


470 V. GOL’DSHTEIN AND V. PCHELINTSEV

is satisfied for all x ∈ Ω, where x0 ∈ Ω is a fixed base point and C0 = C0(x0) <∞,
[7, 16]. Here

kΩ(x1, x2) := inf

∫
γ

ds

dist(x, ∂Ω)
,

where the infimum is taken over all rectifiable curves γ joining x1 and x2.
This class of domains includes, in particular, domains with Lipschitz boundary,

some domains with Hölder singularities, and domains of snowflakes type [7, 22].

A function f ∈W 1,2
0 (Ω, A) is a solution to the generalized spectral problem for the

elliptic operator in divergence form LAf(z) with the Dirichlet boundary condition
if ∫∫

Ω

⟨A(z)∇f(z),∇g(z)⟩ dxdy = λ

∫∫
Ω

f(z)g(z) dxdy, ∀g ∈W 1,2
0 (Ω, A).

It is known [15, 21] that in a bounded domain Ω ⊂ C the operator LAf(z)
with the Dirichlet boundary condition has discrete spectrum represented as the
non-decreasing sequence

0 < λ1(A,Ω) ≤ λ2(A,Ω) ≤ . . . ≤ λn(A,Ω) ≤ . . . ,

where each eigenvalue is repeated as many time as its multiplicity. By the min-max
principle, the first eigenvalue λ1(A,Ω) is defined by

λ1(A,Ω) = inf
f∈W 1,2

0 (Ω,A)\{0}

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy∫∫
Ω

|f(z)|2 dxdy
.

The lower estimates for the first eigenvalues of the Laplace operator with the
Dirichlet boundary condition in a bounded domain are connected by the Rayleigh-
Faber-Khran inequality [6, 20] which means that the first Dirichlet eigenvalue in a
bounded domain Ω is not less than the corresponding Dirichlet eigenvalue in the
disc of the same area Ω∗ with R∗ as its radius, i.e.,

λ1(I,Ω) := λ1(Ω) ≥ λ1(Ω
∗) =

j20,1
R2

∗
,

where j0,1 ≈ 2.4048 is the first positive zero of the Bessel function J0. This inequality
was improved by the method based on the capacity theory [21].

Unfortunately, for the first eigenvalue λ1(A,Ω) Rayleigh-Faber-Khran type in-
equality has not been proven. However, lower estimates for the first eigenvalues of
the operator LAf(z) with the Dirichlet boundary condition in bounded domains can
be obtained easily by using the Rayleigh-Faber-Krahn inequality and the uniform
ellipticity condition (1.2): Let Ω ⊂ C be a bounded domain such that |Ω| = |Ω∗| and
K is the ellipticity constant of the matrix A. Then

(1.3) λ1(A,Ω) ≥
λ1(Ω)

K
≥ λ1(Ω

∗)

K
=

j20,1
KR2

∗
.

In this paper we obtain lower estimates for the first Dirichlet eigenvalues of the
divergence form elliptic operators LAf(z) in bounded domains with some quasihy-
perbolic boundary condition. We call such domains as β-regular domains for some
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β ∈ (1,∞]. The class of all β-regular domains coincides with the class of all domains
with quasihyperbolic boundary conditions [2, 10].

Our machinery is based on connections between A-quasiconformal mappings [3,
4, 14] and composition operators on Sobolev spaces [10].

One of the main results of the article states the following estimate for ∞-regular
domains: If a simply connected bounded domain Ω ⊂ C satisfies to the quasihyper-
bolic boundary condition, then

(1.4) λ1(A,Ω) ≥
λ1(Ω̃)

∥Jφ−1
A

| L∞(Ω̃)∥
,

where λ1(Ω̃) is the first Dirichlet eigenvalue of the Laplace operator and Jφ−1
A

is a

Jacobian of the inverse mapping to the A-quasiconformal mapping φA : Ω → Ω̃.

A detailed discussion about β-regular domains can be found in Section 3.

Note that if Ω̃ = Ω∗ and ∥Jφ−1
A

| L∞(Ω∗)∥ < K then estimate (1.4) is better than

estimates (1.3). For example, this condition is satisfied for measure preserving A-
quasiconformal mappings φA : Ω → Ω∗ (|J(z, φA)| = 1 a.e. in Ω). Some examples
can be found at the end of this paper.

