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of the theorem itself. Indeed, in order to make sense of its statement only the first
order partial derivatives of the mapping v are required, but in the theorem we have
to assume additional Cn−d+1-regularity!? It looks strange. From general intuition,
the image of the set of critical points should be ”small” even for C1-mappings! Just
recently an essential progress was achieved in the understanding of this mysterious
phenomenon. Our paper is devoted to the survey of this recent progress. But before
we turn to that we must recall another interesting phenomenon of real analysis: the
Luzin N -property, namely that the image v(E) has zero measure whenever E has
zero measure. More explicitly, a continuous map v : Ω → Rn of an open subset
Ω ⊂ Rn is said to satisfy the Luzin N -condition if it preserves Lebesgue null sets:
for subsets E ⊂ Ω we have that

(1.3) L n(v(E)) = 0 whenever L n(E) = 0.

The Luzin N -property plays a fundamental role in various results from classical
real analysis and differentiation theory. Early applications primarily concerning
the case n = 1 can be found in [77]. Its crucial importance in dimension n > 1
is witnessed by its role for the validity of various formulas in geometric measure
theory and geometric function theory – see e.g. [69, Th. 3, p. 364] and [59].

The formulation of the Morse–Sard theorem seems to be very different from the
Luzin N -property. Nevertheless, evidently, the conclusions of both of them are very
similar. They assert, roughly speaking, that the image v(E) has small measure
if the rank of differential of v on E is small (Morse–Sard), or if the set E itself
is small (Luzin). Recently the natural synthesis of these two phenomena was ob-
tained [11, 63, 33], which is another topic of the present paper. Moreover, a natural
extension of the Luzin N condition, where the Lebesgue measure is replaced by
lower dimensional Hausdorff measures, was decisive in works extending the Morse-
Sard theorem and related results to classes of Sobolev maps which need neither be
Lipschitz nor everywhere differentiable – see, in particular, [16, 17, 32].

2. From the Morse-Sard to the Dubovitskĭı-Federer theorems: a
bridge across the Hölder and Sobolev spaces

2.1. Classical smoothness and Hölder regularity. As we have already men-
tioned, by the elegant results of Whitney [86] (extended further by many authors,
see, e.g., [65], [30, §3.4.3], see [36] for an elementary exposition ), the additional
smoothness assumptions on the mapping v in the Morse–Sard theorem are sharp,
i.e., the conclusion (1.2) fails in general for Ck-smooth mappings with k < n−d+1.
Only minor refinements and weakening of the smoothness assumptions turn out
to be possible. For example, Bates proved the validity of (1.2) for Cn−d,1-smooth
mappings, i.e., the higher (n − d)-derivatives satisfy the Lipschitz condition; for
other attempts to relax ‘a bit’ the classical smoothness assumptions, see, for exam-
ple [7, 65], etc. As it was mentioned by Norton [65, page 369], the absence of a
Fubini-type theorem for Hausdorff measures is an obstacle for proofs of some new
Morse–Sard type theorems. However, in 1957 Dubovitskĭı obtained the following
pioneering result that gives valuable ”smallness” information also for less smooth
mappings.
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Theorem 2.1 (Dubovitskĭı [26]). Let n, d, k ∈ N, Ω ⊂ Rn be an open subset and
let v : Ω → Rd be a Ck–smooth mapping. Put ν = n− d− k + 1. Then

(2.1) H ν(Zv ∩ v−1(y)) = 0 for L d a.a. y ∈ Rd,
where H ν denotes the ν–dimensional Hausdorff measure and Zv is the set of critical
points (see (1.1) ).

Let us explicit note that there are no restrictions on the dimensions n, d and that
both cases d ≤ n and d > n are included; we interpret H β as the counting measure
when β ≤ 0. Thus for k ≥ n − d + 1 we have ν ≤ 0, and H ν in (2.1) becomes
simply the counting measure, so the Dubovitskĭı theorem contains the Morse–Sard
theorem as particular case1.

A few years later and almost simultaneously, Dubovitskĭı [27] in 1967 and Federer
[30, Theorem 3.4.3] in 19692 published another important generalization of the
Morse–Sard theorem.

Theorem 2.2 (Dubovitskĭı–Federer). For n, k, d ∈ N let m ∈ {0, . . . ,min(n, d)−1},
Ω ⊂ Rn be an open subset and v : Ω → Rd be a Ck–smooth mapping. Put q◦ =
m+ n−m

k . Then

(2.2) H q◦(v(Zv,m)) = 0,

where Zv,m denotes the set of m–critical points of v defined as

(2.3) Zv,m = {x ∈ Ω : rank∇v(x) ≤ m}.

In 2001 Moreira [63] extended the last result to the Hölder class Ck,α, i.e., he
proved that for a mapping v ∈ Ck,α(Ω,Rd) the equality (2.2) holds with q◦ =
m + n−m

k+α . Recall, that a mapping v : Ω → Rd belongs to the class Ck,α(Ω,Rd) for
some positive integer k and 0 < α ≤ 1 if for each compact subset K of Ω there
exists a constant L = LK ≥ 0 such that for multi-indices β of length |β| ≤ k we
have

|∂βv(x) − ∂βv(y)| ≤ L |x− y|α for all x, y ∈ K.

Here | · | is the usual euclidean norm on Rd on the left-hand side and on Rn on the
right-hand side. To simplify the notation, let us make the following agreement: for
α = 0 we identify Ck,α with usual spaces of Ck-smooth mappings.

Now the very natural question arose. Theorem 2.1 asserts that H m-almost
all preimages are small (with respect to H ν-measure), and Theorem 2.2 claims
that H q◦-almost all preimages are empty. Could we connect these results? More
precisely, could we say something about H q–almost all preimages for other values
of q, say, for q ∈ [m − 1, q◦]? The affirmative answer is contained in the next
theorem, which is formulated for convenience in the general scale of Hölder spaces.

1It is interesting to note that for a long time this first Dubovitskĭı theorem remained almost
unnoticed by mathematicians outside the Soviet Union; another proof was given in the recent
paper [14] covering also some extensions to the case of Hölder spaces; see also [37] for the Sobolev
case.

2Federer announced [29] his result in 1966, this announcement (without any proofs) was sent
on 08.02.1966. For the historical details, Dubovitskĭı sent his paper [27] (with complete proofs) a
month earlier, on 10.01.1966.
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Theorem 2.3 (Bridge D.-F. theorem [38, 32]). Let m ∈ {0, . . . , n − 1}, k ≥ 0,
0 ≤ α ≤ 1, k + α ≥ 1, d > m, Ω ⊂ Rn be an open subset, and v ∈ Ck,α(Ω,Rd).
Then for any q ∈ (m,∞) the equality

H µq(Zv,m ∩ v−1(y)) = 0 for H q-a.a. y ∈ Rd

holds, where

µq = n−m− (k + α)(q −m),

and Zv,m denotes the set of m-critical points of v (see (2.3) ).

Let us note that for the classical Ck-case, i.e., when α = 0, the behaviour of the
function µq is very natural:

µq = 0 for q = q◦ = m+ n−m
k (Dubovitskĭı–Federer Theorem 2.2);

µq < 0 for q > q◦ [ibid.];

µq = ν for q = m+ 1 (Dubovitskĭı Theorem 2.1);

µq = n−m for q = m.

The last value cannot be improved in view of the elementary example of a linear
mapping L : Rn → Rd of rank m.

Thus, Theorem 2.3 contains all the previous theorems (Morse–Sard, 2.1–2.2, and
even the Bates theorem for Ck,1-Lipschitz functions [10]) as particular cases.

Intuitively, the meaning of the Bridge Theorem 2.3 resembles the Heisenberg’s
uncertainty principle in theoretical physics: the more precise information we have
on the measure of the image of the critical set, the less precisely the preimages are
described, and vice versa.

