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analytic function defined on the unit disk, the radial limits exist at almost every
points on the unit circle. It remains, however, open up to now whether one can
extend this result to the case of quasiregular mappings in higher dimensions. In
fact, it is unknown even for bounded quasiregular mappings. A major breakthrough
on this problem was made by Kai Rajala [17], who proved that a quasiregular local
homeomorphism f : Bn(0, 1) → Rn, n ≥ 3, has radial limits at certain point on the
boundary Sn−1(0, 1) = ∂Bn(0, 1). More precisely, there exists a point ξ ∈ Sn−1(0, 1)
so that the radial limit

lim
t→1

f(tξ) = bξ ∈ Rn exists.

If we add more restrictions on the growth of the multiplicity function of f , then one
can prove the almost everywhere existence of radial limits on Sn−1(0, 1) and even
with a Hausdorff dimensional estimate on the “bad” set, where the radial limits do
not exist; see [11] and [8].

We shall restrict our attension to Rajala’s result [17] and consider a natural
extension by relaxing the definition domain Bn(0, 1) to the more general class of
bounded uniform domains introduced by Gehring and Osgood [4].

Recall that a bounded domain Ω ⊂ Rn is called a c-uniform domain if each pair of
points x1, x2 ∈ Ω can be joined by a curve γ ⊂ Ω with the following two properties:

ℓ(γ) ≤ c|x1 − x2|,

min
i=1,2

ℓ(γ(xi, x)) ≤ cd(x, ∂Ω) for all x ∈ γ.

We shall indeed use a variant of uniform domain introduced by Äkkinen and Guo
[2]. For it, we need also the definition of John domains. Recall that a bounded
domain Ω ⊂ Rn is called a c-John domain with center x0 ∈ Ω if every point x ∈ Ω
can be joined by a rectifiable curve γ : [0, l] → Ω, parameterized by arc length, such
that γ(0) = x and γ(l) = x0 with the property that

(1.1) d(γ(t), ∂Ω) ≥ t

c
for every t ∈ [0, l].

It is easy to check that each boundary point of a John domain Ω ⊂ Rn can be
connected to x0 by a curve γ satisfying (1.1). A curve γ with such property is called
a c-John curve. For a point ξ ∈ ∂Ω, we shall denote by Ic(ξ, x0) the collection of
all c-John curves connecting ξ to x0. Notice that for a bounded c-uniform domain
Ω ∈ Rn, there exists a point x0 ∈ Ω such that Ω is a c1-John domain with center
x0, where c1 depending only on c; see [23, Section 2.17]. Thus, we define

Definition 1.1 (Uniform domain with center). We say that a bounded domain
Ω ⊂ Rn is a c-uniform domain with center x0 if it is a uniform domain and at the
same time it is a c-John domain with center x0.

Boundary behaviours of quasiregular mappings or even the more general class
of mappings of finite distoriton, with certain regularity restrictions, were studied
in uniform domains with centers by Äkkinen and Guo in [2]. In particular, exis-
tence and uniqueness of limits along John curves were obtained for these classes of
mappings.
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From now on, unless specified, the dimension n is always assumed to be bigger
than or equal to 3. Our main result of this short note is the following theorem,
which can be regarded as a natural extension of [17, Theorem 1.1].

Theorem 1.1. Let Ω ⊂ Rn be a c0-uniform domain with center x0 and f : Ω → Rn

a quasiregular local homeomorphism. Then, there exists a point ξ ∈ ∂Ω such that
for any c0-John curve γ ∈ Ic0(ξ, x0),

lim
t→0+

f(γ(t)) = bξ ∈ Rn

exists and the limit bξ is independent of the choice of the c0-John curve γ ∈ Ic0(ξ, x0).

As was pointed out earlier, if we add more regularity restrictions on f , then we
could prove the stronger almost every existence (even possibly with a dimensional
estimate) of limits along John curves; see [2, Section 3] for more along this direction.
Similar to [17], we will prove a more general result; see Theorem 3.1 below. In
particular, it would imply that limits along John curves exist for infinitely many
points on ∂Ω; see the remark after Theorem 3.1.

For spatial K-quasiregular mappings, the local homeomorphism assumption in
Theorem 1.1 can be replaced by a smallness assumption K ≤ 1 + ϵ(n); see [14, 16].
The assumption n ≥ 3 is necessary for the conclusion of Theorem 1.1; see [17, Page
271] for a counter-example in the planar case.