Taking into account the domain monotonicity property for the Dirichlet eigen-
values of the operator LAf(z) (see, for example, [15]) and estimate (1.4) we obtain
estimates for variations of the first Dirichlet eigenvalues of the operator LAf(z) un-
der quasiconformal deformations of the domain. Namely: Let Ω ⊂ C be a bounded

∞-regular domain. We assume that φA(Ω) := Ω̃ ⊃ Ω, then

λ1(A,Ω)− λ1(Ω̃) ≥
1− ∥Jφ−1

A
| L∞(Ω̃)∥

∥Jφ−1
A

| L∞(Ω̃)∥
λ1(Ω̃),

where λ1(Ω̃) is the first Dirichlet eigenvalue of the Laplace operator and Jφ−1
A

is a

Jacobian of the inverse mapping to the A-quasiconformal mapping φA : Ω → Ω̃.

In the case of the measure preserving A-quasiconformal mappings φA : Ω → Ω̃ we
prove Rayleigh-Faber-Khran type inequality for the operator LAf(z): Let Ω ⊂ C
be a simply connected bounded domain such that there exists a measure preserving

A-quasiconformal mapping φA : Ω → Ω̃. Then

λ1(A,Ω) ≥ λ1(Ω
∗) =

j20,1
R2

∗
,

where Ω∗ is the disc of the radius R∗ such that |Ω| = |Ω∗| and j0,1 ≈ 2.4048 is the
first positive zero of the Bessel function J0.

2. Sobolev spaces and A-quasiconformal mappings

Let E ⊂ C be a measurable set on the complex plane and h : E → R be a positive
almost everywhere (a.e.) locally integrable function, i.e. a weight. The weighted
Lebesgue space Lp(E, h), 1 ≤ p <∞, is the space of all locally integrable functions
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endowed with the following norm

∥f |Lp(E, h)∥ =

∫∫
E

|f(z)|ph(z) dxdy

 1
p

<∞.

The two-weighted Sobolev space W 1,p(Ω, h, 1), 1 ≤ p < ∞, is defined as the
normed space of all locally integrable weakly differentiable functions f : Ω → R
endowed with the following norm:

∥f |W 1,p(Ω, h, 1)∥ = ∥f |Lp(Ω, h)∥+ ∥∇f | Lp(Ω)∥.

In the case h = 1 this weighted Sobolev space coincides with the classical Sobolev
space W 1,p(Ω). The seminormed Sobolev space L1,p(Ω), 1 ≤ p <∞, is the space of
all locally integrable weakly differentiable functions f : Ω → R endowed with the
following seminorm:

∥f | L1,p(Ω)∥ = ∥∇f | Lp(Ω)∥, 1 ≤ p <∞.

We also need a weighted seminormed Sobolev space L1,2
A (Ω) (associated with

the matrix A), defined as the space of all locally integrable weakly differentiable
functions f : Ω → R with the finite seminorm given by:

∥f | L1,2
A (Ω)∥ =

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy

 1
2

.

The corresponding Sobolev space W 1,2(Ω, A) is defined as the normed space of
all locally integrable weakly differentiable functions f : Ω → R endowed with the
following norm:

∥f |W 1,2(Ω, A)∥ = ∥f |L2(Ω)∥+ ∥f | L1,2
A (Ω)∥.

The Sobolev space W 1,2
0 (Ω, A) is the closure in the W 1,2(Ω, A)-norm of the space

C∞
0 (Ω).
We consider the Sobolev spaces as Banach spaces of equivalence classes of func-

tions up to a set of p-capacity zero [21, 23].

Recall that a homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ C, is called a Q-quasiconformal
mapping if φ ∈W 1,2

loc (Ω) and there exists a constant 1 ≤ Q <∞ such that

|Dφ(z)|2 ≤ Q|J(z, φ)| for almost all z ∈ Ω.

Note that quasiconformal mappings have a finite distortion and possesses the
Luzin N -property (i.e. a image of any set of measure zero has measure zero) [25].

If φ : Ω → Ω̃ is a Q-quasiconformal mapping then φ is differentiable almost
everywhere in Ω and

|J(z, φ)| = Jφ(z) := lim
r→0

|φ(B(z, r))|
|B(z, r)|

for almost all z ∈ Ω.