Remark 2.4. As we mentioned before, for q = q◦ = m + n−m
k+α and µq = 0 (as

in the Dubovitskĭı-Federer Theorem 2.2 ) the assertion of Theorem 2.3 was proved
in 2001 in the paper of Moreira [63]. For the minimal rank value m = 0 (i.e.,
when the gradient totally vanishes on the critical set) and q = q◦ = n

k+α , µq = 0,

the assertion of Theorem 2.3 was proved by Kucera [52] in 1972. Further, for the
particular case q = m + 1 = d (as in the Dubovitskĭı Theorem 2.1) and under the
additional assumption that

(2.4) |∂βv(x) − ∂βv(y)| ≤ ω
(
|x− y|

)
· |x− y|α with ω(r) → 0 as r → 0,

holds for all multi-indices β of lenght |β| ≤ k and x, y ∈ Ωthe assertion of The-
orem 2.3 was proved in the paper [14] by Bojarski et al. from 2005. Under the
same asymptotic assumption (2.4) the above result by Moreira (i.e., when q = q◦,
µq = 0 ) was proved by Yomdin in the paper [87] in 1983. In fact, Yomdin obtained
some interesting refinements of the previous Morse-Sard results, in that he obtained
estimates in terms of Minkowski contents and also stability versions of these bounds.

The next natural step is to extend the above bridge theorem to the case of Sobolev
spaces, but first we need some preparations and preliminary results.
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2.2. Some preliminaries. For a subset S of Rn we write L n(S) for its outer
Lebesgue measure. The m–dimensional Hausdorff measure is denoted by H m and
the m–dimensional Hausdorff content by H m

∞ . Recall that for any subset S of Rn
we have by definition

H m(S) = lim
α↘0

H m
α (S) = sup

α>0
H m
α (S),

where for each 0 < α ≤ ∞,

H m
α (S) = inf

{ ∞∑
i=1

(diamSi)
m : diamSi ≤ α, S ⊂

∞⋃
i=1

Si

}
.

It is well known that H n(S) = H n
∞(S) ∼ L n(S) for sets S ⊂ Rn.

To simplify the notation, we write ∥f∥Lp instead of ∥f∥Lp(Rn), etc.

For an open subset Ω of Rn the Sobolev space Wk
p(Ω,Rd) is as usual defined

as consisting of those Rd-valued functions f ∈ Lp(Ω) whose distributional partial

derivatives of orders m ≤ k belong to Lp(Ω). The simplified notation Wk
p(Ω) will be

used for real-valued functions. The corresponding local spaces are indicated with a
subscript, such as Wk

p,loc(Ω,Rd), etc. (for detailed definitions and differentiability

properties of such functions see, e.g., [28], [60], [88], [24]). Denote by ∇mf the
vector-valued function consisting of all m-th order partial derivatives of f arranged
in some fixed order. We use the norm

∥f∥Wk
p

= ∥f∥Lp + ∥∇f∥Lp + · · · + ∥∇kf∥Lp ,

where in each case
∥∥∇mf

∥∥
Lp

=
∥∥|∇mf |

∥∥
Lp

and |∇mf(x)| is the usual euclidean

norm of ∇mf(x). Working with locally integrable functions, we always assume that
the precise representatives are chosen. If w ∈ L1,loc(Ω), then the precise represen-
tative w∗ is defined for all x ∈ Ω by

(2.5) w∗(x) =

 lim
r↘0

−
∫
B(x,r)

w(z) dz, if the limit exists and is finite,

0 otherwise,

where the dashed integral as usual denotes the integral mean,

−
∫
B(x,r)

w(z) dz =
1

L n(B(x, r))

∫
B(x,r)

w(z) dz,

and B(x, r) = {y : |y−x| < r} is the open ball of radius r centered at x. Henceforth
we omit special notation for the precise representative writing simply w∗ = w.

We will say that x is an Lp–Lebesgue point of w (and simply a Lebesgue point
when p = 1), if

−
∫
B(x,r)

|w(z) − w(x)|p dz → 0 as r ↘ 0.

If k < n, then it is well-known that functions that are locally on Ω ⊂ Rn in the
Sobolev space Wk

p admit continuous representatives when p > n
k and that they could

be essentially discontinuous when p ≤ p◦ = n
k (see, e.g., [60, 88]). The Sobolev–

Lorentz space Wk
p◦,1(Ω) ⊂ Wk

p◦(Ω) is a refinement of the corresponding Sobolev
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space that for our purposes turns out to be convenient. Among other things func-
tions that are locally in Wk

p◦,1 on Ω have in particular continuous representatives.
Here we shall mainly be concerned with the Lorentz space Lp,1, and in this case one
may rewrite the norm as (see for instance [57, Proposition 3.6])

(2.6) ∥f∥p,1,Ω =

+∞∫
0

[
L n({x ∈ Ω : |f(x)| > t})

] 1
p dt.

We refer the reader to [57] or [88] for more information about Lorentz spaces. De-
note by Wk

p,1(Ω) the space of all functions v ∈ Wk
p(Ω) such that all its distributional

partial derivatives of order at most k belong to Lp,1(Ω).

2.3. Extension of the Bridge D.-F.-theorem to mappings of Sobolev and
fractional Sobolev spaces. Sobolev spaces have numerous applications in the
modern theory of PDEs (where they often replace the classical smoothness notion),
so it is a natural and compelling problem to extend the above results to this case.
Surprisingly, it can be successfully done in a very natural way, namely, just re-
placing the Ck-spaces by Wk

p,loc(Ω,Rd) and suitably redefining the sets Zν,m (see

(2.9) below) in the above Theorem 2.3 it remains true. We emphasize in particular
that the integrability assumptions in Theorem 2.5 below are minimal and sharp,
they are of the kind kp ≥ n, so that they guarantee in general only the continuity,
but not the everywhere differentiability of a mapping. However, the ‘bad’ set of
nondifferentiability points of such Sobolev mappings is fortunately negligible in the
above bridge theorem (see (2.10) ) because of some Luzin type N–properties with
respect to lower dimensional Hausdorff measures established in [17, 31, 48], see also
Section 4. This ensures us that the nature of Sobolev spaces is in deep harmony
with the Morse–Sard–type theorems. Because the results that follow are all of a
local nature we henceforth assume that all maps are defined on full space Rn and
whenever convenient we impose the regularity conditions globally on Rn in order to
keep the presentation as non-technical as possible.

Let k ∈ N, 1 < p < ∞ and 0 ≤ α < 1. One of the most natural types of
fractional Sobolev spaces are the (Bessel) potential spaces L k+α

p . They can be

seen as the Sobolev analog of the classical Hölder classes Ck,α. Recall, that a map
v : Rn → Rd belongs to the space L k+α

p , if it can be expressed as a convolution of
a function g ∈ Lp(Rn) with the Bessel kernel Gk+α, defined as the function with

Fourier transform Ĝk+α(ξ) = (1 + 4π2ξ2)−(k+α)/2. It is well known that for the
integer exponents (i.e., when α = 0) one has the identity

(2.7) L k
p (Rn) = Wk

p(Rn) if 1 < p <∞,

where Wk
p(Rn) is the classical Sobolev space consisting of functions whose gener-

alised derivatives up to order ≤ k belong to the Lebesgue space Lp(Rn).

As usual, if (k + α)p > n, then functions from the potential space L k+α
p (Rn)

are continuous by Sobolev theorem. But if (k + α)p = n, then functions from
potential spaces L k+α

p (Rn) are discontinuous in general. Thus for this limiting

case we need to consider the Bessel–Lorentz potential space L k+α
p,1 (Rn) to have

the continuity. Namely, L k+α
p,1 (Rn) denotes the space of functions that can be
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represented as a convolution of the Bessel potential Gk+α with a function g from
the Lorentz space Lp,1 (see the definition of these spaces in the section 2.2). Similarly
to (2.7), for the integer exponents (i.e., when α = 0) one has the identity

(2.8) L k
p,1(Rn) = Wk

p,1(Rn) if 1 < p <∞,

where Wk
p,1(Rn) consists of all functions v ∈ Wk

p(Rn) whose partial derivatives of

order ≤ k belong to the Lorentz space Lp,1 (see, e.g., [31] ).

