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The singular behavior of the surface is locally encoded in ω±, which are mutually
orthogonal, regular, non negative and bounded measures on Ω, ω±(Ω) ∈ (0,+∞).
Equivalently one could have started with a signed measure ω of bounded total
variation, to come up then with ω± by the Jordan decomposition of ω on Ωj ,
ω = ω+ − ω−.
Any such system of coordinates is said to be isothermal and any metric taking the
form eρ(z)|dz|2 with ρ as in (1.2) is said to be subharmonic. We will focus on the
following local model of an SBC.

Definition 1.1. An Abstract Surface of Bounded Integral Curvature without Cusps
(ASBC for short) is a pair S =

{
Ω, eρ(z)|dz|2

}
, where Ω is an open, smooth and

bounded domain and ρ = h+g+−g−, h harmonic and bounded in Ω and g± defined
as in (1.2), that satisfies the no cusp condition,

(1.3) ∀ z ∈ Ω, ω+(z) < 4π.

So if S =
{
Ω, eρ(z)|dz|2

}
is an ASBC, then according to Reshetnyak (see [19] §8),

the total curvature on S, denoted by K, is the measure of bounded total variation
defined as follows,

Definition 1.2. Let S =
{
Ω, eρ(z)|dz|2

}
be an ASBC. The total curvature K(E) of

any Borel set E ⊆ Ω is defined by:

2K(E) := ω(E) = ω+(E)− ω−(E).

Remark 1. If for some z0 ∈ Ω we had ω+(z0) ≥ 4π, then the lengths and areas of

sets containing z0, defined via the metric g = eρ(z)|dz|2, would not be well defined
in general. Any point z0 ∈ Ω which satisfies ω+(z0) ≥ 4π is said to be a cusp.

From now on we will assume that S =
{
Ω, eρ(z)|dz|2

}
is an ASBC. Surfaces with

conical singularities ([5], [22]) are classical examples of this sort, see also Example 1
below. The local regularity of subharmonic metrics has been also recently discussed
in [1], showing among other things that for any p ∈ [1, 2), there exists a discrete set

Sp such that the metric is, locally far away from Sp, of class W
1,p
loc with respect to

the intrinsic volume measure. Although our results are related to those in [1], we are
interested in a different problem. Indeed, as far as ρ ∈ C2(Ω), it is well known that

the Gaussian curvature can be defined in Ω by the ”Gauss” equation, K(z) = −1
2
∆ρ
eρ ,

which has a long history in mathematics and has been widely used to analyze the
local geometry of surfaces, see [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21]
and references quoted therein.

Our aim is to show that in fact we can write the Gauss equation even in the
very weak ASBC setting. The underlying idea is, starting just from a subharmonic
metric and its total curvature, to come up with a potential u and a ”regular”
Gaussian curvature function K satisfying the Gauss equation in a suitably defined
weak sense. Our argument relies in a crucial way on the regularity theory of solutions
of Liouville-type equations by Brezis and Merle in ([7]).
Here and in the rest of this paper Hγ , γ > 0, denotes the γ-dimensional Hausdorff
measure and S2π = {x ∈ Ω : ω+(z) ≥ 2π}. Also Lp(Ω), p ∈ [1,+∞), denotes the
usual space of measurable functions whose p-th power of the modulus is integrable
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in Ω, (where two functions are identified if they agree a.e. in Ω) while W k,p(Ω),
p ∈ [1,+∞), denotes the Sobolev space of functions weakly differentiable k times
in Ω, whose derivatives up to the order k are in Lp(Ω). Finally L∞(Ω) denotes
the space of measurable functions bounded almost everywhere (where again two
functions are identified if they agree a.e. in Ω).