Now we give a construction of A-quasiconformal mappings connected with the
matrix A.
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Recall that matrix functions A(z) = {akl(z)} with measurable entries akl(z)
belongs to a class M2×2(Ω) of all 2 × 2 symmetric matrix functions that satisfy to
an additional condition detA = 1 a.e. in Ω and to the uniform ellipticity condition:

(2.1)
1

K
|ξ|2 ≤ ⟨A(z)ξ, ξ⟩ ≤ K|ξ|2 a.e. in Ω,

for every ξ ∈ C and for some 1 ≤ K < ∞. The basic idea is that every positive
quadratic form

ds2 = a11(x, y)dx
2 + 2a12(x, y)dxdy + a22(x, y)dy

2

defined in a planar domain Ω can be reduced, by means of a quasiconformal change
of variables, to the canonical form

ds2 = Λ(du2 + dv2), Λ ̸= 0, a.e. in Ω̃,

given that a11a22 − a212 ≥ κ0 > 0, a11 > 0, almost everywhere in Ω [1, 4].
By [4] any matrix A of the type under discussion induces a quasiconformal home-

omorphism as a solution to the corresponding Beltrami equation. The detailed
procedure is described below.

Let ξ(z) = Reφ(z) be a real part of a quasiconformal mapping φ(z) = ξ(z)+iη(z),
which satisfies to the Beltrami equation:

(2.2) φz(z) = µ(z)φz(z), a.e. in Ω,

where

φz =
1

2

(
∂φ

∂x
− i

∂φ

∂y

)
and φz =

1

2

(
∂φ

∂x
+ i

∂φ

∂y

)
,

with the complex dilatation µ(z) given by

(2.3) µ(z) =
a22(z)− a11(z)− 2ia12(z)

det(I +A(z))
, I =

(
1 0
0 1

)
.

We call this quasiconformal mapping (with the complex dilatation µ defined by
(2.3)) as an A-quasiconformal mapping and we will use the notation φA for this
quasiconformal mapping.

Note that the uniform ellipticity condition (2.1) can be written as

(2.4) |µ(z)| ≤ K − 1

K + 1
, a.e. in Ω.

Conversely from (2.3) (see, for example, [3], p. 412) one can recover the matrix
A :

(2.5) A(z) =

( |1−µ|2
1−|µ|2

−2 Imµ
1−|µ|2

−2 Imµ
1−|µ|2

|1+µ|2
1−|µ|2

)
, a.e. in Ω.

Thus, for any A ∈ M2×2(Ω) by (2.4) can be produced the complex dilatation
µ(z), for which, in turn, the Beltrami equation (2.2) induces an A-quasiconformal

homeomorphism φ : Ω → Ω̃ as its solution (by the Riemann measurable mapping
theorem (see, for example, [1])). Let us briefly say that A and φA are agreed.
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Therefore with the given A-divergent form elliptic operator defined in a domain

Ω ⊂ C can be assochiated the A-quasiconformal mapping φA : Ω → Ω̃ with the
quasiconformality coefficient

QA =
1 + ∥µ | L∞(Ω)∥
1− ∥µ | L∞(Ω)∥

,

where µ defined by (2.3).
From the estimate |µ(z)| ≤ K−1

K+1 immediately follows that QA ≤ K.

Note that the inverse mapping to the A-quasiconformal mapping φA : Ω → Ω̃ is
the A−1-quasiconformal mapping [10].

In [10] the relationship between composition operators on Sobolev spaces and
A-quasiconformal mappings was studied and the following theorem was proved.

Theorem 2.1. Let Ω, Ω̃ be domains in C. Then a homeomorphism φA : Ω → Ω̃
is an A-quasiconformal mapping if and only if φ induces, by the composition rule

φ∗(f) = f ◦ φ, an isometry of Sobolev spaces L1,2
A (Ω) and L1,2(Ω̃) i.e.

∥φ∗
A(f) |L

1,2
A (Ω)∥ = ∥f |L1,2(Ω̃)∥

for any f ∈ L1,2(Ω̃).

This theorem generalizes the well known property of conformal mappings generate

the isometry of uniform Sobolev spaces L1
2(Ω) and L

1
2(Ω̃) (see, for example, [5]). It

is also refines (in the case n = 2) the functional characterization of quasiconformal
mappings in the terms of isomorphisms of uniform Sobolev spaces [24].

3. Estimate of the constant in Sobolev-Poincaré inequality

In [11], the following weighted Sobolev-Poincaré inequality for a bounded domain
Ω ⊂ C was proved. We denote by h(z) = |J(z, φA)| the quasihyperbolic weight

defined by an A-quasiconformal mapping φA : Ω → Ω̃.

Theorem 3.1. Let A belongs to a class M2×2(Ω) and Ω be a bounded simply con-

nected planar domain. Then for any function f ∈W 1,2
0 (Ω, A) the following weighted

Sobolev-Poincaré inequality∫∫
Ω

|f(z)|rh(z)dxdy

 1
r

≤ Cr,2(h,A,Ω)

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy

 1
2

holds for any r ≥ 2 with the constant Cr,2(h,A,Ω) = Cr,2(Ω̃).

