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where Jf (x) := detDf(x) is the Jacobian, adjDf is the adjugate matrix of Df and

KI :=
| adjDf |n

Jf (x)n−1
,

if f has finite inner distortion, e.g. adjDf(x) = 0 almost everywhere in the zero
set of the Jacobian {x ∈ Ω : Jf (x) = 0}, see [28]. This condition on in-
tegrability of distortion is sharp, meaning that for any δ ∈ (0, 1) and n ≥ 3
there exists a homeomorphism f which belongs to W 1,n−1((−1, 1)n,Rn) such that
KI ∈ Lδ((−1, 1)n) and f is not classically differentiable on a set of positive mea-
sure [14]. The a.e.-differentiability of W 1,n−1-Sobolev maps also holds for continu-
ous, open, and discrete mappings of finite distortion with nonnegative Jacobian if a
particular weighted distortion function is integrable [31]. The condition KI ∈ L1(Ω)
essentially means that f−1 ∈ W 1,n(f(Ω),Rn) [30, Theorem 3], [20, Theorem 1.1],
see also [23]. The regularity of the inverse, together with the oscillation estimate
[23, Lemma 2.1], gives

lim sup
r→0+

oscB(x,r) f

r
< ∞

for almost all x ∈ Ω, and hence f is differentiable in x by the Stepanov theorem.
Thus, instead of assumptions on distortion, we can directly consider bi-Sobolev
homeomorphisms. Indeed, if f ∈ W 1,n−1, Jf > 0 a.e., and f−1 ∈ W 1,p with
p > n − 1, then f−1 has finite distortion, e.g. [12, Lemma 5.2], and hence both f
and f−1 are differentiable almost everywhere [32, Theorem 27]. However, no similar
result holds for W 1,n−1-bi-Sobolev homeomorphisms and we need the inverse to be
in W 1,p for p > n − 1. In fact, Csörnyei, Hencl, and Malý constructed in Example
5.2 in [5] a homeomorphism f ∈ W 1,n−1((−1, 1)n,Rn), n ≥ 3, with Jf > 0 a.e. that
is nowhere differentiable and its inverse f−1 ∈ W 1,n−1((−1, 1)n,Rn) is also nowhere
differentiable.

In this work, we examine the a.e.-differentiability of a class of weak limits of
homeomorphisms. This class of mappings is well suited for the Calculus of Variations
approach and may serve as deformations in Continuum Mechanics models. For
further information, refer to [15, 17, 19]. Weak limits of Sobolev homeomorphisms
have received significant attention in recent years, with various studies conducted,
including [1, 3, 6, 7, 8, 9, 13, 16].

Here we consider the energy functional

E(f) :=
∫
Ω
|Df(x)|n−1 dx+

∫
Ω′

|Df−1(y)|p dy

for bi-Sobolev mappings f : Ω → Ω′ such that f is invertible almost everywhere,
f ∈ W 1,n−1(Ω,Rn), and f−1 ∈ W 1,p(Ω′,Rn) for some p > n− 1.

The main result, which is proven in Section 1.2, reads as follows.
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Theorem 1.1. Let n ≥ 2, p > n − 1, Ω, Ω′ ⊂ Rn be bounded domains and
fk ∈ W 1,n−1(Ω,Rn), k = 0, 1, 2 . . . , be homeomorphisms of Ω onto Ω′ with Jfk > 0
a.e. and

sup
k

E(fk) < ∞.

Assume that f : Ω → Rn is a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) with Jf > 0

a.e. and h : Ω′ → Rn is a weak limit of {f−1
k }k∈N in W 1,p(Ω′,Rn) with Jh > 0 a.e.

Then for a.e. x ∈ Ω we have h(f(x)) = x and for a.e. y ∈ Ω′ we have f(h(y)) = y,
and both f and h are differentiable almost everywhere.

Let us note the following result, which better suits the Calculus of Variations
approach since it formulates the assumptions only for fk.

Corollary 1.2. Let n ≥ 2, p > n− 1, Ω, Ω′ ⊂ Rn be bounded domains and φ be a
positive convex function on (0,∞) with

(1.1) lim
t→0+

φ(t) = ∞ and lim
t→∞

φ(t)

t
= ∞.

Let fk ∈ W 1,n−1(Ω,Rn), k = 0, 1, 2 . . . , be homeomorphisms of Ω onto Ω′ with
Jfk > 0 a.e. such that supk F(fk) < ∞, where

F(f) :=

∫
Ω
|Df(x)|n−1 +

| adjDf(x)|p

Jp−1
f (x)

+ φ(Jf (x)) dx.