Theorem 1.3. Let S =
{
Ω, eρ(z)|dz|2

}
be an ASBC. There exists q1 > 1 such that

the following holds:

(a) eρ ∈ Lq (Ω) for any q < q1 and for any r > 0 small enough there exists
pr > 2 such that eρ ∈ Lpr(Ω \Br(S2π));

(b) Let K = KeρH2 + ωs be the Lebesgue decomposition of K w.r.t. eρH2 and
let ωs = ωs,+ − ωs,− be the Jordan decomposition of the singular part ωs.
Define f = f+ − f−, f± satisfying (1.2) with ω± = 2ωs,±. Then

ef ∈ Lq1(Ω),

and u = ρ− f ∈ L1(Ω) ∩W 1,s
loc (Ω) for any s ∈ (1, 2) is a solution of,

(1.4) −∆u = 2Kef+u in Ω,

in the sense of distributions, et|u| ∈ L1(Ω) for any t ≥ 1 and eu+f ∈ Lq (Ω)
for any q < q1.

Moreover, if ρ = u+ f for a pair {u, f} as above, then, for any fixed h harmonic
and bounded in Ω, the pair {uh, fh} := {u− h, f + h} satisfies the same properties
with ρ = uh + fh.

Needless to say, by definition K ∈ L1(Ω; eρH2) and for any Borel set E ⊆ Ω we
have,

K(E) =

∫
E

Kef+u + ωs(E).

Actually it is well known that ρ− h ∈ W 1,s(Ω) for any s ∈ (1, 2) which, together
with Theorem 1.3(a), implies that for any r small enough eρ−h ∈ W 1,t(Ω \Br(S2π))

for any 1 ≤ t < 2pr
pr+2}.

Remark that it is possible to construct an ASBC where the above decomposition
yields f ≡ 0, Keu ∈ L1(Ω), et|u| ∈ L1(Ω) for any t ≥ 1, but u is unbounded and
there is no s > 1 such that Kseu ∈ L1(Ω), see Examples 6 and 7 in section 3.
In particular (see Example 7) it is not true in general that eρ ∈ Lq1 (Ω). Better
estimates can be obtained via stronger assumptions on K.

Theorem 1.4. Let S =
{
Ω, eρ(z)|dz|2

}
be an ASBC and let ρ = u+ f , q1, pr and

K as determined by Theorem 1.3. Assume that

(1.5) K ∈ Ls (Ω) for some s >
q1

q1 − 1
,

then u is a strong solution of (1.4), u ∈ W 2,t
loc(Ω) ∩ L∞

loc(Ω), ∀ 1 ≤ t ≤ sq1
s+q1

and

eρ ∈ Lq1
loc (Ω). Moreover:

- if K ∈ L∞ (Ω), then u ∈ W 2,q1
loc (Ω);
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- if q1 = ∞ and (1.5) holds with some s > 1, then u ∈ W 2,s
loc (Ω);

- if (1.5) holds and for any r small enough there exists nr > 2pr
pr−2 such that

K ∈ Lnr(E \ Br(S2π)), ∀E ⋐ ω, then u ∈ W 2,k (E \Br(S2π)), for any
∀E ⋐ Ω and for any 2 ≤ k ≤ nrpr

nr+pr

The proof of Theorems 1.3, 1.4 are discussed in section 2. Several examples are
provided in section 3 relevant to Theorems 1.3, 1.4.

2. The proof of Theorems 1.3 and 1.4

We first discuss the summability properties of eg± . Remark that the estimates
about the local exponential integrability of eg+ are essentially the same as those in
[23], [7], the underlying idea being the following:

Lemma 2.1. ([23], [7]) Let g+ take the form (1.2) and assume that ω+(Ω) ∈ (0, 4πp ).

Then ∫
Ω

epg+ ≤ 2π

2− σ
(dΩ)

2σ,

where dΩ is the diameter of Ω and σ = ω+(Ω)
p

2π
∈ (0, 2).

However we provide a detailed proof of the Proposition 2.2 below since our
statement is slightly different from those in [7], [23]. Let g± be two superhar-
monic functions satisfying the assumptions of Definition 1.1 and let us recall that
S2π = {x ∈ Ω : ω+(x) ≥ 2π}. Obviously S2π is finite.