The idea for the proof of Theorem 1.1 is very similar to the one used by Rajala
[17] module some minor technical modifications: we start from a line segment γ
on the image, such that γ terminates at a point y belonging to the cluster set of
∂Ω, and it has a lift γ′ which approaches a point x on ∂Ω. Choose a John curve γ̂
connecting x0 to x. Then we try to relate the properties of γ′ to the behaviour of
the image of the John curve γ̂. An essential difference from the situation of [17] is
that the lift γ′ does not have a simple tangential/non-tangential behaviour. Instead,
we make use of suitable quasihyperbolic geodesics and do continuity estimate with
the aid of quasihyperbolic distances. Fortunately, the necessary auxiliary results,
proved in [17], remain valid in our situation so that we may estimate the conformal
modulus of certain curve families as in [17].

The structure of this paper is as follows. In Section 2, we give some preliminaries
and fix the notation used in this paper. In Section 3, we fix the basic setting
following [17] and formulate the more general Theorem 3.1. We also collect the
main auxillary results from [17] that are needed for the proof in the next section.
As the arguments are almost identical to that used in [17], we only briefly outline
it and point out the part that needs modification. The proof of Theorem 3.1 is
given in Section 4. In the final section, we consider the existence of radial limits
for the more general class of mappings of p-integrable distortion, extending the
corresponding result of [1].

Acknowledgement: We would like to thank Prof. Jinsong Liu and Prof. Tuomo
Äkkinen for their interests in this work and for many useful discussions during the
preparation of this work.
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2. Preliminaries

We denote by Bn(x, r) or simply B(x, r) an Euclidean ball in Rn with center x
and radius r and write Sn−1(x, r) = ∂Bn(x, r). The Euclidean distance between
two points x, y ∈ Rn is denoted by |x − y|, while the Euclidean distance between
two subsets A,B ⊂ Rn is d(A,B). For a point a ∈ Rn, d({a}, B) is abbreviated as
d(a,B). The Euclidean diameter of a set A ⊂ Rn is denoted by diam (A). For a set
A ⊂ Rn and an open set G ⊂ Rn, we write A ⊂⊂ G, if there exists a compact set
K such that A ⊂ K ⊂ G. Define the spherical cap C(z, α, w) by

C(z, α, w) = {x ∈ Rn : |x− z| = |w − z|, (w − z) · (x− z) > |x− z|2 cosα}.

Moreover, for any z ∈ Rn, we define the cone K(z, φ) with vertex z and opening
angle φ by

K(z, φ) = {x ∈ Rn : z · (z − x) > |z||z − x| cosφ}.

A curve γ in Rn is a continuous mapping from an interval I to Rn and the
subsurve of γ between x, y ∈ γ is denoted by γ(x, y). The image of γ is denoted by
|γ| and the length of a curve γ is ℓ(γ).

Let γ : [a, b) → Rn be a curve and f be a continuous, discrete and open mapping
from a domain Ω ⊂ Rn to Rn. Suppose that x ∈ f−1(γ(a)). The maximum f -lifting
of γ starting at x is defined to be a curve β : [a, c) → Ω such that

(1) β(a) = x,
(2) f ◦ β = γ|[a,c),
(3) If c < c′ ≤ b, then there does not exist a curve α : [a, c′) → Ω such that

β = α|[a,c) and f ◦ α = γ|[a,c′).
For a continuous, discrete and open mapping f , such a maximum lifting always
exists; see [21, Chapter II Section 3].

The quasihyperbolic distance dqh between two points x, y in a proper domain
Ω ⊊ Rn is

dqh(x, y) = inf

∫
γ

ds

d(z, ∂Ω)
,

where the infimum is with respect to all rectifiable curves γ joining x and y in Ω.
This distance was first introduced by Gehring and Palka [5]. A curve γ joining x
and y in Ω which attains the infimum, that is,

dqh(x, y) =

∫
γ

ds

d(z, ∂Ω)

is called a quasihyperbolic geodesic joining x and y. According to [4, Lemma 1], a
quasihyperbolic geodesic connecting any two points of a proper domain Ω always
exists.

Let Ω ⊂ Rn be a bounded domain. The Whitney decomposition W = W(Ω) is
a family of open cubes Q ⊂ Ω, which are pairwise disjoint and satisfy the following
two properties:

• Ω =
⋃

Q∈W Q;

• diam (Q) ≤ d(Q, ∂Ω) ≤ 4 diam (Q).
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It is well-known that, for any proper domain Ω ⊊ Rn, such decomposition always
exists.

Next, we introduce the concept of the modulus of a curve family. Let Γ be a
family of curves in Ω. The conformal n-modulus MΓ is defined by

MΓ = inf
ρ∈X(Γ)

∫
Rn

ρ(x)ndx,

where X(Γ) is the set of all Borel functions ρ : Rn → [0,∞] such that∫
γ
ρds ≥ 1 for all γ ∈ Γ.