Assume that f : Ω → Rn is a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) and h : Ω′ →
Rn is a weak limit of {f−1

k }k∈N in W 1,p(Ω′,Rn). Then for a.e. x ∈ Ω we have
h(f(x)) = x and for a.e. y ∈ Ω′ we have f(h(y)) = y, and both f and h are
differentiable almost everywhere.

2. Preliminaries

By B(c, r), we denote the open euclidean ball with centre c ∈ Rn and radius
r > 0, and by S(c, r) the corresponding sphere.

2.1. Topological image and (INV) condition. Although a weak limit of home-
omorphisms may not be a homeomorphism, it may possess an invertibility property
known as the (INV) condition. The (INV) condition states, informally, that a ball
B(x, r) is mapped inside the image of the sphere f(S(x, r)) and the complement

Ω \ B(x, r) is mapped outside f(S(x, r)). This concept was introduced for W 1,p-
mappings, where p > n − 1, by Müller and Spector [21], although the fact that a
ball B(x, r) is mapped inside the image of a sphere f(S(a, r)) was known in litera-
ture before as monotonicity, see [25] and [33, §2]. Suppose that f : S(y, r) → Rn is
continuous, we define the topological image of B(x, r) as

(2.1) fT (B(x, r)) := {z ∈ Rn \ f(S(x, r)) : deg(f, S(x, r), z) ̸= 0}
and the topological image of x as

fT (x) :=
⋂

r>0, r ̸∈Nx

f∗T (B(x, r)) ∪ f∗(S(x, r)),

where a representative f∗ and a set Nx will be defined further along.
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Definition 2.1. A mapping f : Ω → Rn satisfies the (INV) condition, provided
that for every x ∈ Ω there exist a constant rx > 0 and an L1-null set Nx such that
for all r ∈ (0, rx) \Nx, the restriction f |S(x,r) is continuous and

(i) f(z) ∈ fT (B(x, r)) ∪ f(S(x, r)) for a.e. z ∈ B(x, r),
(ii) f(z) ∈ Rn \ fT (B(x, r)) for a.e. z ∈ Ω \B(x, r).

Let us note that for a particular representative of a Sobolev mapping, Defini-
tion 2.1 allows for some points to escape their destiny, e.g. a null-set inside the ball
may be mapped outside the image of this ball. Thus, we also consider a stronger
version of the (INV) condition.

Definition 2.2. A mapping f : Ω → Rn satisfies the strong (INV) condition, pro-
vided that for every x ∈ Ω there exist a constant rx > 0 and an L1-null set Nx such
that for all r ∈ (0, rx) \Nx the restriction f |S(x,r) is continuous and

(i) f(z) ∈ fT (B(x, r)) ∪ f(S(x, r)) for every z ∈ B(x, r),
(ii) f(z) ∈ Rn \ fT (B(x, r)) for every z ∈ Ω \B(x, r).

2.2. Precise, super-precise, and hyper-precise representative of a Sobolev
mapping. Let 1 ≤ p ≤ n and f ∈ W 1,p(Rn), then the precise representative of f
is given by

(2.2) f∗(a) :=

 lim
r→0+

1

|B(a, r)|

∫
B(a,r)

f(x) dx if the limit exists,

0 otherwise.

Note that the representative f∗ is p-quasicontinuous (see remarks after [21, Propo-
sition 2.8]).

Let now f : Ω → Rn be a W 1,p-weak limit of homeomorphisms fk : Ω → Rn with
p ∈ (n − 1, n] for n > 2 or p ∈ [1, 2] for n = 2. Then by [1, Theorem 5.2] there
exists an Hn−p-null set NC ⊂ Ω and a representative f∗∗ of f such that f∗∗ is
continuous at every x ∈ Ω\NC, a set-valued image fT (x) is a singleton for every
y ∈ Ω\NC, f∗∗ = f∗ capp-a.e., and f∗∗ can be chosen so that f∗∗(x) ∈ fT (x) for
every x ∈ Ω. We will call f∗∗ the super-precise representative of f .

The hyper-precise representative f̃ is defined as

(2.3) f̃(a) := lim sup
r→0+

1

|B(a, r)|

∫
B(a,r)

f(x) dx.

We need the following monotonicity property of mappings satisfying the strong
(INV) condition.