Proposition 2.2.

(j) e−g− ∈ L∞(Ω) and for any r small enough there exists pr > 2 such that
eg+ ∈ Lpr(Ω \Br(S2π)).

(jj) Assume that the no cusp condition (1.3) holds. Then eg+ ∈ Lq(Ω) for some
q > 1.

(jjj) In particular let ω+ = µ0 + µ1 be the Lebesgue decomposition of ω+ w.r.t.
H2, where µ1 denotes the singular part of ω+ and accordingly define g+ =
g+,0 + g+,1. Then eg+,0 ∈ Lq(Ω) for any q ≥ 1.

Proof. (j) Clearly for z ∈ Ω we have

g−(z) =

∫
Ω

Γ(z, y)dω−(y) ≥ min

{
−ω−(Ω)

2π
log(dΩ), 0

}
,

whence e−g− ∈ L∞(Ω).
Concerning g+, by definition we can write g+ = g+,0 + g+,1, where g+,0(resp. g+,1)
takes the form (1.2) in Ω with ω replaced by µ0(resp. µ1). First of all, since
µ0 ∈ L1(Ω), for any q ≥ 1 we can write µ0 = µ0,ε + µ0,∞, where ∥µ0,ε∥L1(Ω) ≤
ε < 4π

q , µ0,∞ ∈ L∞(Ω), and correspondingly define g+,0,ε and g+,0,∞. Clearly

g+,0,∞ ∈ L∞(Ω) while, by Lemma 2.1, g+,0,ε satisfies ∥eg+,0,ε∥Lq(Ω) ≤ C(Ω, ε), which,
in view of g+,0 = g+,0,ε + g+,0,∞, proves (jjj).
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Next let us set Ωd = {x ∈ Ω : dist(x, ∂Ω) < d} and observe that, by the inner
regularity of ω+, for any fixed q ≥ 1 we can find dq > 0 such that ω+(Ω4dq) ≤
ω+(Ω4dq) <

4π
q . Assume w.l.o.g. that 4dq < 1, then we have

g+,1(x)−
ω+(Ω)

2π
log(

1

2dq
) ≤ w(x) :=

1

2π

∫
Ω4dq

log

(
1

|x− y|

)
dω+, ∀ x ∈ Ω2dq .

Assuming w.l.o.g. that ω+(2dq) > 0 and putting σ = ω+(2dq)
q
2π ∈ (0, 2), by the

Jensen inequality and Fubini-Tonelli we can estimate,∫
Ω2dq

eqw ≤
∫
Ω2dq

dx

∫
Ω4dq

(
1

|x− y|

)σ dω+(y)

ω+(Ω4dq)

≤
∫
Ω4dq

dω+(y)

ω+(Ω4dq)

∫
Ω2dq

(
1

|x− y|

)σ

dx

≤
∫
Ω4dq

dω+(y)

ω+(Ω4dq)

∫
BdΩ

(y)

(
1

|x− y|

)σ

dx

=
2π

2− σ
(dΩ)

2−σ.

Therefore eg+,1 ∈ Lq(Ω2dq) for any such q. Fix any q ≥ 6 and pick any r ∈ (0, dq)
small enough such that Ω4dq ∩ Br(S2π) = ∅, which of course can always be done

since S2π is a finite set. Next let Ω̃ = Ω \ {Ωdq∪Br(S2π)}, which is by construction

compact, and let us fix x0 ∈ Ω̃. Since by assumption ω+(x0) < 2π, then by outer
regularity there exists p > 2 such that there exists R > 0 depending on x0 and
p, such that the ball centered at x0, B2R := B2R(x0), satisfies B2R ⋐ Ω \ S2π and
ω+(B2R) <

4π
p . Assume w.l.o.g. that R < 1, then we have,

g+,1(x)−
ω+(Ω)

2π
log(

1

R
) ≤ v(x) :=

1

2π

∫
B2R

log

(
4R

|x− y|

)
dω+, ∀ x ∈ BR(x0).