For a K-quasiregular mapping f : Ω → Rn and a family Γ of curves in Ω, the
following important Poletsky’s inequality holds (see [21, Chapter II Theorem 8.1]):

Mf(Γ) ≤ Kn−1MΓ.

Following [22], we introduce the concept of modulus to families of curves which lie
on submanifolds of Rn. Let S be an (n− 1)-dimensional smooth submanifold of Rn

and Γ be a curve family on S. The n-modulus of Γ with respect to S is defined as

MS
n (Γ) = inf

ρ∈X(Γ)

∫
S
ρndmn−1,

where X(Γ) is the set of all Borel functions ρ : S → [0,∞] so that
∫
γ ρds ≥ 1 for all

γ ∈ Γ.
Next, we prove a simple lemma about the upper bound of the modulus of the

curve family related to the Whitney decomposition.

Lemma 2.1. Let Ω be a domain and W(Ω) be the Whitney decomposition of Ω.
For any cube Q ∈ W(Ω), let ΓQ be the family of all curves in Ω that connect ∂Ω
and Q. Then, there exists a constant C independent of Q such that MΓQ ≤ C.

Proof. Fix a cube Q ∈ W(Ω). Denote the center of Q by xQ. Then, by the property
of the Whitney decomposition, we have

Q ⊂ B
(
xQ, diam (Q)/2

)
,

and

B
(
x, diam (Q)

)
⊂ Ω.

Thus, by an elementary property of modulus, we have that MΓQ ≤ MΓd, where Γd

is the family of all curves joining B(x, d/2) and Rn\B(x, d). It is well-known (see
e.g. [22]) that

MΓd ≤ C,

from which we infer that MΓQ ≤ C. □
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3. Basic setting and auxillary results

Throughout this section, we assume that Ω ⊂ Rn is a c-uniform domain with
center x0 and f : Ω → Rn is a quasiregular local homeomorphism. For a c-uniform
domain Ω with center x0, the c-John curve γ : [0, l] → Ω connecting x0 to a boundary
point x1 is parameterized by arc length with γ(0) = x1 and γ(l) = x0. Without
loss of generality, we assume that f(x0) = 0. Then, by the property of the local
homeomorphism, we obtain a small enough δ > 0 and a neighborhood U of x0 so
that the restriction of f on U is a homeomorphism from U to B(0, δ). For any
y ∈ Sn−1(0, 1), define

γy : [0,∞) → Rn, γy(t) = ty.

Suppose γ̃y is the maximum f -lifting of γy starting at x0. For each y ∈ Sn−1(0, 1),
there exist a number λ(y) ∈ [δ,∞], a point xy ∈ ∂Ω and an increasing sequence
{ti}i≥1 satisfying

ti → λ(y) as i → ∞
and

lim
i→∞

γ̃y(ti) = xy.

Set a star-like domain G ⊂ Rn as

G = {ty : y ∈ Sn−1(0, 1), t ∈ [0, λ(y))}.
Denote the x0-component of f−1(G) by G′ and denote the restriction of f on G′ by
g. Then, it is easy to check that g is a homeomorphism (see [17, Page 275]). Thus,
g is a quasiconformal mapping. Moreover, set

F = {zy : y ∈ Sn−1(0, 1)}\{∞},
where

zy =

{
γy(λ(y)), δ ≤ λ(y) < ∞,
∞, λ(y) = ∞.

Then F ̸= ∅, since otherwise we would get a quasiconformal mapping g−1 : Rn → Ω,
which is impossible as quasiconformal image of Rn is Rn.

We denote by H the set of all zy ∈ F such that there exist two positive constants
ry and φy satisfying

K(zy, φy) ∩B(zy, ry) ⊂ G.

Then by the local homeomorphism property of f , we may find a point zy ∈ H
minimizing |z| over all z ∈ H. Then zy ∈ H so that H ̸= ∅.

Now, we are ready to state our main theorem, from which Theorem 1.1 follows.

Theorem 3.1. Suppose Ω and f are given as above. Then, for any point y ∈
Sn−1(0, 1) with zy ∈ H and any c-John curve γ joining x0 and xy in Ω, we have

(3.1) lim
t→0+

f(γ(t)) = zy.

Reasoning as in [17, Paragraph after Theorem 3.1], we can prove that H contains
infinitely many elements. Thus, Theorem 3.1 implies that the conclusion of Theorem
1.1 holds at infinitely many points on ∂Ω. However, it is not yet clear, even in the
setting when Ω = Bn(0, 1), whether one can deduce measure estimates for the size
of the set at which the limits exist.
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Next, we collect some useful technical lemmas from [17, Section 3] that shall be
needed in the proof of Theorem 3.1. The first one is a topological result, which will
be used later to estimate the conformal modulus of certain curve families. For a
spherical cap C ⊂ Sn−1(a, r), ∂C represents the relative boundary of C with respect
to Sn−1(a, r).