Lemma 2.3. Let n ≥ 2 and Ω′ ⊂ Rn be a bounded domain. If h : Ω′ → Rn

satisfies the strong (INV) condition, then h is monotone for almost all radii, i.e., for
y ∈ Ω′ there exists an L1-null set Ny such that for all r ∈ (0, ry) \Ny it holds that
oscB(y,r) h ≤ oscS(y,r) h.

If, moreover, h ∈ W 1,p(Ω′,Rn) with p > n−1, then for any r ∈
(
0,

ry
2

)
the following

estimate holds

oscB(y,r) h ≤ Cr

(
r−n

∫
B(y,2r)

|Dh|p
)1/p

.
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Proof. Let Ny be a set from Definition 2.2. Then for y ∈ Ω′ and r ∈ (0, ry) \Ny it
holds that h is continuous on the sphere S(y, r) and h(z) ∈ hT (B(y, r))∪h(S(y, r))

for every z ∈ B(y, r). In this case, h(S(y, r)) is a compact set and hT (B(y, r)) ⊆
Rn \A, where A is the unbounded component of Rn \ h(S(y, r)) (since by the basic
properties of the topological degree [12, p. 48(d)] we have deg(h, S(y, r), ξ) = 0 for
all ξ ∈ A), and therefore oscB(y,r) h ≤ oscS(y,r) h.

Further, for y ∈ Ω′ and r > 0, and for a.e. t ∈ [r, 2r), it holds that

oscB(y,r) h ≤ oscB(y,t) h ≤ oscS(y,t) h.

Then by the Sobolev embedding theorem on spheres [12, Lemma 2.19], following
the proof of [12, Theorem 2.24], we obtain that

oscB(y,r) h ≤ oscS(y,t) h ≤ Ct

(
t−n+1

∫
S(y,t)

|Dh|p
)1/p

≤ Cr

(
r−n

∫
B(y,2r)

|Dh|p
)1/p

.

□

Remark 2.4. In case p > n, h∗ = h∗∗ = h̃ is the continuous representative of h
and h∗ is differentiable almost everywhere [2] and satisfies the Lusin (N) condition
in Ω [18]. Moreover, due to compact embedding of W 1,p into the Hölder space C0,α,
weak convergence in W 1,p implies uniform convergence on compact sets. With these
properties, the subsequent analysis becomes simplified, and the details are left to
the reader.

3. A.e.-invertibility of f

Since a limit of homeomorphisms may not be a homeomorphism, we need to define
a weaker notion of an inverse mapping. First recall that a mapping f : Ω → Ω′ is
called injective a.e. in domain if there exists a null set Σ ⊂ Ω, |Σ| = 0, such that
the restriction f |Ω\Σ : Ω \Σ → f(Ω \Σ) is injective. A mapping f : Ω → Ω′ is called
injective a.e. in image if there exists a null set Σ′ ⊂ Ω′, |Σ′| = 0, such that for any
y ∈ f(Ω) \ Σ′ the preimage f−1(y) := {x ∈ Ω : f(x) = y} consists of precisely one

point. Note that if f is injective a.e. in image and satisfies the (N)−1 condition,
then f is injective a.e. in domain. If instead f is injective a.e. in domain, f satisfies
the (N) condition, and |Ω′| = |f(Ω)| then f is injective a.e. in image. We say that
h : Ω′ → Ω is the a.e.-inverse to f : Ω → Ω′ if for a.e. x ∈ Ω we have h(f(x)) = x and

for a.e. y ∈ Ω′ we have f(h(y)) = y. Note that if f satisfies the (N)−1 condition,
then f is injective a.e. in image if and only if there exists the a.e.-inverse to f .

The following lemma provides some additional conditions that guarantee the a.e.-
invertibility of f in our setting.

Lemma 3.1. Let n ≥ 2, Ω and Ω′ be bounded domains in Rn, p > n − 1, and
let fk ∈ W 1,n−1(Ω,Rn) be homeomorphisms of Ω onto Ω′ with Jfk > 0. Let also
f : Ω → Rn be a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) with Jf > 0 a.e. Assume
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also that the sequence {f−1
k }k∈N converges W 1,p-weakly to h : Ω′ → Rn with Jh > 0

a.e. Then h∗∗(f(x)) = x a.e. in Ω and f(h∗∗(y)) = y a.e. in Ω′.