Theorem 2.5 (Bridge D.-F. theorem for Sobolev case [38, 32]). Let m ∈ {0, . . . , n−
1}, k ≥ 1, d > m, 0 ≤ α < 1, p ≥ 1 and let v : Rn → Rd be a mapping for which
one of the following cases holds:

(i) α = 0, kp > n, and v ∈ Wk
p(Rn,Rd);

(ii) α = 0, kp = n, and v ∈ Wk
p,1(Rn,Rd);

(iii) 0 < α < 1, p > 1, (k + α)p > n, and v ∈ L k+α
p (Rn,Rd);

(iv) 0 < α < 1, p > 1, (k + α)p = n, and v ∈ L k+α
p,1 (Rn,Rd).

Then the mapping v is continuous and for any q ∈ (m,∞) the equality

H µq(Zv,m ∩ v−1(y)) = 0 for H q-a.a. y ∈ Rd

holds, where again

µq = n−m− (k + α)(q −m),

and Zv,m denotes the set of m-critical points:

(2.9) Zv,m = Av ∪ {x ∈ Rn \Av : rank∇v(x) ≤ m}.

Here Av means the set of ‘bad’ points at which either the function v is not differen-
tiable or which are not the Lebesgue points for ∇v; this ‘bad’ set is “automatically”
included by definition into the critical set. Recall, that by approximation results
(see, e.g., [81] and [48] ) under conditions of Theorem 2.5 the equalities

H τ (Av) = 0 ∀τ > τ∗ := n− (k + α− 1)p in cases (i), (iii);

H τ∗(Av) = H p(Av) = 0 τ∗ := n− (k + α− 1)p = p in cases (ii), (iv)

are valid (in particular, Av = ∅ if (k+α− 1)p > n). However, it was proved in [31]
that the impact of the ”bad” set Av is negligible in the Bridge D.-F. Theorem 2.5,
i.e.,

(2.10) H µq(Av ∩ v−1(y)) = 0 for H q–a.a. y ∈ Rd

for any q > m.

Remark 2.6. Note that since µq ≤ 0 for q ≥ q◦ = m + n−m
k+α , the assertions of

Theorem 2.5 is equivalent to the equality 0 = H q
[
v(Zv,m)

]
for q ≥ q◦, so it is

sufficient to check the assertions of Theorem 2.5 for q ∈ (m, q◦] only.

Remark 2.7. Note that in the pioneering paper by De Pascale [23] the assertion of
the initial Morse–Sard Theorem (1.2) (i.e., when k = n−m, q = q◦ = m+ 1 = d,
µq = 0 ) was obtained for the Sobolev classes Wk

p(Rn,Rd) under the additional

assumption p > n (in this case the classical embedding Wk
p(Rn,Rd) ↪→ Ck−1 holds,

so there are no problems with nondifferentiability points). For the same Sobolev
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class Wk
p(Rn,Rd) with p > n the assertion of the Dubovitskĭı Theorem 2.1 was

proved in the recent paper [37] by Haj lasz and Zimmermann.
In addition to the above mentioned papers there is a growing number of papers

on the topic, including [7, 8, 9, 10, 18, 34, 66, 82, 83].

The last identity (2.10) demonstrates the necessity of studying the Luzin N -type
properties in order to formulate the Morse–Sard type theorems for the Sobolev
case. Really, it was the starting point for our research which recently was finished
by finding some natural synthesis of these phenomena with some interesting and
unexpected properties.

3. Luzin N-property for Sobolev mappings with respect to Hausdorff
measures

Recall, that if a map v : Ω ⊂ Rn → Rd is locally Lipschitz or everywhere differ-
entiable, then it is easily seen that, for subsets E ⊂ Ω,

(3.1) H α(v(E)) = 0 whenever H α(E) = 0,

where α ∈ (0, n] and H α denotes the α-dimensional Hausdorff measure. In partic-
ular, the Luzin N -property (1.3) follows from (3.1), when d = n.

The intriguing issue is that in many important special cases it is required to
establish the Luzin N -property for Sobolev mappings that are neither Lipschitz
nor everywhere differentiable. In particular, the Lusin N -property is critical in the
proof of central properties of quasiconformal maps and, more generally, of maps
with bounded distortion, i.e., mappings f : Ω ⊂ Rn → Rn of Sobolev class W1

n(Rn)
such that ∥∇f(x)∥n ≤ K det∇f(x) holds almost everywhere with some constant
K ∈ [1,+∞), where ∥ · ∥ is the operator norm. These maps were introduced by
Reshetnyak in [70]; we also emphasize his excellent books [71], [72], [35]. He proved
that they satisfy the N -property and this was very helpful in his subsequent proofs
of other basic topological properties of such mappings (openness, discreteness and
etc.). Subsequently this theory was successfully developed by many mathematicians
in both analytical and geometrical directions, and many interesting and deep results
were obtained (see, e.g., monographs [74, 42] ).

Note that the membership of a continuous mapping v to the Sobolev class
W1

n,loc(Ω,Rn) is crucial for N -property. Indeed, every continuous mapping of class

W1
p(Ω,Rn) with p > n has the N -property (it is a simple consequence of the Morrey

inequality). But a continuous mapping of class W1
n,loc(Rn,Rn) need not have the

N -property [73]. On the other hand, the N -property holds for continuous mappings
of the class W1

n,loc(Ω,Rn) under some additional assumptions on its topological fea-

tures, namely, for homeomorphic and open mappings and for pseudo-monotone3

mappings [85, 56].
The results above are very delicate and sharp: indeed, for any p < n there are

homeomorphisms f : Rn → Rn locally of class W1
p without the N -property. This

phenomenon was discovered by Ponomarev [68]. In recent years his construction
has gone through a number of interesting refinements. For instance an example of

3Some of these results were generalised for the more delicate case of Carnot groups and manifolds,
see, e.g., [84].
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a Sobolev homeomorphism with zero Jacobian a.e. which belongs simultaneously
to all the classes W1

p,loc(Rn,Rn) with p < n can be found in [39, 19] — of course,

this exotic homeomorphism certainly fails to have the N -property4.
In the positive direction, it was proved in [45] (see also [75] ), that every mapping

of the Sobolev–Lorentz class W1
n,1,loc(Rn,Rn) satisfies the N -property. Note that

this space W1
n,1,loc is limiting in a natural sense between classes W1

n,loc and W1
p,loc

with p > n (see section 2.2 for the exact definitions).
Another direction is to study the N -properties with respect to Hausdorff (instead

of Lebesgue) measures. One of the most elegant results was achieved for the class
of plane quasiconformal mappings. Namely, the famous area distortion theorem of
Astala [6] implies the following dimension distortion result: if f : C → C is a K-
quasiconformal mapping (i.e., it is a plane homeomorphic mapping with K-bounded
distortion) and E is a compact set of Hausdorff dimension t ∈ (0, 2), then the image
f(E) has Hausdorff dimension at most t′ = 2Kt

2+(K−1)t . This estimate is sharp;

however, it leaves open the endpoint case: does H t(E) = 0 imply H t′(f(E)) = 0?
The remarkable paper [54] gives an affirmative answer to Astala’s conjecture.

To formulate the main result of the section, we use the following terminology:
a continuous mapping v : Rn → Rd is said to satisfy (τ, σ)-N -property, if for subsets
E ⊂ Rn,

H σ(v(E)) = 0 whenever H τ (E) = 0.

Similarly, v : Rn → Rd is said to satisfy strict (τ, σ)-N -property, if for subsets E ⊂
Rn,

H σ(v(E)) = 0 whenever H τ (E) <∞.

Define a continuous function σ(τ) by the following rule:

(3.2) σ(τ) :=


τ, if τ ≥ τ∗ := n− (α− 1)p;

p τ
αp−n+τ , if 0 < τ < τ∗.

Theorem 3.1 ([47, 31]). Let α > 0, 1 < p < ∞, αp > n, and v ∈ L α
p (Rn,Rd).

Suppose that 0 < τ ≤ n. Then the following assertions hold:

(i) if τ ̸= τ∗ = n− (α− 1)p, then v has the (τ, σ)-N -property, where the values
τ∗ and σ = σ(τ) are defined in (3.2). This (τ, σ)-N -property is strict in case
τ < τ∗.