Lemma 3.1. Assume that zy ∈ F and that γ̂ : [0, 1] → Ω is a curve with γ̂(0) ∈ |γ̃y|.
Furthermore, suppose that, for some r > 0, f(γ̂(0)) ∈ B(zy, r) and that the set

S := {s : f(γ̂(s)) ∈ Sn−1(zy, r)} ̸= ∅.
Set sr = mins∈S . Then there exist an angle 0 < α ≤ π and a point

kr ∈ ∂C(zy, α, f(γ̂(s
r))),

such that each curve η joining f(γ̂(sr)) to kr in C(zy, α, f(γ̂(s
r))) satisfies that the

maximal lift η′ of η starting at γ̂(sr) has the property that

|η′| ∩ ∂Ω ̸= ∅.

Proof. The proof is essentially contained in [17, Proof of Lemma 3.2]. The argument
is basically topological and uses only the local homeomorphism property of f . For
the convenience of readers, we give a brief outline here.

For φ > 0, denote by C ′
φ the component with γ̂ (sr) of f−1 (C (zy, φ, f (γ̂ (sr)))).

Let α ∈ (0, π] be the maximal angle such that

f |C′
α
: C ′

α → C (zy, α, f (γ (sr)))

is a homeomorphism and let h = f |C′
α
. We consider two cases.

Case 1: α < π.
We argue by contradiction. If the lemma does not hold, then for each

p ∈ ∂C (zy, α, f (γ̂ (sr))) ,

there is a curve η joining f (γ̂ (sr)) and p in C (zy, α, f (γ̂ (sr))) with the property
that the lift η′ of η starting at γ̂ (sr) satisfying that∣∣η′∣∣ ⊂ Ωϵ

for some ϵ > 0, where
Ωϵ = {x ∈ Ω : d(x, ∂Ω) > ϵ}.

By [21, Chapter III Lemma 3.3], h−1 extends to a map on a neighborhood of
p. As p ∈ ∂C (zy, α, f (γ̂ (sr))) is arbitrary, h−1 extends to a homeomorphism of

C (zy, α, f (γ̂ (sr))) onto C ′
α. Moreover, [21, Chapter III Lemma 3.2] ensures that we

may extend h−1 to be a homeomorphism of a neighborhood of C̄ (zy, α, f (γ̂ (sr)))
onto its image. Thus, α is not maximum, which is a contradiction.

Case 2: α = π.
We denote by p the unique point of ∂C (zy, π, f (γ̂ (sr))) and argue by contradic-

tion. If the lemma fails, then there is a curve η joining f (γ̂ (sr)) and p with the
property that the maximal lift η′ of η starting at γ̂ (sr) satisfying that

(3.2)
∣∣η′∣∣ ⊂ Ωϵ

for some ϵ > 0. Next, we define a nested sequence of sets as

Wi = h−1
(
B
(
p, i−1

)
∩ C (zy, π, f (γ̂ (sr)))

)
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As n ≥ 3, each Wi is connected and Wi is also connected. Thus,

K =

∞⋂
i=1

Wi

is compact and connected. Thus, by (3.2), we obtain that

K ∩ Ω ̸= ∅

However, as f is discrete and

K ∩ Ω ⊂ f−1(p),

K has to be a singleton.
The remaining argument is exactly the same as in the proof of Lemma 3.2 of [17].

One uses a topological argument to construct a curve β that has two lifts, both
starting at γ̂(sr), contradicting with the local homeomorphism property of f . □

In the following, we fix a point zy ∈ H and set φy = φ0 and ry = r0. Without
loss of generality, assume that r0 ≤ 1

2 and |xy − x0| = 1. For 0 < r < 1, set

tr = min{t ∈ [0, λ(y)) : γ̃y(t) ∈ Sn−1(xy, r)}

and

(3.3) xr = γ̃y(tr) ∈ Sn−1(xy, r).

Then, it is clear that

|g(xr1)− zy| < |g(xr2)− zy|, whenever r1 < r2.

Following [17], we define a function θ : (0, 1] → (0, 1] as

θ(t) = d(xt, ∂Ω).

Then, it is easy to check that θ is right continuous. Furthermore, we have the
following integral estimate on θ.