Proof. Let p > n − 1, and fix a representative of f , which we denote by the same
symbol. If needed, we pass to a subsequence so that fk → f and f−1

k → h pointwise
a.e. Since h is a W 1,p-weak limit of Sobolev homeomorphisms with p > n − 1, the
super-precise representative h∗∗ satisfies the strong (INV) condition [1, Theorem
5.2 and Lemma 5.3]. Then there exists a set G′

1 ⊂ Ω′ of full measure |G′
1| = |Ω′|:

Jh∗∗(y) > 0 for all y ∈ G′
1, h∗∗ is injective in G′

1 (see [21, Lemma 3.4] and [1,

Theorem 1.2]) and f−1
k (y) → h∗∗(y) for all y ∈ G′

1.

Step 1. h∗∗(f(x)) = x a.e.: By Lemma 2.3, we know that

oscB(y,r) h
∗∗ −→

r→0
0 for a.e. y ∈ Ω′. Since Jf > 0 a.e. (and therefore f satisfies

the (N)−1 condition), oscB(f(x),r) h
∗∗ −→

r→0
0 for a.e. x ∈ Ω.

Let G1 ⊂ f−1(G′
1) be a set such that |G1| = |Ω| and for all x ∈ G1 it holds that

fk(x) → f(x) and oscB(f(x),r) h
∗∗ −→

r→0
0.

For x ∈ G1 and r > 0, by the pointwise convergence of fk in x ∈ G1 and f−1
k in

f(x) ∈ G′
1, we can find k0 ∈ N big enough such that

fk(x) ∈ B(f(x), r) and f−1
k (f(x)) ∈ B(h∗∗(f(x)), r)

for all k ≥ k0. Moreover, by [21, Lemma 2.9] (though it is formulated for the
precise representative h∗, it holds also for the super-precise representative h∗∗ with
an analogous proof), there exists a subsequence {fkj}j∈N (that depends on r) and
a number j0 ∈ N big enough such that for all j ≥ j0

oscS(f(x),r) f
−1
kj

≤ oscS(f(x),r) h
∗∗ + r.

Then we have

|f−1
kj

(fkj (x))−h∗∗(f(x))|

≤ |f−1
kj

(fkj (x))− f−1
kj

(f(x))|+ |f−1
kj

(f(x))− h∗∗(f(x))|

≤ oscB(f(x),r) f
−1
kj

+ r ≤ oscS(f(x),r) f
−1
kj

+ r

≤ oscS(f(x),r) h
∗∗ + r + r ≤ oscB(f(x),2r) h

∗∗ + 2r.

Therefore, by definition of G1,

|x− h∗∗(f(x))| = |f−1
kj

(fkj (x))− h∗∗(f(x))| ≤ lim
r→0

(oscB(f(x),2r) h
∗∗ + 2r) = 0

for all x ∈ G1, which concludes Step 1.

Step 2. f(h∗∗(y)) = y a.e.: We know that h∗∗ is injective a.e. on G′
1 and both f

and h∗∗ satisfies the (N)−1 condition, so when we set

G′
2 :=

(
G′

1 ∩ (h∗∗)−1(G1)
)
\ (h∗∗)−1(f−1(Ω′ \G′

1)),

we know it is a set of full measure. Let us take y ∈ G′
2. Since f−1

k is a homeomor-

phism onto Ω, we can find yk ∈ Ω′ such that f−1
k (yk) = h∗∗(y). Therefore,

yk = fk(f
−1
k (yk)) = fk(h

∗∗(y)) → f(h∗∗(y)),
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so yk converges to some ỹ = f(h∗∗(y)). We apply h∗∗ to both sides to get h∗∗(ỹ) =
h∗∗(f(h∗∗(y))). From y ∈ G′

2 we have that h∗∗(y) ∈ G1. Since h∗∗(f(x)) = x on G1

we get h∗∗(ỹ) = h∗∗(f(h∗∗(y))) = h∗∗(y). Now we can have either ỹ ∈ G′
1 or ỹ /∈ G′

1.
In the first case, ỹ = y as h∗∗ is injective on G′

1, so f(h∗∗(y)) = y. In the other case,
f(h∗∗(y)) ∈ Ω′ \G′

1, which is a contradiction to y ∈ G′
2.

□

Remark 3.2. If p > n, equality h∗∗(f(x)) = x can be derived easily from

|x− h∗∗(f(x))| ≤ |f−1
k (fk(x))− f−1

k (f(x))|+ |f−1
k (f(x))− h∗∗(f(x))|,

using uniform convergence f−1
k ⇒ h∗∗ (up to subsequence) and the Morrey inequal-

ity for f−1
k . The other relation f(h∗∗(y)) = y follows the same way as above.