Here Cr,2(Ω̃) is the best constant in the (non-weight) Sobolev-Poincaré inequality

in a bounded domain Ω̃ ⊂ C with the upper estimate (see [9]):

(3.1) Cr,2(Ω̃) ≤ inf
p∈( 2r

r+2
,2)

(
p− 1

2− p

) p−1
p

(√
π · p

√
2
)−1 |Ω̃|

1
r√

Γ(2/p)Γ(3− 2/p)
.

Using Theorem 3.1 we give an upper estimate for the constant in the Sobolev-
Poincaré inequality in domains with the quasihyperbolic boundary condition. As

shown in [2], the Jacobians of quasiconformal mappings ψ : Ω̃ → Ω belong to Lβ(Ω̃)
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for some β > 1 if and only if Ω has the γ-quasihyperbolic boundary condition for

some γ. We note that β depends only on Ω̃ and the quasiconformality coefficient.
Since we need the exact value of the integrability exponent β for the Jacobians

of quasiconformal mappings, we consider an equivalent description of domains with
quasihyperbolic boundary in terms of the integrability of Jacobians [8].

A simply connected domain Ω ⊂ C is called an A-quasiconformal β-regular do-

main about a simply connected domain Ω̃ ⊂ C if∫∫
Ω̃

|J(w,φ−1
A )|β dudv <∞

for some β > 1, where φA : Ω → Ω̃ is a corresponding A-quasiconformal mapping.
The property of the quasiconformal β-regularity implies the integrability of a Ja-

cobian of quasiconformal mappings and therefore for any quasiconformal β-regular
domain we have the embedding of weighted Lebesgue spaces Lr(Ω, h) into non-

weighted Lebesgue spaces Ls(Ω) for s = β−1
β r [8].

Lemma 3.2 ([8]). Let Ω be an A-quasiconformal β-regular domain about a domain

about Ω̃. Then for any function f ∈ Lr(Ω, h), β/(β − 1) ≤ r <∞, the inequality

∥f | Ls(Ω)∥ ≤

∫∫
Ω̃

|J(w,φ−1
A )|βdudv


1
β
· 1
s

∥f | Lr(Ω, h)∥

holds for s = β−1
β r.

We ready to prove the upper estimate for the constant in the Sobolev-Poincaré
inequality in quasiconformal regular domains.

Theorem 3.3. Let A belong to a class M2×2(Ω) and a domain Ω be A-quasi-

conformal β-regular about Ω̃. Then for any function f ∈ W 1,2
0 (Ω, A) and for any

s ≥ 1, the Sobolev-Poincaré inequality

∥f | Ls(Ω)∥ ≤ Cs,2(A,Ω)∥f | L1,2
A (Ω)∥

holds with the constant

Cs,2(A,Ω) ≤ C βs
β−1

,2
(Ω̃)∥Jφ−1

A
| Lβ(Ω̃)∥

1
s ,

where Jφ−1
A

is a Jacobian of the inverse mapping to the A-quasiconformal mapping

φA : Ω → Ω̃.
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Proof. Let f ∈ W 1,2
0 (Ω, A). Then by Lemma 3.2 in the case h(z) = |J(z, φA)| we

get

∫∫
Ω

|f(z)|sdxdy

 1
s

≤

∫∫
Ω̃

|J(w,φ−1
A )|βdudv


1
β
· 1
s ∫∫

Ω

|f(z)|r|J(z, φA)|dxdy

 1
r

for s = β−1
β r.

According to Theorem 3.1 we have∫∫
Ω

|f(z)|r|J(z, φA)|dxdy

 1
r

≤ Cr,2(Ω̃)

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy

 1
2

.

Combining these inequalities and given that r = βs/(β − 1) we obtain

∫∫
Ω

|f(z)|sdxdy

 1
s

≤ C βs
β−1

,2
(Ω̃)∥Jφ−1

A
| Lβ(Ω̃)∥

1
s

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy

 1
2

for any s ≥ 1. □

For β = ∞, the following analog of the previous theorem is correct.

Theorem 3.4. Let A belong to a class M2×2(Ω) and a domain Ω be A-quasi-

conformal ∞-regular about Ω̃. Then for any function f ∈ W 1,2
0 (Ω, A), the Sobolev-

Poincaré inequality

∥f | L2(Ω)∥ ≤ C2,2(A,Ω)∥f | L1,2
A (Ω)∥

holds with the constant C2,2(A,Ω) ≤ C2,2(Ω̃)
∥∥Jφ−1

A
| L∞(Ω̃)

∥∥ 1
2 , where Jφ−1

A
is a

Jacobian of the inverse mapping to the A-quasiconformal mapping φA : Ω → Ω̃.

