounded open sets G1 ⊃ G2 ⊃ ... ⊃ K
such that ∩iGi = K. If now γ ∈ Γ(K,X \K) then γ meets some X \Gi and hence
γ ∈ Γ(K,X \Gi). By Theorem 4.1 (d), M1(Γ(K,X \Gi)) = 0 for each i and since

Γ(K,X \K) =
∪
i

Γ(K,X \Gi),

the subadditivity of the M1–modulus yields M1(Γ(K,X \K)) = 0.
Suppose that M1(Γ(K,X\K)) = 0. Since also M1(Γ

K) = 0 we have M1(Γ(K)) =
0 and for an arbitrary bounded open set G, Γ(K ∩ G,X \ G) ⊂ Γ(K) and thus
M1(Γ(K ∩G,X \G)) = 0. This implies that K has zero CapM1 –capacity. □

References
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[12] V. Honzlová–Exnerov 叩, O. Kalenda, J. Mal 箪 and O. Martio, Plans of measures and
AM-modulus, J. Funct. Anal. 281 (2021): 109205.
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