Remark 3.3. Since both f and h satisfy the (N)−1 condition, the identities
h(f(x)) = x a.e. in Ω and f(h(y)) = y a.e. in Ω′ hold for arbitrary representa-
tives.

4. Differentiability

First, let us notice the following well-known fact.

Lemma 4.1. Let n ≥ 2, p > n − 1 and Ω′ be a bounded domain in Rn. If h ∈
W 1,p

loc (Ω
′,Rn) satisfies the strong (INV) condition, then h is differentiable a.e. in Ω′.

Proof. By Lemma 2.3 we have

oscB(y,r) h ≤ Cr

(
r−n

∫
B(y,2r)

|Dh|p
)1/p

,

which implies by setting r = |z − y| that

lim sup
z→y

|h(z)− h(y)|
|z − y|

≤ C|Dh(y)| < ∞

for any Lebesgue point y of |Dh|p and, therefore, h is differentiable a.e. by the
Stepanov theorem [27], see also [12, Theorem 2.23].

□

We also need the following modification of [12, Lemma A.29], which gives us the
a.e.-differentiability of mapping f from Theorem 1.1 – but the derivative is only
with respect to a set of full measure.

Lemma 4.2. Let n ≥ 2 and Ω, Ω′ be bounded domains in Rn. Let Λ ⊂ Ω, Λ′ ⊂ Ω′

be sets of full measure and h : Ω′ → Ω such that h : Λ′ → Λ = h(Λ′) is differentiable
with respect to the relative topology in Λ′, i.e., induced by the topology in Rn, and
Jh(y) > 0 for all y ∈ Λ′. Assume also that h|Λ′ is injective, and the inverse
mapping f := h−1 is continuous in Λ with respect to the relative topology in Λ.
Then f is differentiable on Λ with respect to the relative topology in Λ and Df(x) =

(Dh(f(x)))−1 for all x ∈ Λ.
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Proof. Since h : Λ′ → Λ is a homeomorphism, the proof of this lemma follows the
lines of the proof of [12, Lemma A.29]. We present it here for the convenience of
the reader.

By the differentiability of h we know that for y ∈ Λ′

(4.1) lim
ȳ→y, ȳ∈Λ′

h(ȳ)− h(y)−Dh(y)(ȳ − y)

|ȳ − y|
= 0.

For x̄, x ∈ Λ denote ȳ = f(x̄), y = f(x) ∈ Λ′, then

h(ȳ)− h(y) = h(f(x̄))− h(f(x)) = x̄− x.

Since Jh(y) > 0 we obtain for ȳ close to y enough that

|x̄− x| = |h(ȳ)− h(y)| ≈ |Dh(y)(ȳ − y)| ≈ |ȳ − y|.
Then from (4.1) it follows

0 = lim
ȳ→y, ȳ∈Λ′

(Dh(y))−1 (h(ȳ)− h(y)−Dh(y)(ȳ − y))

|y′ − y|

= lim
ȳ→y, ȳ∈Λ′

(Dh(y))−1 (h(ȳ)− h(y))− (ȳ − y)

|y′ − y|

≈ lim
x̄→x, x̄∈Λ

(Dh(f(x)))−1 (x̄− x)− (f(x̄)− f(x))

|x̄− x|
,

which concludes the proof.
□

The following proposition is a version of an inverse function theorem.

Proposition 4.3. Let n ≥ 2, p > n − 1, Ω and Ω′ be bounded domains in Rn,
Λ ⊂ Ω and Λ′ ⊂ Ω′ be sets of full measure and h ∈ W 1,p(Ω′,Ω) satisfy the strong
(INV) condition and be differentiable with Jh(y) > 0 for any y ∈ Λ′. Assume also
that the restriction h|Λ′ : Λ′ → Λ is one-to-one. Then for any y0 ∈ Λ′ there exists
a sequence {rm}m∈N ↘ 0 such that the topological image hT (B(y0, rm)) contains
B
(
h(y0),

rm
3

)
.

Proof. Without loss of generality, by a translation and a linear change of variables,
we may assume that y0 = 0, h(y0) = 0, and Dh(y0) = Id. Since h is differentiable
at 0, it holds that h(y) = y + o(|y|) if y → 0. That means that there exists r0 > 0
such that

(4.2) |h(y)− y| ≤ |y|
2

for all y ∈ B(0, r0) ⊂ Ω′.