Remark 3.5. The constant C2
2,2(Ω̃) = 1/λ1(Ω̃), where λ1(Ω̃) is the first Dirichlet

eigenvalue of Laplacian in a domain Ω̃ ⊂ C.

Proof. Let a function f ∈ W 1,2
0 (Ω, A). Since quasiconformal mappings possess the

Luzin N -property, then |J(z, φA)|−1 = |J(w,φ−1
A )| for almost all z ∈ Ω and for
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almost all w = φA(z) ∈ Ω̃. Hence∫∫
Ω

|f(z)|2 dxdy

 1
2

=

∫∫
Ω

|f(z)|2|J(z, φA)|−1|J(z, φA)| dxdy

 1
2

≤ ∥JφA | L∞(Ω)∥−
1
2

∫∫
Ω

|f(z)|2|J(z, φA)| dxdy

 1
2

= ∥Jφ−1
A

| L∞(Ω̃)∥
1
2

∫∫
Ω

|f(z)|2|J(z, φA)| dxdy

 1
2

.

Applying the change of variable formula for quasiconformal mappings [25] we have∫∫
Ω

|f(z)|2|J(z, φA)| dxdy

 1
2

=

∫∫
Ω̃

|f ◦ φ−1
A (w)|2 dudv


1
2

.

Given (non-weighed) Sobolev-Poincaré inequality [21, 9] we get∫∫
Ω̃

|f ◦ φ−1
A (w)|2 dudv


1
2

≤ C2,2(Ω̃)

∫∫
Ω̃

|∇(f ◦ φ−1
A (w))|2 dudv


1
2

.

By Theorem 2.1∫∫
Ω̃

|∇(f ◦ φ−1
A (w))|2 dudv


1
2

=

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy

 1
2

.

Thus, by combining the expressions obtained above, we finally obtain the desired
result:∫∫

Ω

|f(z)|2 dxdy

 1
2

≤ ∥JφA | L∞(Ω)∥−
1
2C2,2(Ω̃)

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy

 1
2

.

□

4. Lower estimates for λ1(A,Ω)

We consider the generalized formulation of the Dirichlet eigenvalue problem (1.1):∫∫
Ω

⟨A(z)∇f(z),∇g(z)⟩ dxdy = λ

∫∫
Ω

f(z)g(z) dxdy, ∀g ∈W 1,2
0 (Ω, A).



478 V. GOL’DSHTEIN AND V. PCHELINTSEV

By the min-max principle (see, for example, [15, 21]) the first Dirichlet eigenvalue
λ1(A,Ω) of the elliptic operator in divergence form LAf(z) is defined by

λ1(A,Ω) = inf
f∈W 1,2

0 (Ω,A)\{0}

∥f | L1,2
A (Ω)∥2

∥f | L2(Ω)∥2
.

In other words, λ
− 1

2
1 (A,Ω) is the exact constant C2,2(A,Ω) in the Sobolev-Poincaré

inequality

∥f | L2(Ω)∥ ≤ C2,2(A,Ω)∥f | L1,2
A (Ω)∥, f ∈W 1,2

0 (Ω, A).

Theorem 4.1. Let A belong to the class M2×2(Ω) and Ω be an A-quasiconformal

β-regular domain about a domain Ω̃. Then

1

λ1(A,Ω)
≤ C2

2β
β−1

,2
(Ω̃)∥Jφ−1

A
| Lβ(Ω̃)∥,

where Jφ−1
A

is a Jacobian of the inverse mapping to the A-quasiconformal mapping

φA : Ω → Ω̃ and

C 2β
β−1

,2
(Ω̃) ≤ inf

p∈
(

2β
2β−1

,2
)
(
p− 1

2− p

) (√
π · p

√
2
)−1 |Ω̃|

β−1
2β√

Γ(2/p)Γ(3− 2/p)
.

Proof. By the min-max principle and Theorem 3.3 in the case s = 2, we have∫∫
Ω

|f(z)|2 dxdy ≤ C2
2,2(A,Ω)

∫∫
Ω

⟨A(z)∇f(z),∇f(z)⟩ dxdy,

where

C2,2(A,Ω) ≤ C 2β
β−1

,2
(Ω̃)

∫∫
Ω̃

|J(w,φ−1
A )|β dudv


1
2β

.

Thus

1

λ1(A,Ω)
≤ C2

2β
β−1

,2
(Ω̃)

∫∫
Ω̃

|J(w,φ−1
A )|β dudv


1
β

.