Lemma 3.2 (Proposition 4.1, [17]). If f(xs) ∈ B(zy, r0/2), then, for any 0 < t <
s/2, we have ∫ s

t

dr

θ(r)
≤ C0 log

C1

|f(xt)− zy|
,

where two positive constants C0, C1 only depend on φ0, r0, K and n.

The definition of θ as in the above lemma differs from that used in [17, Propo-
sition 4.1]. However, the proof there only uses the quantitative equivalence of qua-
siconformality with local quasisymmetry and thus applies to our setting without
modification.

Finally, we recall the following technical function lemma about θ.

Lemma 3.3 (Lemma 5.1, [17]). Let θ : (0, 1] → (0, 1] be a right continuous function
such that ti → 0 if θ(ti) → 0, and with the property that

(3.4) lim
t→0

θ(t)t−1 = 0.
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Then, for any ϵ > 0, there is a number M and a decreasing sequence Ti → 0 so that

log
1

θ(Ti)
≤ ϵ

∫ 1

Ti

dr

θ(r)
+M for any i ≥ 1.

4. Proof of the Main Result

Proof of Theorem 3.1. Following [17, Proof of Theorem 3.1], we prove Theorem 3.1
by a contradiction argument. Suppose the conclusion of Theorem 3.1 does not hold
true. Then there exist a c-John curve γ connecting x0 and xy in Ω, a constant
m > 0 and a decreasing sequence tj → 0, such that

|f(γ(tj))− zy| ≥ m for all j ≥ 1.

Set aj = γ(tj) and fix a constant s as in Lemma 3.2. Since

|xy − aj | ≤ ℓ(γ(xy, aj)) = tj ,

we may assume that

|xy − aj | < s for all j ≥ 1.

For each j ≥ 1, we choose a point bj = xα(j), for some 0 < α(j) < s, so that

|bj − xy| < |aj − xy|,
where xα(j) is given as in (3.3) and we shall determine α(j) later. Then, we have

(4.1) α(j) = |bj − xy|
j→∞−−−→ 0.

Let β be a quasihyperbolic geodesic joining aj and bj and denote by W(Ω) the
Whitney decomposition of Ω. The set of all cubes in W(Ω) that intersects the
quasihyperbolic geodesic β is labeled as {Qi}1≤i≤Nj . Then we have

(4.2) Nj ≤ Cdqh(ai, bi),

where C is a constant only depending on n (see e.g. [9, Page 421]). As Ω is a
c-uniform domain, we have (see e.g. [4])

(4.3) dqh(aj , bj) ≤ C log
(
1 +

|aj − bj |
min{d(aj , ∂Ω), d(bj , ∂Ω)}

)
,

where C is a constant only depending on n and c. Since γ is a c-John curve, we
have

d(aj , ∂Ω) ≥ ℓ(γ(aj , xy))/c ≥ |aj − xy|/c ≥ θ(α(j))/c = d(bj , ∂Ω)/c.

Furthermore,

|aj − bj | ≤ |aj − xy|+ |bj − xy| ≤ 2|xy − aj |.
Thus, it follows from (4.2), (4.3) and above estimates that

(4.4) Nj ≤ C log(1 + C
|xy − aj |
θ(α(j))

).

Set

(4.5) rj = |f(bj)− zy| and sj = |f(aj)− zy| ≥ m.

Claim: rj → 0 as j → ∞.
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We prove the claim by contradiction. If the claim fails, then there exists a
constant ϵ and a subsequence bkj such that |f(bkj )−zy| > ϵ. As f(bkj ) ∈ γy([0, λ(y)))
for all j ≥ 1, it follows that

{f(bkj )} ⊂⊂ G.

Since g is a homeomorphism, we have

{bkj} ⊂⊂ G′,

which is a contradiction to (4.1). Therefore, the claim is true.
Then, for all r ∈ (rj , sj), we have

f(bj) ∈ B(zy, r),

and
f(aj) ∈ Rn\B(zy, r).

For each r ∈ (rj , sj), we may choose a parametrization of β : [0, 1] → Ω with β(0) =
bj and β(1) = aj so that the assumptions of Lemma 3.1 are satisfied. Set pr =
f(β(sr)), where sr is given as in Lemma 3.1. Then, Lemma 3.1 implies that there
exist a spherical cap Cr and a point kr ∈ ∂Cr such that, if we denote by Γr the set
of all curves connecting pr and kr in Cr, then the maximum lift γ′ of each γ ∈ Γr

starting at β(sr) satisfies

(4.6) |γ′| ∩ ∂Ω ̸= ∅.
An application of [22, Theorem 10.2] implies that

Mn
SΓr ≥

C

r
,

where the positive constant C depending only on n. Thus, for the curve family

Γ =
⋃

r∈(rj ,sj)

{γ : γ ∈ Γr},

integrating the previous estimate with respect to r gives

(4.7) MΓ ≥ C log
sj
rj
.