Assuming w.l.o.g. that ω+(B2R) > 0 and putting σ0 = ω+(B2R)
p
2π ∈ (0, 2), by the

Jensen inequality and Fubini-Tonelli we can estimate as above∫
BR(x0)

epv ≤ 2π

2− σ0
(dΩ)

2−σ0 .

Therefore eg+,1 ∈ Lp(BR(x0)) for some p > 2 and R > 0 depending only by x0 and
p.

At this point, since Ω̃ is compact, we deduce by a covering argument that eg+,1 ∈
Lqr(Ω̃), for some qr > 2. Thus, by defining pr = min{qr, q}, we have eg+,1 ∈
Lpr(Ω \Br(S2π)) which completes the proof of (j).

At last (jj) follows by a covering argument as above, where the no cusp condition
(1.3) replaces ω+(x0) < 2π in the compact set Ω \ Ω2dq . The proof is exactly the
same as above and we omit the details to avoid repetitions. □
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Next we prove Theorems 1.3, 1.4. Our arguments rely in a crucial way on the
regularity theory of solutions of Liouville-type equations as developed in [7].

The proof of Theorem 1.3. STEP 1. Recall that ρ = h+ g+ − g− where h is har-
monic and bounded in Ω. Therefore Proposition 2.2-(jj) implies that eρ ∈ Lq0 (Ω)
for some q0 > 1 and consequently it is well defined the Lebesgue decomposition of
K with respect to eρH2,

(2.1) K = KeρH2 + ωs, K ∈ L1
(
Ω; eρH2

)
, ωs ⊥ eρH2,

where ωs is a bounded Radon measure. Next observe that, since ρ ∈ L1(Ω), then
−∆ρ = ω+ − ω− holds in the sense of distributions in Ω, whence, by (2.1) and the
definition of K, we see that the following equality,

−∆ρ = 2Keρ + 2ωs,

holds as well in the sense of distributions in Ω. Let ωs = ωs,+ − ωs,− be the Jordan
decomposition of ωs and f± be defined by (1.2) with ω± = 2ωs,±. Then let us set
f = f+ − f− and

u := ρ− f.

Since u ∈ L1(Ω) and since −∆f = 2ωs in the sense of distributions, then we deduce
that,

−∆u = 2Kef+u + 2ωs +∆f = 2Kef+u,

that is, u satisfies (1.4) in the sense of distributions in Ω.
Obviously 2ωs satisfies the no cusp condition (1.3) as well. At this point, since
ωs is bounded, then we can apply Proposition 2.2 to 2ωs, thereby deducing that
ef ∈ Lq1(Ω) for some q1 > 1, which completes the proof of (b).

STEP 2. We conclude the proof of (a) and (c). Since K ∈ L1(Ω; ef+uH2) and
u ∈ L1 (Ω) is a solution of (1.4) in the sense of distributions, then by Remark 2

in [7] we have et|u| ∈ L1
loc(Ω) for any t ≥ 1. Therefore by the Holder inequality

eρ = efeu ∈ Ls, for any s < q1. This fact shows a posteriori that in fact q0 in STEP
1 could be any q < q1.
Next, let Ω1 ⋐ Ω be any open, smooth and relatively compact subset. Set u2 =
u − u1, where u1 is the unique weak solution (in the sense of Stampacchia [20]) of
the Dirichlet problem, {

−∆u1 = 2Kef+u in Ω1,
u1 = 0 on Ω1.

By the Weyl Lemma u2 coincides a.e. with an harmonic function in Ω1, and since
it is well known ([20]) that u1 ∈ W 1,s

0 (Ω1) for any s ∈ (1, 2), then we deduce that

u ∈ W 1,s
loc (Ω). In view of STEP 1, these facts prove (c).