□
In the limit case β = ∞ we have the following assertion:

Theorem 4.2. Let A belong to a class M2×2(Ω) and Ω be an A-quasiconformal

∞-regular domain about a domain Ω̃. Then

(4.1)
1

λ1(A,Ω)
≤ C2

2,2(Ω̃)∥Jφ−1
A

| L∞(Ω̃)∥ =
∥Jφ−1

A
| L∞(Ω̃)∥

λ1(Ω̃)
,

where Jφ−1
A

is a Jacobian of the inverse mapping to the A-quasiconformal mapping

φA : Ω → Ω̃.

As an application of Theorem 4.2 we consider several examples.
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Example 4.3. The homeomorphism

φ(z) =
a

a2 − b2
z − b

a2 − b2
z, z = x+ iy, a > b ≥ 0,

is an A-quasiconformal and maps the right triangle with arbitrary angles

Ω =

{
(x, y) ∈ R2 : 0 ≤ x ≤ a+ b, 0 ≤ y ≤ −a− b

a+ b
x+ (a− b)

}
onto the 45◦ right triangle

Ω̃ =
{
(u, v) ∈ R2 : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u

}
.

The mapping φ satisfies the Beltrami equation with

µ(z) =
φz

φz
= − b

a

and the Jacobian J(z, φ) = |φz|2 − |φz|2 = 1/(a2 − b2). It is easy to verify that µ
induces, by formula (2.5), the matrix function

A(z) =

(a+b
a−b 0

0 a−b
a+b

)
.

Given that |J(w,φ−1)| = |J(z, φ)|−1 = a2 − b2 and λ1(Ω̃) = 5π2 (see, for example,
[13]). Then by Theorem 4.2 we have

λ1(A,Ω) ≥
λ1(Ω̃)

∥Jφ−1 | L∞(Ω̃)∥
=

5π2

a2 − b2
.

Example 4.4. The homeomorphism

φ(z) =
2 · z

3
8

z
1
8

− 1, φ(0) = −1, z = x+ iy,

is an A-quasiconformal and maps the interior of the non-convex domain

Ω :=

{
(ρ, θ) ∈ R2 : ρ = cos4

(
θ

2

)
, −π ≤ θ ≤ π

}
onto the unit disc D. The mapping φ satisfies the Beltrami equation with

µ(z) =
φz

φz
= −1

3

z

z

and the Jacobian

J(z, φ) = |φz|2 − |φz|2 =
1

2 · |z|
3
2

.

We see that µ induces, by formula (2.5), the matrix function A(z) form

A(z) =

( |3z+z|2
8|z|2

3
4 Im

z
z

3
4 Im

z
z

|3z−z|2
8|z|2

)
.
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Given that |J(w,φ−1)| = |J(z, φ)|−1 = 2 · |z|
3
2 and λ1(D) = (j0,1)

2. Then by
Theorem 4.2 we have

λ1(A,Ω) ≥
λ1(D)

∥Jφ−1 | L∞(D)∥
≥ (j0,1)

2

2
.

Taking into account Theorem 4.2 and the domain monotonicity property of the
Dirichlet eigenvalues for the elliptic operator in divergence form LAf(z), we obtain

the following result for the special case ∥Jφ−1
A

| L∞(Ω̃)∥ < 1.

Proposition 4.5. Let A belong to a class M2×2(Ω) and Ω be an A-quasi-conformal

∞-regular domain about a domain Ω̃. We assume that Ω̃ ⊃ Ω, then

λ1(A,Ω)− λ1(Ω̃) ≥
1− ∥Jφ−1

A
| L∞(Ω̃)∥

∥Jφ−1
A

| L∞(Ω̃)∥
λ1(Ω̃).

Proof. Since Ω̃ ⊃ Ω, we have λ1(A,Ω) ≥ λ1(Ω̃). Taking into account the inequal-
ity (4.1) in Theorem 4.2 and making elementary calculation, we get

λ1(A,Ω)− λ1(Ω̃) ≥
1− ∥Jφ−1

A
| L∞(Ω̃)∥

∥Jφ−1
A

| L∞(Ω̃)∥
λ1(Ω̃).