Consider a sequence {rm}m∈N ↘ 0 such that h is continuous on S(0, rm) and Def-
inition 2.2 (i)–(ii) is fulfilled. Let now z ∈ B

(
0, rm3

)
⊂ Ω, the inequality (4.2)

implies z /∈ h(S(0, rm)). Since dist(z, S(0, rm)) > rm/2, from (4.2) we know that
1 = deg(z, Id, S(0, rm)) = deg(z, h, S(0, rm)). Therefore, B

(
0, rm3

)
⊂ hT (B(0, rm)),

see Figure 1 for illustration. □
The closing theorem of this section concludes the differentiability part of Theo-

rem 1.1.
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Figure 1. Mapping h maps the red sphere S(0, rm) to h(S(0, rm))
(blue); the grey ball B(0, rm/3) does not intersect h(S(0, rm)), since
its distance from 0 is at least rm/2 (denoted by the dotted sphere).

Theorem 4.4. Let n ≥ 2, p > n − 1, Ω and Ω′ be bounded domains in Rn and
fk ∈ W 1,n−1(Ω,Rn) be homeomorphisms of Ω onto Ω′ with Jfk > 0. Let f : Ω → Rn

be a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) with Jf > 0 a.e. Assume also that the

sequence {f−1
k }k∈N converges W 1,p-weakly to h : Ω′ → Rn with Jh > 0 a.e. Then

h∗∗ is differentiable a.e. in Ω′ and f̃ is differentiable a.e. in Ω.

Proof. We again pass to a subsequence (if needed) so that fk → f and f−1
k → h

pointwise a.e. Since h is a W 1,p-weak limit of Sobolev homeomorphisms with p >
n − 1, the super-precise representative h∗∗ is continuous on almost all spheres [11,
Lemma 2.19], satisfies the strong (INV) condition [1, Theorem 5.2 and Lemma 5.3],
and is injective a.e. (see [21, Lemma 3.4] and [1, Theorem 1.2]). By Lemma 4.1, h
is differentiable a.e. in Ω′. Moreover, since Jh(y) > 0 a.e. in Ω′, by the change-of-

variables formula we conclude that h satisfies the (N)−1 condition.

Step 1. Finding sets Λ, Λ′: Let f be an arbitrarily fixed representative, and let

us introduce good sets G ⊂ Ω, G′ ⊂ Ω′ as

G :={x ∈ Ω : h∗∗(f(x)) = x} ⊂ Ω,

G′ :={y ∈ Ω′ : f(h∗∗(y)) = y} ⊂ Ω′.

It is easy to check that f(G) = G′, h∗∗(G′) = G, and by Lemma 3.1, |G| = |Ω|,
|G′| = |Ω′|. And we define bad sets Σ ⊂ G, Σ′ ⊂ G′ as

Σ :=G \ {x ∈ Ω : Jf (x) > 0, fk(x) → f(x)},
Σ′ :=G′ \ {y ∈ Ω′ : h∗∗ is differentiable in y, Jh∗∗(y) > 0,

f−1
k (y) → h∗∗(y)}.

Clearly |Σ| = |Σ′| = 0. Then very good sets Λ ⊂ G, Λ′ ⊂ G′ are defined by

Λ′ := G′ \ (Σ′ ∪ f−1(Σ)) and Λ := h∗∗(Λ′).
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By Lemma 3.1 and the (N)−1 condition for f and h∗∗, it is not difficult to see that
|Λ′| = |G′| = |Ω′|, |Λ| = |G| = |Ω| and f(Λ) = Λ′.

Step 2. f |Λ is continuous: The restriction f |Λ : Λ → Λ′ is continuous with respect

to the relative topology in Λ. Indeed, let f |Λ be not continuous in some point x0 ∈ Λ,
then there exists a sequence {xk}k∈N ⊂ Λ, xk → x0, but f(xk) ↛ f(x0). We set
yk := f(xk) ∈ Λ′ and y0 := (h∗∗)−1|Λ(x0) = f(x0). Since h∗∗|Λ′ = (f |Λ)−1, we have
h∗∗(yk) → h∗∗(y0), but yk ↛ y0.

By Proposition 4.3 there exists a sequence {rm}m∈N ↘ 0 such that

B
(
h∗∗(y0),

rm
3

)
⊂ (h∗∗)T (B(y0, rm)).