(ii) if α > 1 and τ = τ∗ > 0 then σ(τ) = τ∗, but the mapping v in general
has no (τ∗, τ∗)-N -property, i.e., it could be that H τ∗(v(E)) > 0 for some
E ⊂ Rn with H τ∗(E) = 0.

Theorem 3.1 omits the limiting cases αp = n and τ = τ∗. As above, it is possible
to cover these cases as well using the Lorentz norms.

4Moreover, even the examples of bi-Sobolev homeomorphisms of class W1
p,loc(Rn,Rn), p < n−1,

with zero Jacobian a.e. were constructed recently, see, e.g., [22], [20]. Such homeomorphisms are
impossible in the Sobolev class W1

n−1,loc(Rn,Rn). Furthermore, in [41] authors constructed an

example of a Sobolev homeomorphism f ∈ W1
1,loc((0, 1)n,Rn) such that the Jacobian det f ′(x)

changes its sign on the sets of positive measures.
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Theorem 3.2 ([17, 48, 31]). Let v : Rn → Rd be a mapping for which one of the
following cases holds:

(i) v ∈ Wk
1(Rn,Rd) for some k ∈ N, k ≥ n;

(ii) v ∈ L α
p,1(Rn,Rd) for some α > 0, p ∈ (1,∞) with αp ≥ n.

Suppose that 0 < τ ≤ n. Then v is a continuous function satisfying the (τ, σ)-N -
property, where again the value σ = σ(τ) is defined in (3.2) (with α = k and p = 1
for the (i) case).

So, in the last theorem the critical case τ = τ∗ is included.

Remark 3.3. The assertion of Theorem 3.1 for α = 1 was proved by Kaufman [44].
The Hausdorff dimension distortion (with the same σ(τ) ) was established by Hencl
and Honźık [40]. The assertion similar to Theorem 3.1 was announced in [5] (without
complete proofs), see [31] for our commentaries and other historical remarks. The
assertion of Theorem 3.2 for α = 1 and τ = n was proved in [45], [75]. Finally, very
recently the results were extended to the Orlicz–Sobolev case [21] (also for α = 1 ).

In order to prove that the ‘bad’ set of nondifferentiability points is negligible
in the Morse–Sard–Dubovitskĭı type theorems (see identity (2.10) ), we need the
following result.

Theorem 3.4 ([38, 31], Sobolev case). Let α > 0, 1 < p < ∞, αp > n, and
v ∈ L α

p (Rn,Rd). Suppose that 0 < τ ≤ n and τ ̸= τ∗ = n − (α − 1)p. Then for
every q ∈ [0, σ] and for any set E ⊂ Rn with Hτ (E) = 0 the equality

(3.3) H µ(E ∩ v−1(y)) = 0 for H q-a.a. y ∈ Rd

holds, where µ = τ
(
1 − q

σ

)
and the value σ = σ(τ) is defined in (3.2).

The above Theorem 3.4 omits the limiting cases αp = n and τ = τ∗. As above,
it is possible to cover these cases as well using the Lorentz norms.

Theorem 3.5 ([38, 31], Sobolev–Lorentz case). Let v : Rn → Rd be a mapping for
which one of the following cases holds:

(i) v ∈ Wk
1(Rn,Rd) for some k ∈ N, k ≥ n;

(ii) v ∈ L α
p,1(Rn,Rd) for some α > 0, p ∈ (1,∞) with αp ≥ n.

Suppose that 0 < τ ≤ n. Then for every q ∈ [0, σ] and for any set E ⊂ Rn with
Hτ (E) = 0 the equality (3.3) holds with the same µ and σ defined in (3.2) (with
α = k and p = 1 for the case (i) ).

4. On synthesis of Dubovitskĭı–Federer Theorem 2.2 and Luzin type
properties

The above mentioned properties assert, roughly speaking, that the image v(E)
has small measure if the rank of differential of v on E is small (Morse–Sard), or if the
set E itself is small (Luzin). This leads us to the following natural generalizations.
For a pair of positive parameters τ and σ and for an integer m ∈ Z+ we say that
that a mapping v : Rn → Rd satisfies the (m : τ, σ)-N -property, if

H σ(v(E)) = 0 whenever E ⊂ Zv,m with H τ (E) = 0.
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Further, we say that that a mapping v : Rn → Rd satisfies the strict (m : τ, σ)-N -
property, if

H σ(v(E)) = 0 whenever E ⊂ Zv,m with H τ (E) <∞.

Using this notation, the above classical Morse–Sard theorem means that every Ck-
mapping v : Rn → Rd has the strict (d− 1 : n, d)-N -property if k ≥ n− d+ 1. The
starting point for this section is the following

Theorem 4.1 (Bates and Moreira, 2002 [11, 63]). Let m ∈ {0, . . . , n − 1}, k ≥ 1,
d ≥ m, 0 ≤ α ≤ 1, and v ∈ Ck,α(Rn,Rd). Then for any τ ∈ [m,n] the mapping v
has the (m : τ, σ)-N -property with

(4.1) σ = m+
τ −m

k + α
.

Moreover, this N -property is strict if at least one of the following additional as-
sumptions is fulfilled:

1) τ = n (in particular, it includes the case of the classical Morse–Sard theorem);
2) τ > m and α = 0 (that means v ∈ Ck);
3) τ > m and v ∈ Ck,α+(Rn,Rd).

Here we say that a mapping v : Rn → Rd belongs to the class Ck,α+ for some
positive integer k and 0 < α ≤ 1, if there exists a function ω : R+ → R+ such that
ω(r) → 0 as r → 0 and

(4.2) |∇kv(x) −∇kv(y)| ≤ ω(r) · |x− y|α whenever |x− y| < r.

See the recent paper [61] for the case of mappings into the infinite-dimensional
normed space (and for a good historical survey). Note that the assertion of The-
orem 4.1 is sharp: namely, if its additional conditions 1)–3) are not satisfied, then
the corresponding (m : τ, σ)-N -property is not strict. This follows from Whitney’s
counterexamples [86], see also [65, 63] for further comments.

Of course, the assertion of Theorem 4.1 includes the Morse–Sard theorem and
many other results on this topic as particular cases. The next step is to extend this
result to the case of Sobolev mappings. Recall, that in the Sobolev case we consider
the set of ‘bad’ nonregular points (where ∇v is not well-defined) automatically as
m-critical for any m (see Theorem 2.5 for the precise definition; of course, this only
makes the corresponding (m : τ, σ)-N -properties stronger).

Theorem 4.2. Let m ∈ {0, . . . , n − 1}, k ≥ 1, d ≥ m, 0 ≤ α < 1, p > 1,
(k + α)p > n, and let v ∈ L k+α

p (Rn,Rd). Denote τ∗ = n− (k + α − 1)p. Suppose
in addition that

τ > m and τ > τ∗,

then the mapping v has strict (m : τ, σ)-N -property with

(4.3) σ = m+
p(τ −m)

τ + (k + α)p− n
.

Further, if τ = m > τ∗, then v has nonstrict (m : τ,m)-N -property.

We make several remarks here.
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• First of all, note that the value σ in Theorems 4.1–4.2 coincide for the bor-
derline cases τ = m or τ = n, but they are different for the intermediate
range m < τ < n (of course, then σ is larger for the Sobolev case). Nev-
ertheless, σ in Theorem 4.1 can be obtained by taking a limit in (4.3) as
p→ ∞;

• The condition τ > τ∗ in Theorem 4.2 is essential and sharp: namely, in the
paper [31] we constructed a counterexample of a mapping from L k+α

p (Rn)
that does not have the (m : τ, σ)-N -property with τ = τ∗ = m = σ = 1.

Theorem 4.2 omits the limiting cases (k + α)p = n and τ = τ∗. However, it is
possible to cover these cases as well using the Lorentz norms:

Theorem 4.3. Let m ∈ {0, . . . , n − 1}, k ≥ 1, d ≥ m, 0 ≤ α < 1, p ≥ 1 and let
v : Rn → Rd be a mapping for which one of the following cases holds:

(i) α = 0, k ≥ n, and v ∈ Wk
1(Rn,Rd);

(ii) 0 ≤ α < 1, p > 1, (k + α)p ≥ n, and v ∈ L k+α
p,1 (Rn,Rd).