Next, we set

Γ′ = {γ′ : γ′ is the maximum lifting of some γ ∈ Γr starting at β(sr), r ∈ (rj , sj)}.
Remember that the cubes, in the Whitney decomposition, that intersect β are
denoted by {Qi : 1 ≤ i ≤ Nj}. Denote by Γi the set of all curves connecting Qi and
∂Ω, where 1 ≤ i ≤ Nj . Then, by Lemma 2.1,

MΓi ≤ C, for all 1 ≤ i ≤ Nj .

By (4.6) and the subadditivity of the modulus, it follows that

MΓ′ ≤
Nj∑
i=1

MΓi ≤ CNj .

Combining the above estimate with (4.4), we get

MΓ′ ≤ C log(1 + C
|xy − aj |
θ(α(j))

).
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It follows then from Poletsky’s inequality, the above inequality, (4.7) and (4.5) that

(4.8) logm ≤ log sj = log
sj
rj

− log
1

rj
≤ C2 log(1 + C3

|xy − aj |
θ(α(j))

)− log
1

rj
.

Notice that the function θ satisfies all the requirements of Lemma 3.3 except
(3.4). Next, we consider two cases depending on whether θ satisfies (3.4).

Case 1: (3.4) does not hold.

It follows that
lim sup

t→0
θ(t)t−1 ≥ τ ′ > 0.

For now, fix
τ ∈ (0, τ ′).

Set
mj = |xy − aj | < s.

Define ϵjmj to be the supremum of all r ∈ (0,mj ] satisfying that θ(r) ≥ τr. It is
easy to check that, ϵjmj > 0 for all j ≥ 1. Thus, for any j ≥ 1, there is a number
α(j) ∈ [ϵjmj/2, ϵjmj ] such that θ(α(j)) ≥ τα(j).

Next, if we assume that ϵj > ϵ > 0 for all j ≥ 1, then (4.8) implies that

logm ≤ C log

(
C

2mj

τϵmj
+ 1

)
− log

1

rj
≤ C(τ, ϵ)− log

1

rj
→ −∞

as j → ∞. This is a contradiction.
Thus, by taking a subsequence if necessary, we may assume that ϵj tends to 0 as

j → ∞ and ϵj is decreasing. Now, as θ(r) < τr for all r ∈ [ϵjmj ,mj ], by Lemma 3.2,
we obtain

log
C

rj
≥ C−1

∫ mj

ϵjmj

dr

θ(r)
≥

log 1
ϵj

Cτ
.

Then, the above inequality and (4.8) yield

logm ≤ C log

(
2C

τ
+ ϵj

)
+ (C1 − τ−1C−1

2 ) log
1

ϵj
+ C.

Choose τ small enough so that the coefficient C1 − τ−1C−1
2 < 0. Then, the right

hand side of the above inequality tends to −∞ as j → ∞. This is a contradiction
and we finish the proof of this case.

Case 2: (3.4) holds.

We apply Lemma 3.3 with ϵ = C−1
0 C−1

2 . Choose, for each j ≥ 1, a number
i = i(j) such that

Ti(j) = |xTi(j)
− xy| < |aj − xy|,

where Ti is as in Lemma 3.3. Set α(j) = Ti(j). Then, by Lemma 3.2 and Lemma 3.3,
we have

C2 log
1

θ (Ti)
− log

C1

rj
≤ C2 log

1

θ (Ti)
− C−1

0

∫ s

Ti

dr

θ(r)

≤ MC2 + C−1
0

∫ 1

s

dr

θ(r)
.
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Thus, by combining the above inequality and (4.8) we infer that

logm ≤ C2 (log(C3 |xy − aj |+ θ(Ti)) +M) + logC1 + C−1
0

∫ 1

s

dr

θ(r)

j→∞−−−→ −∞,

which is a contradiction. Therefore, the proof of Theorem 3.1 is complete.
□

5. Further discussion

In this section, we give a brief discussion on the existence of radial limits for
certain mappings of finite distortion with extra growth conditions on the Jacobian
determinant, along the line of [1]. For this, we first introduce the definition of
mappings of p-integrable distortion; for more on the theory of mappings of finite
distortion, see the monographs [7, 6].

Throughout this section, we assume that f ∈ W 1,1
loc (B

n(0, 1),Rn), Jf ∈ L1
loc(B

n(0, 1))
and that there exists a measurable function K(x) ≥ 1, finite almost everywhere,
such that f satisfies the distortion inequality

(5.1) |Df(x)|n ≤ K(x)Jf (x)

for almost every x ∈ Bn(0, 1). Moreover we assume that

|Df(x)|n

log(e+ |Df(x)|)
∈ L1

loc(B
n(0, 1)).