Finally, it is obvious that the representation ρ = u + f with all the properties
established above still holds for {uh, fh} where h is any harmonic and bounded
function in Ω. □

Next we prove Theorem 1.4.
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The proof of Theorem 1.4. We assume first that K ∈ Ls (Ω), for some s > q1
q1−1 .

Recall that ef ∈ Lq1(Ω). Then by the Hölder inequality we have Kef ∈ Lt(Ω),
∀ 1 < t ≤ sq1

s+q1
. On the other hand, since by Theorem 1.3(b) we have eu ∈ Lp

loc(Ω)

for any p ≥ 1, then, for fixed 1 < t ≤ sq1
s+q1

, in particular we have eu ∈ L
t

t−1

loc (Ω)

and then we can apply Remark 5 in [7] which yields u ∈ L∞
loc(Ω). So we find

Kef+u ∈ Lt
loc(Ω) for any 1 < t ≤ sq1

s+q1
and by standard elliptic estimates we

conclude that u ∈ W 2,t
loc(Ω) for any 1 < t ≤ sq1

s+q1
and in particular that u is a strong

solution of (1.4). Therefore, in particular if K ∈ L∞
loc (Ω) then Kef+u ∈ Lq1

loc(Ω)

and u ∈ W 2,q1
loc (Ω) by standard elliptic theory. On the other side, it is readily seen

by the same argument that u ∈ L∞
loc(Ω) whenever q1 = +∞ and s > 1. Therefore,

in this case, Kef+u ∈ Ls
loc(Ω) and u ∈ W 2,s

loc (Ω) by standard elliptic theory.
At last, recall that pr is given by (a) in Theorem 1.3 and assume that for any r

small enough there exists nr >
2pr
pr−2 such that K ∈ Lnr(E \Br(S2π)) for any E ⋐ Ω.

Since nrpr
nr+pr

> 2 then Kef+u ∈ Lk(E \Br(S2π)), ∀ 2 ≤ k ≤ npr
n+pr

. As a consequence,

by standard elliptic estimates, we conclude also that u ∈ W 2,k(E \Br(S2π)) for any
E ⋐ Ω. □

3. Examples

We discuss some examples relevant to Theorems 1.3, 1.4. Recall that an ASBC
is said to have a conical singularity at point p if in local subharmonic coordinates
(z,Ω) around p, such that z(p) = 0, the metric takes the form,

|z|2αeu|dz|2, z ∈ Ω \ {0},
for some 0 ̸= α ∈ (−1,+∞) (α is said to be the order of the conical singularity) and
some u ∈ C0(Ω)∩C2(Ω \{0}). The well known geometric interpretation is that the
surface admits a tangent cone at p whose opening angle is 2 arcsin(1 + α).

Example 1. We illustrate Theorems 1.3, 1.4 for a metric with constant Gaussian
curvature and one conical singularity. Let us consider the ASBC

{
B1, e

ρ|dz|2
}

where ρ satisfies (1.1)-(1.2) with h ≡ log(1− α)2, ω− ≡ 0 and

ω+ = 2VαH2 + 4παδz=0, Vα =
4(1− α)2|z|−2α

(1 + |z|2(1−α))2
, α ∈ (0, 1).

Clearly
ω+ = 2K = 2KeρH2 + 2ωs, 2ωs = 4παδz=0,

where K = Vαe
−ρ ∈ L1(B1, e

ρH2). Therefore, setting f = f+ as in (1.2) with
ω+ = 2ωs and uα = ρ− f we have ef = |z|−2α ∈ Lq(B1) for any q < 1

α , and

(3.1) −∆uα = 2Keρ = 2Kef+uα = 2K|z|−2αeuα in B1,

in the sense of distributions. On the other side, since by definition uα = log(1 −
α)2 +