Denote τ∗ = n− (k + α− 1)p. Suppose in addition that

τ > m and τ ≥ τ∗,

then the mapping v has strict (m : τ, σ)-N -property with the same σ defined
by (4.3). Further, if τ = m ≥ τ∗, then v has the corresponding nonstrict (m : τ,m)-
N -property.

So here the limiting case τ = τ∗ is included.

4.1. Some additional historical remarks. The above formulated results of §4
include many previous Morse–Sard type theorems as particular cases. For example,
for the smooth case if α = 0, τ = n, then we have

σ = m+
n−m

k
,

and the assertion of Theorem 4.1 coincides with the classical Federer–Dubovitskĭı
Theorem 2.2. Of course, it includes the original Morse–Sard theorem as a particular
case (when k = n−m,σ = m+ 1 ).

Note also that Theorem 4.1 was formulated as a conjecture by Norton in [65, page
369] and it includes as particular cases some related results of other mathematicians:
Norton himself (who proved the assertion for the case σ = d, τ = (k+α)(d−m)+m ),
Yomdin [87] (case τ = n, v ∈ Ck,α+, see also [14] ), Kucera [52] (case τ = n , m = 1,
i.e., when the gradient vanishes on the critical set), etc.

Finally, the assertions of Theorems 4.2 and 4.3 for the most important case τ = n
follows from the bridge theorems 2.3, 2.5.

5. On universal synthesis of Bridge Dubovitskĭı–Federer Theorem 2.3
and Luzin type N-properties

In this section we describe the universal synthesis of all the above phenomena:
Morse–Sard theorem, Luzin N -property, Dubovitskĭı–Federer Theorems 2.1–2.2,
and Bates–Moreira Theorem 4.1.



FROM MORSE, SARD, DUBIVITSKĬI AND FEDERER TO LUZIN 453

In order to ease the presentation we introduce the following terminology. For
parameters µ ≥ 0, q ≥ m, τ > 0 we say that that a mapping v : Rn → Rd has the
(m : τ, µ, q)-N -property if for subsets E ⊂ Zv,m with H τ (E) = 0 we have that

(5.1) H µ(E ∩ v−1(y)) = 0 for H q-almost all y ∈ v(E).

Recall that here, as above, the set of m-critical points is defined by (2.3) for the
classical smooth case or by (2.9) for the Sobolev case. Obviously,
(5.2)

if µ ≤ 0, then the (m : τ, µ, q)-N -property is equivalent to the (m : τ, q)-N -property.

Further, we say that a mapping v : Rn → Rd has the strict (m : τ, µ, q)-N -property
if for subsets E ⊂ Zv,m with H τ (E) <∞ it holds that

H µ(E ∩ v−1(y)) = 0 for H q-almost all y ∈ v(E).

Theorem 5.1 (Smooth case v ∈ Ck,α(Rn,Rd)). Under the assumptions of Theo-
rem 4.1 one can replace the assertion about (m : τ, σ)-N -properties by the stronger
assertion about (m : τ, µ, q)-N -property for any τ ∈ [m,n] and q ∈ [m,σ] with

(5.3) µ = τ −m− (k + α)(q −m).

Further, if q > m and at least one of the corresponding conditions 1)–3) of Theo-
rem 4.1 is fulfilled, then this (m : τ, µ, q)-N -property is strict.

Similar assertions hold for Sobolev and Sobolev–Lorentz cases.

Theorem 5.2 (Sobolev case v ∈ L k,α
p (Rn,Rd), (k+α)p > n). Under assumptions

of Theorem 4.2 one can replace the assertion about strict (m : τ, σ)-N -properties by
the stronger assertion about strict (m : τ, µ, q)-N -property for any τ > max(τ∗,m),
q ∈ (m,σ] with

(5.4) µ = τ −m− (k + α− n

p
+
τ

p
)(q −m).

Further, if q = m, τ > τ∗, and τ ≥ m, then v has nonstrict (m : τ, µ,m)-N -property
with µ = τ −m.

Theorem 5.3 (Sobolev–Lorentz case v ∈ L k,α
p,1 (Rn,Rd), kp ≥ n). Under as-

sumptions of Theorem 4.3 one can replace the assertion about strict (m : τ, σ)-
N -properties by the stronger assertion about strict (m : τ, µ, q)-N -property for any
τ ≥ τ∗, τ > m, q ∈ (m,σ], and with the same µ as in (5.4). Further, if q = m and
τ ≥ max(m, τ∗), then v has nonstrict (m : τ, µ,m)-N -property with µ = τ −m.

It is easy to see thatf we in the statement of Theorems 5.1–5.3 take q = σ,
then µ = 0, where σ is defined in the corresponding Theorems 4.1–4.3. It means
(see (5.2) ) that Theorems 5.1–5.3 include the previous Theorems 4.1–4.3 as partic-
ular cases.

6. Final remarks

The results of the last Section 5 are not merely about relaxing the smoothness
assumptions in the classical theorems as can be seen when noticing that our results
are new even for the classical case of Ck-smooth mappings! The aims of the research
were quite different: first of all, to obtain the synthetic bridge theorem that links
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together all these remarkable phenomena of real analysis (Morse–Sard theorems,
Dubovitskĭı–Federer theorems, and Luzin N -property; an important step in this
direction was taken earlier in the Bates–Moreira Theorem 4.1), and secondly, to
extend these theorems to the very important function spaces in modern PDEs —
Hölder, Sobolev, and fractional Sobolev (=Bessel potential) spaces. Success in
achieving all these aims became the basis for writing this survey paper.

Many remarks and comments were already made, but let us here emphasize an
important and perhaps surprising point. Namely that for for τ = n (which is the
case in all Morse–Sard–Dubovitskĭı–Federer type theorems) the conclusions for clas-
sically Ck-smooth mappings and for Sobolev Wk

p-mappings are exactly the same,
despite the fact, that the integrability assumptions for the latter are very weak and
sharp: they guarantee in general only continuity of the mapping itself, so the map-
pings under consideration are neither smooth, nor Lipschitz, nor even everywhere
differentiable! The existence of points where the map fails to be differentiable does
not cause any harm as the image of these point turns out to be negligible. This is by
virtue of the Luzin type N -properties that we establish for such Sobolev mappings.
In particular, for functions of the simplest Sobolev class Wn

1 (Rn,R) almost all levels
sets turn out to be C1-smooth manifolds despite the fact, that the function itself
is not C1-smooth, nor even Lipschitz (see [17]). This observation turned out to be
crucial and very useful for the resolution of some important problems in fluid me-
chanics (see, e.g., [49]–[50]). Only starting from τ < n the integrability assumptions
of Sobolev mappings begin to influence the distortion of the Hausdorff dimensions.

7. Appendix I: Some crucial ingredients for the proofs

In the research we develop ideas from our initial joint papers with Jean Bour-
gain [16, 17]. As in [17], we crucially use Yomdin’s [87] entropy estimates of near
critical values for polynomials (recalled in Theorem 7.1 below). These interesting
results of Yomdin are very useful in this context, see, e.g., the recent paper [9],
where the Morse-Sard theorems were proved for min-type functions and for Lips-
chitz selections. Another key ingredient are the elegant Adams–Maz’ya estimates
of Choquet type integrals for Riesz potentials.

7.1. On Yomdin’s entropy estimates for the near-critical values of poly-
nomials. For a subset A of Rd and ε > 0 the ε–entropy of A, denoted by Ent(ε,A),
is the minimal number of closed balls of radius ε covering A. Further, for a lin-
ear map L : Rn → Rd we denote by λj(L), j = 1, . . . , d, its singular values ar-
ranged in decreasing order: λ1(L) ≥ λ2(L) ≥ · · · ≥ λd(L). Geometrically the
singular values are the lengths of the semiaxes of the ellipsoid L(∂B(0, 1)). We
recall that the singular values of L coincide with the eigenvalues repeated accord-
ing to multiplicity of the symmetric nonnegative linear map

√
LL∗ : Rd → Rd.