Definition 5.1. We say that f : Bn(0, 1) → Rn is a mapping of p-integrable dis-
tortion if there exists M < ∞ such that∫

Bn(0,1)
Kp(x) dx ≤ M.

Our main result of this section is the following result that extends [1, Corollary
1.2].

Theorem 5.1. For p > n − 1, let f : Bn(0, 1) → Rn be a mapping of p-integrable
distortion and further assume that the Jacobian determinant of f satisfies growth
condition ∫

B(0,r)
Jf (x) dx ≤ c(1− r)−a

for some a ∈ [0, n− 1− n/p), then

dimHE(f) ≤ a+
n

p
,

where dimH refers to the Hausdorff dimension and E(f) consists of all points x ∈
Sn−1(0, 1) so that f does not have a radial limit at x. In particular, we have radial
limits almost everywhere in ∂Bn(0, 1).

Fix p > n− 1 and set

p∗ =
np

p+ 1
.

Then it is clear that n−1 < p∗ < n and p = p∗/(n−p∗). We shall need the following
standard continuity estimate.
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Proposition 5.2. Let f : Bn(0, 1) → Rn be a mapping of p-integrable distortion
with p > n − 1. If B(z, r) is such that B(z, 2r) ⊂ Bn(0, 1), then for every x, y ∈
B(z, r)

|f(x)− f(y)|p∗ ≤ C(n, p∗)tp
∗−n+1

∫
∂B(z,t)

|Df(x)|p∗ dx,

for almost every t ∈ (r, 2r).

Proof. First note that f ∈ W 1,p∗

loc (Bn(0, 1),Rn) as p∗ < n. Proposition 5.2 follows
now directly from the following well-known Sobolev embedding on spheres (see
e.g. [1, Lemma 3.2])

|f(x)− f(y)|s ≤ C(n, s)ts−n+1

∫
∂B(z,t)

|Df(x)|s dx.

and the fact that continuous and open map in the Euclidean space is monotone, i.e.

diam(f(Bn(x, r))) ≤ diam(f(Sn−1(x, r)))

for all Bn(x, r) ⊂ Bn(0, 1). □

Now we are ready to prove Theorem 5.1

Proof of Theorem 5.1. The proof is similar to [1, Proof of Theorem 1.1]. Define
γy : [0, 1] → Bn(0, 1) to be the radial segment associated with y ∈ Sn−1(0, 1). Then,
for each k = 1, 2, . . . set

γy,k = γy|[rk,rk+1],

where rk = 1− 2−k. Moreover, set

Ak = {y ∈ Sn−1(0, 1) : diam(f |γy,k|) ≥ k−1−δ/n}.

Now

E(f) ⊂
∞⋂
j=1

∞⋃
k=j

Ak,

so we set

E0 =
∞⋂
j=1

∞⋃
k=j

Ak.

Next we want to have suitable covers for the sets Ak and this can be done with
the aid of Proposition 5.2. Let y ∈ Sn−1(0, 1) and k ∈ N, and define x0 =

rk+1+rk
2 y

and Rk =
rk+1−rk

2 . Then B(x0, 2Rk) ⊂ B(0, rk+3) \ B(0, rk−1), and by Corollary
5.2,

|f(x)− f(y)|p∗ ≤ C(n, p∗)tp
∗−n+1

∫
∂B(x0,t)

|Df(x)|p∗ dx

for almost every t ∈ (Rk, 2Rk), whenever x, y ∈ B(x0, Rk). We integrate this over
the range (Rk, 2Rk) with respect to variable t to obtain

|f(x)− f(y)|p∗ ≤ C(n, p∗)Rp∗−n
k

∫
B(x0,2Rk)

|Df(x)|p∗ dx.
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Moreover, we have by continuity of f that

(5.2) diam(f |γy,k|)p
∗ ≤ C(n, p∗)Rp∗−n

k

∫
B(x0,2Rk)

|Df(x)|p∗ dx.

Now let y ∈ Ak. Then

1 ≤ C(n, p∗)(k1+δ/n)p
∗
Rp∗−n

k

∫ rk+3

rk−1

∫
S(y,α(k))

|Df(tx)|p∗tn−1 dx dt,

where α(k) = arcsin
(
2 Rk
|x0|
)
and S(z, r) denotes spherical cap in Sn−1(0, 1). Then

for each k we cover sets Ak with spherical balls S(yk, α(k)) and use Vitali’s cov-
ering lemma to get a finite subcollection of pairwise disjoint spherical balls, say
{S(yki , α(k))}

pk
i=1 such that

Ak ⊂
pk⋃
i=1

S(yki , 5α(k)).