Let m and k0 ∈ N be big enough so that infinitely many yk are outside of B(y0, rm)
for k ≥ k0 and h∗∗(yk0) ∈ B

(
h∗∗(y0),

rm
6

)
. Passing to a subsequence, we can, for

now, assume that yk /∈ B(y0, rm) for all k. Then we can find r > 0 such that

B(yk0 , r) ∩B(y0, rm) = ∅

and, since h∗∗|Λ′ is continuous,

h∗∗(B(yk0 , r) ∩ Λ′) ⊂ B
(
h∗∗(yk0),

rm
6

)
.

Summarizing the above, we obtain

h∗∗(B(yk0 , r) ∩ Λ′) ⊂ B
(
h∗∗(yk0),

rm
6

)
⊂ B

(
h∗∗(y0),

rm
3

)
⊂ (h∗∗)T (B(y0, rm)).

Thus, for every

z ∈ (B(yk0 , r) ∩ Λ′) ⊂ (Ω′ \B(y0, rm))

it holds that h∗∗(z) ∈ (h∗∗)T (B(y0, rm)), the latter contradicts the strong (INV)
condition for h∗∗, since a set of positive measure B(yk0 , r) ∩ Λ′ from outside of the
ball B(y0, rm) is mapped inside the topological image of this ball.

Therefore, f is continuous on Λ with respect to the relative topology, and by
Lemma 4.2, we conclude that f is differentiable on Λ with respect to the relative
topology.

Step 3. f̃ is differentiable a.e.: It is left to show that a hyper-precise representa-

tive f̃ , given by (2.3), is differentiable at x0 ∈ Λ with respect to Ω. Since Λ is a set
of full measure and f is continuous on Λ with respect to the relative topology, any
point x ∈ Λ is a Lebesgue point of f , and therefore f̃ = f on Λ.

Fix x0 ∈ Λ and ε > 0. By differentiability of f on Λ with respect to the relative
topology, there exists s > 0 such that for any x ∈ B(x0, s) ∩ Λ it holds that

(4.3)
|f(x)− f(x0)−Df(x0)(x− x0)|

|x− x0|

=
|f̃(x)− f̃(x0)−Df(x0)(x− x0)|

|x− x0|
<

ε

2
,

where Df(x0) denotes the derivative Df |Λ(x0) with respect to the relative topology.

To prove differentiability of f̃ , we need to show that for an arbitrary x′ close to x0



DIFFERENTIABILITY OF LIMITS OF HOMEOMORPHISMS 437

it holds that

(4.4)
|f̃(x′)− f̃(x0)−Df(x0)(x

′ − x0)|
|x′ − x0|

< ε.

If x′ ∈ Λ, (4.4) follows immediately from (4.3). In the other case, roughly speaking,

we want to find a point z ∈ Λ such that |f̃(x′)−f̃(z)|
|x′−x0| and |x′−z|

|x′−x0| are small, and so we

can estimate

|f̃(x′)− f̃(x0)−Df(x0)(x
′ − x0)|

|x′ − x0|

≤ |f̃(x′)− f̃(z)|+ |Df(x0)(x
′ − z)|

|x′ − x0|
+

|f̃(z)− f̃(x0)−Df(x0)(z − x0)|
|x′ − x0|

< ε.

Now we prove the above paragraph rigorously. Let x′ ∈ B
(
x0,

s
2

)
. By (2.3), there

exists a sequence {rk}k∈N ↘ 0 such that rk < 2−k|x′ − x0| and

(4.5)

∣∣∣∣∣f̃(x′)− 1

|B(x′, rk)|

∫
B(x′,rk)∩Λ

f̃(x) dx

∣∣∣∣∣ < 2−k|x′ − x0|.

In the following, we proceed coordination-wise for i ∈ {1, . . . , n}. Denote by aik and
bik points in B(x′, rk) ∩ Λ such that

f̃i(a
i
k) ≥

1

|B(x′, rk)|

∫
B(x′,rk)∩Λ

fi(x) dx− 2−k|x′ − x0|,(4.6)

f̃i(b
i
k) ≤

1

|B(x′, rk)|

∫
B(x′,rk)∩Λ

fi(x) dx+ 2−k|x′ − x0|.(4.7)

If there is an equality in (4.6) or (4.7), we define xik as a
i
k or b

i
k, correspondingly. Oth-

erwise, by continuity of f̃i on Λ, there exist two balls B(aik, ρ(a
i
k)) and B(bik, ρ(b

i
k)),

contained in B(x′, rk), such that (4.6) holds for any a ∈ B(aik, ρ(a
i
k)) ∩ Λ and