Also for a mapping f : Rn → Rd that is approximately differentiable at x ∈ Rn
put λj(f, x) = λj(dxf), where by dxf we denote the approximate differential of f
at x. The next result is the basic ingredient of our proof.

Theorem 7.1 ([87]). Let m ∈ {0, . . . , n− 1} and m < d. Then for any polynomial
P : Rn → Rd of degree at most k, for each n-dimensional cube Q ⊂ Rn of size
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`(Q) = r > 0, and for any number ε > 0 we have that

Ent
(
εr, {P (x) : x ∈ Q, λ1 ≤ 1 + ε, . . . , λm ≤ 1 + ε, λm+1 ≤ ε, . . . , λd ≤ ε}

)
≤ CY

(
1 + ε−m

)
,

where the constant CY depends on n, d, k,m only and for brevity we wrote λj =
λj(P, x).

7.2. On estimates of integrals of Sobolev functions with respect to mea-
sures satisfying a Morrey condition. Let M β be the space of all nonnegative
Borel measures µ on Rn such that

|||µ|||β = sup
I⊂Rn

`(I)−βµ(I) <∞,

where the supremum is taken over all n–dimensional cubic intervals I ⊂ Rn and
`(I) denotes side–length of I.

Recall the following classical theorem proved by Adams.

Theorem 7.2 (§1.4.1 in [60] or [1] ). Let α > 0, n− αp > 0, s > p > 1 and µ be
a positive Borel measure on Rn. Then for any g ∈ Lp(Rn) the estimate

(7.1)

∫ ∣∣Iαg∣∣s dµ ≤ C|||µ|||β · ∥g∥sLp

holds with β = s
p(n− αp), where C depends on n, p, s, α only, and

Iαg(x) :=

∫
Rn

g(y)

|y − x|n−α
dy

is the Riesz potential of order α.

The above estimate (7.1) fails for the limiting case s = p. Namely, there exist
functions g ∈ Lp(Rn) such that |Iαg|(x) = +∞ on some set of positive (n − αp)–
Hausdorff measure. Nevertheless, there are two ways to cover this limiting case s =
p. The first way is using the fractional maximal function Mα instead of the Riesz
potential in the left hand side of (7.1).

Theorem 7.3 (Theorem 7 on page 28 in [3] ). Let α > 0, n− αp > 0, s ≥ p > 1
and µ be a positive Borel measure on Rn. Then for any g ∈ Lp(Rn) the estimate

(7.2)

∫ ∣∣Mαg
∣∣s dµ ≤ C|||µ|||β · ∥g∥sLp

holds with β = s
p(n− αp), where C depends on n, p, s, α only.

The second way is using the Lorentz norm instead of the Lebesgue norm in the
right hand side of (7.1). Such a possibility was proved in [48].

Theorem 7.4 (Theorem 1.2 in [48]). Let α > 0, 1 < p < ∞, n − αp > 0, and µ
be a positive Borel measure on Rn. Then for any g ∈ Lp,1(Rn) the estimate∫ ∣∣Iαg∣∣p dµ ≤ C|||µ|||β · ∥g∥pLp,1

holds with β = n− αp, where C depends on n, p, α only.
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We are indebted to Igor Verbitsky for pointing out that Theorem 7.4 may also
be proved using the results from [79].

The above theorems are not fulfilled in general for p = 1. However, Maz’ya [60,
§1.4.3] proved the corresponding result for derivatives of Sobolev mappings:

Theorem 7.5 ([60]). Let k, l ∈ {1, . . . , n}, l < k, and µ be a positive Borel measure
on Rn. Then for any function f from the Sobolev space Wk

1(Rn) the estimates

(7.3)

∫ ∣∣∇lf
∣∣ dµ ≤ C|||µ|||β · ∥∇kf∥L1

hold, where β = n− k + l and the constant C depends on n, k, l.

7.3. On Choquet type integrals. The estimates of previous section imply bound-
edness of certain Choquet type integrals of maximal functions with respect to the
Hausdorff measure due to the following elegant result by Adams:

Theorem 7.6 (see Theorem A, Proposition 1 and its Corollary in [2]). Let β ∈
(0, n). Then for nonnegative functions f ∈ C0(Rn) the estimates∫ ∞

0
H β

∞({x ∈ Rn : Mf(x) ≥ t}) dt ≤ C1

∫ ∞

0
H β

∞({x ∈ Rn : f(x) ≥ t}) dt

≤ C2 sup

{∫
f dµ : µ ∈ M β , |||µ|||β ≤ 1

}
,

hold, where the constants C1, C2 depend on β, n only, and Mf denotes the usual
Hardy-Littlewood maximal function of f .

In particular, from the Maz’ya Theorem 7.5 we get

Theorem 7.7. Let k, l ∈ {1, . . . , n}, l < k. Then for any function f from the
Sobolev space Wk

1(Rn) the estimates

(7.4)

∫ ∞

0
H τ

∞({x ∈ Rn : M
(
∇lf

)
(x) ≥ t}) dt ≤ C∥∇kf∥L1

hold, where τ = n− k + l and the constant C depends on n, k, l.

Similar estimates in terms of Choquet type integrals can be established for Riesz
potentials by combination of Theorems 7.2, 7.4 with Theorem 7.6.

8. Appendix II. Proof sketch for the simplest case of W2
1(R2) Sobolev

functions

The classical Morse theorem guarantees for a domain Ω in R2 and for every
C2-smooth function f : Ω → R that

H 1(f(Zf )) = 0

holds, where Zf is the set of critical points, Zf = {x ∈ Ω : ∇f(x) = 0}. Let us
recall some differentiability properties of Sobolev functions.

Lemma 8.1 (see Proposition 1 in [24]). Let ψ ∈ W2
1(R2). Then the function ψ

is continuous and there exists a set Aψ such that H 1(Aψ) = 0, and the function
ψ is differentiable (in the classical sense) at each x ∈ R2 \ Aψ. Furthermore, the



FROM MORSE, SARD, DUBIVITSKĬI AND FEDERER TO LUZIN 457

classical derivative at such points x coincides with ∇ψ(x) = limr→0 −
∫
Br(x)

∇ψ(z) dz,

and limr→0 −
∫
Br(x)

|∇ψ(z) −∇ψ(x)|2 dz = 0.

Now the Morse theorem for the Sobolev case can be formulated as follows:

Theorem 8.2 ( [16, 17] ). Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary
and ψ ∈ W2

1(Ω). Then
(i) H 1({ψ(x) : x ∈ Ω̄ \Aψ & ∇ψ(x) = 0}) = 0;
(ii) for every ε > 0 there exists δ > 0 such that for any set U ⊂ Ω̄ with H 1

∞(U) <
δ the inequality H 1(ψ(U)) < ε holds;

(iii) for H 1–almost all y ∈ ψ(Ω̄) ⊂ R the preimage ψ−1(y) is a finite disjoint
family of C1–curves Sj, j = 1, 2, . . . , N(y). Each Sj is either a cycle in Ω (i.e.,
Sj ⊂ Ω is homeomorphic to the unit circle S1) or it is a simple arc with endpoints
on ∂Ω (in this case Sj is also transversal to ∂Ω ).

Figure 1. Typical level sets structure

We emphasize that this Morse–Sard theorem has a somewhat surprising conse-
quence. Namely that almost all level sets of a continuous map that is locally
of Sobolev class W2,1 on the plane are C1 smooth curves. This is despite
the fact, that such a function itself could be nondifferentiable. We present here the
complete proof of Theorem 8.2 based on our initial joint article with Jean Bour-
gain [17]. Because the proofs for most of the other results in the present paper to
a large extent are based on the same ideas, it is a reasonable illustration.

8.1. Some preliminaries for the planar case. By an n-dimensional interval we
mean a closed cube I = [a1, a1 + s] × · · · × [an, an + s] ⊂ Rn with sides parallel to
the coordinate axes, where a1, . . . , an ∈ R and s > 0. Furthermore we write
`(I) = s for its sidelength. The following well-known assertion follows immediately
from the definition of Sobolev spaces.