Notice that

E0 =
∞⋂
j=1

∞⋃
k=j

Ak ⊂
∞⋃
k=s

Ak

for every s ∈ N. Let t ∈ (a+ n
p , n− 1) and ε > 0. Furthermore, choose M ∈ N such

that

diam(S(yki , α(k))) ≤ ε

for all k ≥ M . Then

(5.3)

Ht
ε(E(f)) ≤ Ht

ε(
∞⋃

k=M

Ak) ≤
∞∑

k=M

Ht
ε(Ak)

≤
∞∑

k=M

pk∑
i=1

diam((S(yik, 5α(k)))
t

≤ C(n)
∞∑

k=M

pk2
−kt,

since α(k) ≤ C(n)2−k.
Now we need an estimate for the amount of spherical balls needed to cover each

Ak. Denote xi,k0 =
rk+1+rk

2 yki and Bk
i = B(xi,k0 , 2Rk). Summing both sides in (5.2)

yields

pk ≤ C(n, p∗)(k1+δ/n)p
∗
Rp∗−n

k

pk∑
i=1

∫
Bk

i

|Df(x)|p∗ dx.
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Therefore, since Rk = C2−k, the distortion inequality (5.1) and Hölder’s inequality
give

pk ≤ C(n, p∗)(k1+δ/n)p
∗
2k(n−p∗)

pk∑
i=1

∫
Bk

i

(|Df(x)|n)p∗/n dx

≤ C(n, p∗)(k1+δ/n)p
∗
2k(n−p∗)

pk∑
i=1

∫
Bk

i

K(x)p
∗/nJf (x)

p∗/n dx

≤ C(n, p∗)(k1+δ/n)p
∗
2k(n−p∗)

pk∑
i=1

(∫
Bk

i

K(x)
p∗

n−p∗ dx
)n−p∗

n
(∫

Bk
i

Jf (x) dx
) p∗

n

= C(n, p∗)(k1+δ/n)p
∗
2k(n−p∗)

pk∑
i=1

(∫
Bk

i

K(x)p dx
)n−p∗

n
(∫

Bk
i

Jf (x) dx
) p∗

n
.

Applying the following Hölder’s inequality with θ = n/p∗

pk∑
i=1

a
n−p∗

n
i b

p∗
n
i ≤

( pk∑
i=1

1
)1− 1

θ

(
pk∑
i=1

(
a

n−p∗
n

i b
p∗
n
i

)θ)θ−1

and then raising to power θ on both sides, we conclude

pk ≤ C(n, p∗)kn+δ2
k
n(n−p∗)

p∗
pk∑
i=1

(∫
Bk

i

K(x)p dx
) 1

p

∫
Bk

i

Jf (x) dx.

By p-integrability of the distortion we have∫
Bk

i

K(x)p dx ≤
∫
Bn(0,rk+3)

K(x)p dx ≤ M.

Thus by assumption on the Jacobian determinant

pk ≤ C(n, p∗,M)kn+δ2
k
n(n−p∗)

p∗
pk∑
i=1

∫
Bk

i

Jf (x) dx

≤ C(n, p∗,M)kn+δ2
k
n(n−p∗)

p∗

∫
Bn(0,rk+3)

Jf (x) dx

≤ C(n, p∗,M, a)kn+δ2
k(a+

n(n−p∗)
p∗ )

.

Proceeding with the estimation of the measure of E(f) at (5.3):

Ht
ε(E(f)) ≤ C(n, p∗,M, a)

∞∑
k=M

pk2
−kt

≤ C

∞∑
k=M

kn+δ2
−k(t−a−n(n−p∗)

p∗ )
.

The sum on the right hand side converges since

n(n− p∗)

p∗
=

n

p
, t > a+

n

p

and thus we may conclude that Ht(E(f)) = 0.
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Remark 5.3. One can show that bounded mapping f : Bn(0, 1) → Rn of p-
integrable distortion satisfies∫

Bn(0,rk)
Jf (x) dx ≤ c(1− rk)

p+1
p

(1−n)
,

for all k ∈ N. On the other hand above argument shows that if∫
Bn(0,rk)

Jf (x) dx ≤ c(1− rk)
−a,

where a ∈ [0, n−1− n
p ), then f has radial limits at almost every point on ∂Bn(0, 1).

So unlike in the case of quasiregular mappings, there is an interval of values of a so
that we don’t know whether the radial limits exist a.e. on ∂Bn(0, 1).

□
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