□

4.1. The Rayleigh-Faber-Krahn type inequality. The theory of composition
operators [10] allows us to reduce the spectral problem for the divergence form
elliptic operator (1.1) defined in simply connected bounded domain Ω ⊂ C to a
weighted spectral problem for the Laplace operator in a simply connected bounded

domain Ω̃ ⊂ C. By the chain rule applied to a function f(z) = g ◦ φA(z) [14], we
have

−div[A(z)∇f(z)] = −div[A(z)∇g ◦ φA(z)] = −h(w)∆g(w),
where the weight h(w) = |J(w,φ−1

A )|−1 is a Jacobian of the inverse mapping to the

A-quasiconformal mapping φA : Ω → Ω̃.
From here we can point out that

λ1(A,Ω) = inf
f∈W 1,2

0 (Ω,A)\{0}

∫∫
Ω

⟨A(z)∇f,∇f⟩ dxdy∫∫
Ω

|f |2dxdy

= inf
g∈W 1,2

0 (Ω̃,h,1)\{0}

∫∫̃
Ω

|∇g|2dudv∫∫̃
Ω

|g|2h(w)dudv
= λ1(h, Ω̃).

Let φA : Ω → Ω̃ be A-quasiconformal mappings for which |J(z, φA)| = 1 for
almost all z ∈ Ω. In this case quasiconformal weights h(w) = |J(w,φ−1

A )| = 1 for

almost all w ∈ Ω̃. Hence we get that λ1(A,Ω) = λ1(Ω̃).
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Using this equality and the classical Rayleigh-Faber-Krahn inequality we imme-
diately obtain a version of this inequality for elliptic operators in divergence form.
Namely:

Theorem 4.6. Let Ω ⊂ C be a simply connected bounded domain such that there

exists a measure preserving A-quasiconformal mapping φA : Ω → Ω̃. Then

λ1(A,Ω) ≥ λ1(Ω
∗) =

j20,1
R2

∗
,

where Ω∗ is the disc of the radius R∗ such that |Ω| = |Ω∗| and j0,1 ≈ 2.4048 is the
first positive zero of the Bessel function J0.

Proof. By assumptions the mapping φA : Ω → Ω̃ is measure preserving A-quasiconformal,
i.e., |J(z, φA)| = 1 almost everywhere in Ω. By the min-max principle, from
the equality |J(z, φA)| = |J(z, φ−1

A )| = 1 for almost all z ∈ Ω and almost all

w = φA(z) ∈ Ω̃ we obtain the equality λ1(A,Ω) = λ1(Ω̃). Now, given the classical
Rayleigh-Faber-Krahn inequality,

λ1(Ω̃) ≥ λ1(Ω
∗)

we have
λ1(A,Ω) ≥ λ1(Ω

∗).

The theorem is proved. □
A description of the class of measure preserving A-quasiconformal mappings

and/or corresponding divergence form elliptic equations is an open problem. Let us
give simple examples of such mappings.

Example 4.7. Let φ(z) = (ax, 1ay), z = x + iy and a > 1. Then J(z, φ) = 1, the

quasiconformality coefficient Qφ = a2 and µφ = a2−1
a2+1

. The matrix can be easily
recontracted

A(z) =

(
1
a2

0
0 a2

)
.

A little bit more complicated example.

Example 4.8. Let φ(z) = (ax+ by, 1ay), z = x+ iy and a > 1. Then J(z, φ) = 1,

the quasiconformality coefficient Qφ = a2. Calculation of µφ is more complicated.
We use the Beltrami equation, i.e

φz =
1

2
(a+

1

a
)− i

b

2
, φz =

1

2
(a− 1

a
) + i

b

2
.

Hence

µφ =
(a2 − 1)(a2 + 1)− a2b2

(a2 + 1)2 + a2b2
+ i

2a3b

(a2 + 1)2 + a2b2
.

The matrix A can be easily reconstracted by elementary calculations.

Example 4.9. Let f ∈ L1
∞(R). Then φ(z) = (x + f(y), y), z = x + iy, is a

quasiconformal mapping with |J(z, φ)| = 1 (see [10]). A basic calculation implies

φz = 1− i
f ′(y)

2
, φz = i

f ′(y)

2
.
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Hence

µφ = − (f ′(y))2

4 + (f ′(y))2
+ i

2f ′(y)

4 + (f ′(y))2
.

The matrix can be easily recontracted

A(z) =

(
1 −f ′(y)

−f ′(y) 1 + (f ′(y))2

)
.

This algorithm can be used for more complicated examples.

5. Appendix

Few remarks about measure preserving and quasi-preserving (bi-Lipschitz) qua-
siconformal mappings andA-quasiconformal mappings.

A quasiconformal mapping φ is a solution of the corresponding Beltrami equation

(5.1) φz(z) = µ(z)φz(z).

Because J(z, φ) = |φ2
z|(z)− |φ2

z|(z), the condition J(z, φ) = 1 can be written as

(5.2) |φz|2(z)(1− |µ(z)|2) = 1.