Lemma 8.3. Let f ∈ Wk
1(Rn). Then for any ε > 0 there exist functions f0 ∈

C∞
c (Rn), f1 ∈ Wk,1(Rn), such that f = f0 + f1 and ∥f1∥Wk,1 < ε.

Definition 8.4. Let µ be a positive measure on R2. We say that µ has (∗)-property,
if

(8.1) µ(I) ≤ `(I)

for any 2-dimensional interval I ⊂ R2.

Now the Maz’ya Theorem 7.5 for the considered situation can be formulated as
follows.
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Theorem 8.5. If f ∈ W1
1(R2) and µ has (∗)-property, then

(8.2)

∫
|f |dµ ≤ C∥∇f∥L1 ,

where C does not depend on µ, f .

Consequently, the Adams Theorem 7.7 gives us

Theorem 8.6. If f ∈ W1
1(R2), then∫ ∞

0
H 1

∞({x ∈ R2 : Mf(x) ≥ λ}) dλ ≤ C

∫
R2

|∇f(y)| dy,

where C is a universal constant.

We will also use the following simple technical assertion.

Lemma 8.7 (see, e.g., Remark 2 of §1.4.5 in [60]). Suppose v ∈ W2
1(R2). Then

v has a continuous representative and for any 2-dimensional interval I ⊂ R2 the
estimate

(8.3) sup
y,x∈I

|v(y) − v(x)| ≤ C

(∥∇v∥L1(I)

`(I)
+ ∥∇2v∥L1(I)

)
holds, where C is some universal constant.

The last lemma has the following useful extension.

Lemma 8.8. Suppose v ∈ W2
1(R2). Then v is a continuous function and for any

2-dimensional interval I ⊂ R2 with a center point x0 ∈ I the function

vI(x) := v(x) −−
∫
I
v(y) dy −

(
−
∫
I
∇v(y) dy

)
· (x− x0)

can be extended from I to the whole of R2 such that vI ∈ W2
1(R2) and

(8.4) ∥∇2vI∥L1(R2) ≤ C∥∇2v∥L1(I),

where C is also some universal constant.

Yomdin’s Theorem 7.1 for the considered particular plane case is as follows.

Theorem 8.9. For A ⊂ Rm and ε > 0 let Ent(ε,A) denote the minimal number
of balls of radius ε covering A. Then for any polynomial P : Rn → Rm of degree
at most k, for each ball B ⊂ Rn of radius r > 0, and for any number ε > 0 the
estimate

Ent(εr, {P (x) : x ∈ B, |∇P (x)| ≤ ε}) ≤ C∗
holds, where C∗ depends on n, k,m only.

To apply Theorem 8.6, we need also the following simple estimate and its corol-
lary.

Lemma 8.10 (see Lemma 2 in [24]). Let u ∈ W1
1(Rn). Then for any ball B(z, r) ⊂

Rn, B(z, r) ∋ x, the estimate∣∣∣∣u(x) −−
∫
B(z,r)

u(y) dy

∣∣∣∣ ≤ Cr(M∇u)(x)

holds, where C depends on n only.
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Corollary 8.11. Let u ∈ W1
1(Rn). Then for any ball B ⊂ Rn of a radius r > 0

and for any number ε > 0 the estimate

diam({u(x) : x ∈ B, (M∇u)(x) ≤ ε}) ≤ C∗∗εr

holds, where C∗∗ is a constant depending on n only.

An important role in the proof is also played by the following natural approxi-
mation result, which surprisingly has been proved only rather recently.

Theorem 8.12 ([17], see also [14]). Let k, l ∈ {1, . . . , n}, k ≤ l. Then for any
f ∈ Wl

1(Rn) and for each ε > 0 there exist an open set U ⊂ Rn and a function
g ∈ Ck(Rn) such that H n−l+k

∞ (U) < ε and f ≡ g, ∇mf ≡ ∇mg on Rn \ U for
m = 1, . . . , k, and

∥f − g∥
Wk′

1
< ε,

where k′ = min(k + 1, l).

We record as a corollary the particular planar case that will be used in the proof
below.

Corollary 8.13. For any f ∈ W2
1(R2) and for each ε > 0 there exist an open set

U ⊂ R2 and a function g ∈ C1(R2) such that H 1
∞(U) < ε and f ≡ g, ∇f ≡ ∇g on

R2 \ U , and
∥f − g∥W2

1
< ε.

8.2. On images of sets of small Hausdorff 1-content. The main result of this
section is the following Luzin N–property for W2

1(R2)–functions:

Theorem 8.14. Let v ∈ W2
1(R2). Then for each ε > 0 there exists δ > 0 such

that for any set E ⊂ R2 if H 1
∞(E) < δ, then H 1(v(E)) < ε. In particular,

H 1(v(E)) = 0 whenever H 1(E) = 0.

For the remainder of this section we fix a function v ∈ W2
1(R2). To prove Theorem

8.14, we need some preliminary lemmas that we turn to next.
By a 2-dimensional dyadic interval we understand an interval of the form [ k12m ,

k1+1
2m ]×

[ k22m ,
k2+1
2m ], where ki,m are integers. The following assertion is straightforward, and

hence we omit its proof here.

Lemma 8.15. For any 2-dimensional interval I ⊂ R2 there exist dyadic intervals
Q1, . . . , Q4 such that I ⊂ Q1 ∪ · · · ∪Q4 and `(Q1) = · · · = `(Q4) ≤ 2`(I).

Let {Iα}α∈A be a family of 2-dimensional dyadic intervals, where A ⊂ N. We say
that the family {Iα}α∈A is regular, if for any 2-dimensional dyadic interval Q the
estimate

(8.5) `(Q) ≥
∑

α:Iα⊂Q
`(Iα)

holds.

Lemma 8.16 ([16, 17]). Let {Iα}α∈A be a family of 2-dimensional dyadic intervals.
Then there exists a regular family {Jβ}β∈B of 2-dimensional dyadic intervals such
that ∪αIα ⊂ ∪βJβ and ∑

β

`(Jβ) ≤
∑
α

`(Iα).
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Proof. Define

F =

{
J : J ⊂ R2 dyadic interval;

∑
Iα⊂J

`(Iα) ≥ `(J)

}
.

Thus Iα ∈ F for each α. Denote by F∗ = {Jβ} the collection of maximal elements
of F . Clearly

(8.6)
⋃
α

Iα ⊂
⋃
β

Jβ ,

and since dyadic intervals are either disjoint or contained in one another, the {Jβ}
are mutually disjoint5. It follows that

(8.7)
∑
β

`(Jβ) ≤
∑
β

∑
Iα⊂Jβ

`(Iα) ≤
∑
α

`(Iα).

Observe also that for any dyadic interval Q ⊂ R2,

(8.8)
∑
Jβ⊂Q

`(Jβ) ≤ `(Q).

Indeed, if Jβ ⊂ Q for some β, then clearly either Jβ = Q or Jβ ̸= Q. In the first
case the estimate is evident, and in the second case we deduce from maximality of
Jβ that Q ̸∈ F , and hence that∑

Jβ⊂Q
`(Jβ) ≤

∑
Iα⊂Q

`(Iα) < `(Q).

□
Lemma 8.17. For each ε > 0 there exists δ = δ(ε, v) > 0 such that for any regular
family {Iα}α∈A of 2-dimensional dyadic intervals we have∑

α

(∥∇v∥L1(Iα)

`(Iα)
+ ∥∇2v∥L1(Iα)

)
< ε whenever

∑
α

`(Iα) < δ.

Proof. Fix ε > 0 and let {Iα}α∈A be a regular family of 2-dimensional dyadic
intervals with

∑
α `(Iα) < δ, where δ > 0 will be specified below. By virtue of

Lemma 8.3 we can find a decomposition v = v0+v1, where ∥∇jv0∥L∞ ≤ K = K(ε, v)
for all j = 0, 1, 2 and

(8.9) ∥∇v1∥L1 + ∥∇2v1∥L1 < ε.

Assume that

(8.10)
∑
α

`(Iα) < δ < 1
K+1ε.