(4.7) holds for any b ∈ B(bik, ρ(b
i
k)) ∩ Λ. Without loss of generality, we may

assume aik = (0, . . . , 0) and bik = (b1, 0, . . . , 0). Let us now consider the lines
ld := (t, d2, . . . , dn) connecting B(aik, ρ(a

i
k)) and B(bik, ρ(b

i
k)). Since Λ is of full

measure, for Ln−1-a.e. d := (d2, . . . , dn) a line ld contains xa ∈ B(aik, ρ(a
i
k)) ∩ Λ

and xb ∈ B(bik, ρ(b
i
k)) ∩ Λ, and L1(ld \ Λ) = 0. Moreover, f̃i ∈ W 1,n−1 and hence

f̃i is absolutely continuous on Ln−1-a.e. ld. Therefore, by the intermediate value
property, there is a point cik ∈ ld such that

(4.8)

∣∣∣∣∣f̃i(cik)− 1

|B(x′, rk)|

∫
B(x′,rk)∩Λ

f̃i(x) dx

∣∣∣∣∣ ≤ 2−k|x′ − x0|.

Moreover, there exists xik ∈ ld ∩ Λ ⊂ B(x′, rk) such that

(4.9) |f̃(cik)− f̃(xik)| ≤ 2−k|x′ − x0|.
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Then, by (4.5), (4.8), and (4.9),

(4.10) |f̃i(xik)− f̃i(x
′)| ≤ |f̃i(xik)− f̃i(c

i
k)|+ |f̃i(cik)− f̃i(x

′)| < 2−k+2|x′ − x0|.

Further,

(4.11)
|f̃i(x′)− f̃i(x0)−Dfi(x0)(x

′ − x0)|
|x′ − x0|

≤
|f̃i(x′)− f̃i(x

i
k)|+ |Dfi(x0)(x

′ − xik)|
|x′ − x0|

+
|f̃i(xik)− f̃i(x0)−Dfi(x0)(x

i
k − x0)|

|x′ − x0|
.

Since xik ∈ B(x′, rk) and (4.10) holds, the first term in (4.11) can be estimated as

|f̃i(x′)− f̃i(x
i
k)|+ |Dfi(x0)(x

′ − xik)|
|x′ − x0|

≤ 2−k+2 + 2−k|Df(x0)|.

While to estimate the second term in (4.11), we note that

|xik − x0| ≤ |xik − x′|+ |x′ − x0| ≤ (1 + 2−k)|x′ − x0| ≤ 2|x′ − x0| ≤ s,

since xik ∈ B(x′, rk). And hence, by (4.3), we conclude

|f̃i(xik)− f̃i(x0)−Dfi(x0)(x
i
k − x0)|

|x′ − x0|

≤
2|f̃i(xik)− f̃i(x0)−Dfi(x0)(x

i
k − x0)|

|xik − x0|
≤ ε.

Summarizing the above, we obtain that for x0 ∈ Λ and any ε > 0 there exists
s > 0 such that for any x′ ∈ B

(
x0,

s
2

)
it holds

|f̃i(x′)− f̃i(x0)−Dfi(x0)(x
′ − x0)|

|x′ − x0|
≤ lim inf

k→∞
(2−k(4 + |Dfi(x0)|) + ε) = ε.

Therefore, f̃i is differentiable in any x0 ∈ Λ with respect to Ω and, moreover,
Df̃i(x0) = Dfi|Λ(x0).

□

5. Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Theorem 1.1 immediately follows from Lemma 3.1 and The-
orem 4.4. □

Proof of Corollary 1.2. Let us first note that following the proof of [20, Theorem
1.1] with substituting n by p, we obtain∫

Ω′
|Df−1

k |p(y) dy ≤
∫
Ω

| adjDfk|p(x)
(Jfk(x))

p−1
dx.
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Hence, E(fk) ≤ F(fk) and the sequence {f−1
k }k∈N is bounded in W 1,p(Ω′,Rn) and,

passing to a subsequence if needed, there exists a weak limit h. Moreover, by [8,
Lemma 2.3] and (1.1), the inequality∫

Ω
φ(Jf (x)) dx ≤ C

guarantees that Jf > 0 a.e. in Ω and Jh > 0 a.e. in Ω′. To finish the proof, we apply
Theorem 1.1. □
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Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 00 Prague 8, Czech
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