∫
B1

Γ(x, y)2Vα(y)dy, we have that uα is radial and continuous in B1. Thus

(3.2) K = Vα|z|2αe−uα =
4(1− α)2

(1 + |z|2(1−α))2
e−uα ,
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andK is radial and positive in B1 and in particular constant on ∂B1. Since −∆uα =
2Vα in B1, then by a straightforward evaluation we find ∆ log(K) = 0 in B1, whence
K is constant in B1. Therefore, since

uα(0) = log (1− α)2 − 1

2π

∫
B1

log (|y|)2Vα(|y|)dy = log 4(1− α)2,

we deduce from (3.2) that K ≡ K(0) = 1 which yields at once the explicit expression
of uα, e

uα = Vα|z|2α. Clearly uα ∈ W 2,q(B1) for any q < 1
α .

It is readily seen that, modulo minor changes, the same construction works for
any α < 0 as well, yielding the classical example of a conical singularity where the
surface (of constant Gaussian curvature) ”winds” around the singular point more
than once.

Example 2. We provide an example of an ASBC where the decomposition of
Theorems 1.3, 1.4 yields the same equation of Example 1 (see (3.1)) but without a
conical singularity. Of course in this case K is not constant.

Let us consider the ASBC
{
B1, e

ρ|dz|2
}

where ρ satisfies (1.1)-(1.2) with h ≡
log(1− α)2, ω− ≡ 0 and

ω+ = 2VαH2, Vα =
4(1− α)2|z|−2α

(1 + |z|2(1−α))2
, α ∈ (0, 1).

Clearly

ω+ = 2K = 2KeρH2,

where K = Vαe
−ρ ∈ L1(B1, e

ρH2). In this case we just set uα = ρ and then we have

−∆uα = 2Keρ = 2Keuα in B1,

in the sense of distributions. As above, since uα is radial and continuous, then

(3.3) K = Vαe
−uα =

4(1− α)2|z|−2α

(1 + |z|2(1−α))2
e−uα ,

is radial and constant on ∂B1. In particular |z|2αK is radial, positive in B1

and constant on ∂B1. Therefore, since −∆uα = 2Vα in B1, then as above we
find ∆ log(|z|2αK) = 0 in B1, whence |z|2αK is constant in B1 and since once
more we have uα(0) = log 4(1− α)2, then we deduce from (3.3) that |z|2αK ≡
|z|2αK(z)

∣∣
z=0

= 1 which yields at once K(z) = |z|−2α. Clearly we have that

euα = Vα|z|2α, uα ∈ W 2,s(B1) for any s < 1
α in this case as well, but this time K is

just in Ls(B1), for any s < 1
α .

Remark. We see from Examples 1 and 2 that the ”Gauss” equation

−∆u = |z|−2αeu

need not be associated to a conical singularity. In Example 1 the metric has a
conical singularity (i.e. |z|−2α is part of the conformal factor eρ ) and K is constant
while in Example 2 the singular part of ω (whence of ρ) vanishes and K = |z|−2α.



THE GAUSS EQUATION ON SURFACES OF BOUNDED INTEGRAL CURVATURE 421

Example 3. We provide an example relevant to Theorems 1.3, 1.4, showing a
possible mechanism to trigger the dependence of the exponent pr by r. Let us
consider the ASBC

{
B1, e

ρ|dz|2
}
where ρ satisfies (1.1)-(1.2) with h ≡ 0, ω− ≡ 0

and

ω+ = 2VH2 + 4πα0δz=0 + 4π

+∞∑
n=1

αnδz=zn , V =
1

|z|2α0

+∞∏
n=1

1

|z − zn|2αn
,

where α0 =
1
2 , αn ∈ (0, 1) is any sequence such that α :=

∑
n
αn < 1

2 , and |zn| is any

strictly decreasing sequence such that 1
2 ≤ |zn| → 0, as n → +∞. Clearly

ω+ = 2K = 2KeρH2 + 2ωs, 2ωs = 4πα0δz=0 + 4π

+∞∑
n=1

αnδz=zn ,

where K = V e−ρ ∈ L1(B1, e
ρH2). Putting f = f+ as in (1.2) with ω = 2ωs and

u = ρ− f we have ef = V and

K = V e−ρ = V e−f−u = e−u.