Recall that for A-quasiconformal mappings we have

µ(z) =
a22(z)− a11(z)− 2ia12(z)

det(I +A(z))
.

By elementary calculations it is easy to verify that any measure preserving quasi-

conformal mapping φ : Ω → Ω̃ is a bi-Lipschitz mapping in the following sense:

D(φ) ∈ L1
∞(Ω) and D(φ−1) ∈ L1

∞(Ω̃) (or Dφ ∈ L∞(Ω) and Dφ−1 ∈ L∞(Ω̃)). An
equivalent geometric description is the following. The mapping φ and its inverse
are locally Lipschitz homeomorphisms with uniformly bounded Lipschitz constants.

The condition (5.2) can be soften in the spirit of quasiconformality up to the
inequality

1

C
< J(z, φ) < C

for some positive constant C. We call such homeomorphism as quasi-preserving
measure homeomorphisms.

For quasiconformal quasi-preserving measure homeomorphisms this condition can
be written as

(5.3)
1

C
< |φ2

z|(z)(1− |µ(z)|2) < C.

The class of quasiconformal quasi-preserving measure homeomorphisms coincide
with the class of bi-Lipschitz homeomorphisms. The constant C can be easily
recalculated in terms of uniform Lipschitz constants for the corresponding homeo-
morphism and its inverse.

We do not have any geometric description of such homeomorphisms i.e to solution
of systems ((5.1),(5.2)) or ((5.1),(5.3)). Let us look for some simplified cases.

Suppose the matrix A is a diagonal matrix. Then the quasiconformality coefficient
µ(z) is a real number. If a11(z) > 0 then 0 < µ(z) < 1 and the condition (5.2) can
be simplified:

(5.4) |φz|2(z)(1− µ(z)2) = 1.
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By simple calculations

µ(z) =
a11(z) + a−1

11 (z)

2 + a11(z) + a−1
11 (z)

.

Let us give an example of such homeomorphisms.

Example 5.1. Suppose Ω := (0, 1) × (0, 1) and φ(x, y) = a(x) + ib(y) where a(x)
and b(y) belong to C1(Ω). We also suppose that

inf
x∈(0,1)

(da/dx) > sup
y∈(0,1)

(db/dy)

and I1 := inf
y∈(0,1)

(db/dy) > 0.

Any such mapping is a quasi-preserving measure one, because

I1 ≤ J(z, φ) ≤
(
|da/dx|C1(Ω) × |db/dy|C1(Ω)

)
and quasiconformal one because

Q ≤
sup

x∈(0,1)
(da/dx)

inf
y∈(0,1)

(db/dy)
.

The corresponding matrix A can be easily reconstructed

(5.5) A(z) =

(
1−µ(z)
1+µ(z) 0

0 1+µ(z)
1−µ(z)

)
, a.e. in Ω,

where for z = x+ iy

µ(z) =
da/dx(x)− db/dy(y)

da/dx(x) + db/dy(y)
.
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Spannung die kreisförmige den tiefsten Grundton gibt, Sitz. ber. bayer. Akad. Wiss. (1923),
169–172.

[7] F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad.
Sci. Fenn. Ser. A I Math. 10 (1985), 203–219.

[8] V. Gol’dshtein, V. Pchelintsev and A. Ukhlov, Spectral properties of the Neumann-Laplace
operator in quasiconformal regular domains, Differential Equations, Mathematical Physics,
and Applications. Selim Grigorievich Krein Centennial, Contemporary Mathematics, AMS
734 (2019), 129–144.

[9] V. Gol’dshtein, V. Pchelintsev and A. Ukhlov, Spectral stability estimates of Dirichlet diver-
gence form elliptic operators, Anal. Math. Phys. 10 (2020): 74.



484 V. GOL’DSHTEIN AND V. PCHELINTSEV

[10] V. Gol’dshtein, V. Pchelintsev and A. Ukhlov, Quasiconformal mappings and Neumann eigen-
values of divergent elliptic operators, Complex Var. Elliptic Equ. 67 (2022), 2281–2302.

[11] V. Gol’dshtein, V. Pchelintsev and A. Ukhlov, Estimates of Dirichlet eigenvalues of divergent
elliptic operators in non-Lipschitz domains, Journal of Mathematical Sciences 268 (2022),
343–354.

[12] V. Gol’dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems, Trans. Amer.
Math. Soc. 361 (2009), 3829–3850.

[13] D. S. Grebenkov and B.-T. Nguyen, Geometrical Structure of Laplacian Eigenfunctions, SIAM
Review 55 (2013), 601–667.
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