Define the measure µ by

(8.11) µ =

(∑
α

1

`(Iα)
1Iα

)
L 2,

5By disjoint dyadic intervals we mean intervals with disjoint interior.
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where 1Iα denotes the indicator function of the set Iα and L 2 is the Lebesgue
measure.
Claim. 1

4µ has property (∗) from the Definition 8.4, i.e.,

µ(I) ≤ 4`(I)

holds for any 2-dimensional interval I ⊂ R2.
Indeed, write for a dyadic interval Q

(8.12) µ(Q) =
∑
Iα⊂Q

`(Iα) +
∑
Q(Iα

`(Q)2

`(Iα)
≤ `(Q),

where we invoked (8.5) and the fact that Q ( Iα for at most one α (and in this case
the first term in (8.12) is zero). Then for any interval I we deduce from Lemma 8.15
the estimate µ(I) ≤ 4`(I). This proves the claim.

In addition to (8.10) we now decrease δ > 0 further such that

(8.13)
∑
α

∥∇2v∥L1(Iα) < ε/2.

Then by the bounds (8.9), (8.2) (applied with f = ∇v1) we have∑
α

(
∥∇2v∥L1(Iα) +

1

`(Iα)

∫
Iα

|∇v|
)

≤ ε/2 + K
K+1ε+

∑
α

1

`(Iα)

∫
Iα

|∇v1|

= C ′ε+

∫
|∇v1| dµ ≤ C ′′ε.

Since ε > 0 was arbitrary, the proof of Lemma 8.17 is complete. □

Proof of Theorem 8.14. Denote

R(I) = ∥∇2v∥L1(I) +
1

`(I)

∫
I
|∇v|.

First we record the estimate diam v(I) ≤ CR(I) that by virtue of Lemma 8.7
holds for any 2-dimensional interval I ⊂ R2. Fix ε > 0 and take δ = δ(ε) from
Lemma 8.17, i.e., for any regular family {Iα}α∈A of 2-dimensional dyadic intervals
we have if

∑
α `(Iα) < δ that

∑
αR(Iα) < ε, and consequently,

∑
α diam v(Iα) < Cε.

Now the assertion of Theorem 8.14 follows from Lemmas 8.15–8.16. Indeed by these
lemmas there exists δ1 > 0 such that if H 1

∞(E) < δ1, then E can be covered by
a regular family {Iα}α∈A of 2-dimensional dyadic intervals with

∑
α `(Iα) < δ. □

8.3. The proof of the Morse–Sard theorem: the main part. Recall that
if v ∈ W2

1(R2), then ∇v(x) is well-defined for H1-almost all x ∈ R2 (see Proposi-
tion 8.1 ). In particular, v is differentiable (in the classical Fréchet sense)
and the classical derivative coincides with ∇v(x) = limr→0 −

∫
B(x,r)∇v(z) dz and

limr→0 −
∫
Br(x)

|∇v(y)−∇v(x)|2 dy <∞ at all points x ∈ R2\Av, where H 1(Av) = 0.

Consequently, in view of Theorem 8.14, H 1(v(Av)) = 0.
Denote Zv = {x ∈ R2 \Av : ∇v(x) = 0}. The main result of the subsection is as

follows:

Theorem 8.18. If v ∈ W2
1(R2), then H 1(v(Zv)) = 0.



462 A. FERONE, M.V. KOROBKOV, AND J. KRISTENSEN

For the remainder of the section we fix a function v ∈ W2
1(R2).

The key point of the proof is contained in the following lemma.

Lemma 8.19. For any 2-dimensional dyadic interval I ⊂ R2 the estimate

(8.14) H 1(v(Zv ∩ I)) ≤ C∥∇2v∥L1(I)

holds, where C is a universal constant.

Proof. Fix a 2-dimensional dyadic interval I ⊂ R2. Note that by formula (8.4) it is
sufficient to prove the estimate

(8.15) H 1(v(Zv ∩ I)) ≤ C∥∇2vI∥L1(R2),

where the function vI(x) = v(x) − PI(x) was defined in Lemma 8.8, and by PI we
denote the corresponding first-order polynomial:

PI(x) := −
∫
I
v(y) dy +

(
−
∫
I
∇v(y) dy

)
· (x− x0),

where x0 is the center point of I.
Denote σ = ∥∇2vI∥L1(R2) and

Ej = {x ∈ R2 : (M∇vI)(x) ∈ (2j−1, 2j ]}, δj = H 1
∞(Ej), j ∈ Z.

Then applying Theorem 8.6 with f = ∇vI we find
∞∑

j=−∞
δj2

j ≤ C1σ.

By construction, for each j ∈ Z there exists a family {Bij}i∈N of balls Bij in R2 of
radii rij such that

Ej ⊂
∞⋃
i=1

Bij and

∞∑
i=1

rij ≤ 3δj .

Denote
Zij = Zv ∩ I ∩ Ej ∩Bij .

By construction each point x ∈ Zv is a Lebesgue point of ∇v and M∇v(x) < ∞,
therefore, Zv ∩ I =

⋃
i,j Zij and

H 1(v(I ∩ Zv)) ≤
∞∑

j=−∞

∞∑
i=1

H 1(v(Zij)).

Thus it remains to estimate H 1(v(Zij)).
Since ∇PI(x) = −∇vI(x) at each point x ∈ Zv ∩ I, we have by construction for

all i, j:
Zij ⊂ {x ∈ Bij : |∇PI(x)| = |∇vI(x)| ≤ (M∇vI)(x) ≤ 2j}.

Because of the identity v = vI + PI , applying Theorem 8.9 and Corollary 8.11 to
functions PI , vI , respectively, with B = Bij and ε = 2j , we find a finite family of
intervals Tk ⊂ R each of length 2(1 + C∗∗)2

jrij , k = 1, . . . , C∗, such that

C∗⋃
k=1

Tk ⊃ v(Zij).
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Therefore

H 1(v(Zij)) ≤ 2C∗(1 + C∗∗)2
jrij ,

and consequently,

H 1(v(Zv ∩ I)) ≤
∞∑

j=−∞

∞∑
i=1

2C∗(1 + C∗∗)2
jrij ≤ 6C∗(1 + C∗∗)

∞∑
j=−∞

2jδj ≤ C ′σ.

The last estimate finishes the proof of the lemma. □
From the last result and the absolute continuity of the Lebesgue integral we infer

Corollary 8.20. For any ε > 0 there exists δ > 0 such that for any set E ⊂ R2 if
H 2

∞(E) ≤ δ, then H 1(v(Zv ∩ E)) ≤ ε. In particular, H 1(v(Zv ∩ E)) = 0 for any
E ⊂ R2 with H 2

∞(E) = 0.

Because of the classical Morse-Sard theorem for g ∈ C2(R2), Theorem 8.12 (ap-
plied to the case k = n = 2 ) implies

Corollary 8.21. There exists a set Z0,v of 2-dimensional Lebesgue measure zero
such that H 1(v(Zv \ Z0,v)) = 0. In particular, H 1(v(Zv)) = H 1(v(Z0,v)).

From Corollaries 8.21, 8.20 we conclude the proof of Theorem 8.18.

Proof of Theorem 8.2. The first two assertions (i)–(ii) follow immediately from
the Theorems 8.14 and 8.18. The last assertion (iii) concerning the level sets follows
from the same Theorems 8.14, 8.18 and from approximation Theorem 8.13 by some
elementary arguments, see [17] or [16] for the details. □
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Dipartimento di Matematica e Fisica Università degli studi della Campania “Luigi Vanvitelli,” viale
Lincoln 5, 81100, Caserta, Italy

E-mail address : Adele.FERONE@unicampania.it

Mikhail V. Korobkov
School of Mathematical Sciences Fudan University, Shanghai 200433, China, and Sobolev Institute
of Mathematics, pr-t Ac. Koptyug, 4, Novosibirsk, 630090, Russia

E-mail address : korob@math.nsc.ru

Jan Kristensen
Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, OX2 6GG
Oxford, United Kingdom

E-mail address : kristens@maths.ox.ac.uk