Therefore we have,

−∆u = 2Keρ = 2Kef+u in B1

in the sense of distributions. Since α0 = 1
2 then ω({0}) = 2π but for any r ∈ (0, 1)

we have ω(Br) > 2π. On the other side it is not difficult to see that ef = V ∈ Lq(B1)
for any q < 2 and that for any 0 < r ≤ 1

2 , V ∈ Lpr(B1\Br) for some pr > 2 and then,

since u =
∫
B1

Γ(x, y)2V (y)dy, by standard elliptic estimates we have u ∈ W 2,q(B1)

for any q < 2 and u ∈ W 2,pr(B1 \ Br) for any 0 < r ≤ 1
2 . We deduce in particular

by the Sobolev embedding that u ∈ L∞(B1) and then we have that

e−c− ≤ K(z) ≤ ec+ , c± = ∥u∓∥∞.

This ASBC has a sequence of conical singularities converging to the origin of orders
αn. As a consequence u is not of class C2(B1 \ {0}) and in particular the origin
cannot be said to be a conical singularity, although it looks like a conical singularity
of order α0.

Example 4. Similar to Example 3, we provide an ASBC relevant to Theorems
1.3,1.4, still with a non trivial dependence of the exponent pr by r, but without
conical singularities.
Let us consider the ASBC

{
B1, e

ρ|dz|2
}
where ρ satisfies (1.1)-(1.2) with h ≡ 0,

ω− ≡ 0 and

ω+ = 2VH2, V =
1

|z|2α0

+∞∏
n=1

1

|z − zn|2αn
,

where α0 =
1
2 , αn ∈ (0, 1) is any sequence such that α :=

∑
n
αn < 1

2 , and |zn| is any

strictly decreasing sequence such that 1
2 ≤ |zn| → 0, as n → +∞. Clearly

ω+ = 2K = 2KeρH2,
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where K = V e−ρ ∈ L1(B1, e
ρH2). Putting u = ρ we have K = V e−ρ = V e−u and

−∆u = 2Keρ = 2Keu in B1

in the sense of distributions. Since α0 = 1
2 then ω({0}) = 2π but for any r ∈ (0, 1)

we have ω(Br) > 2π. On the other side it is not difficult to see that V ∈ Lq(B1) for
any q < 2 and that for any 0 < r ≤ 1

2 , V ∈ Lpr(B1 \Br) for some pr > 2 and then,

since u =
∫
B1

Γ(x, y)2V (y)dy, by standard elliptic estimates we have u ∈ W 2,q(B1)

for any q < 2 and u ∈ W 2,pr(B1 \ Br) for any 0 < r ≤ 1
2 . We deduce in particular

by the Sobolev embedding that u ∈ L∞(B1) and then we have that

e−c−V (z) ≤ K(z) ≤ ec+V (z), c± = ∥u∓∥∞,

so that this time there are no conical singularities, while K has the same regularity
properties as V does.

Remark. The same arguments of Examples 1 and 2 with minor changes can be used
to produce examples of an ASBC with or without conical singularities and negative
Gaussian curvature, which is done essentially by setting ω+ ≡ 0 and ω− = 2WαH2

where

Wα =
4(1− α)2|z|−2α

(1− |z|2(1−α))2
, |z| < 1

2
, α ∈ (0, 1).

Analogously, slight changes to Examples 3 and 4 yield an ASBC with the same sort
of singularities and negative Gaussian curvature.

Example 5. We provide an example of an ASBC where the Gaussian curvature is
in L∞(Ω) with a jump discontinuity along a circle. Let us set Ω = {1

2 < |z| < 2}
and consider the ASBC

{
Ω, eρ|dz|2

}
where ρ satisfies (1.1)-(1.2) with ω− ≡ 0,

ω+ = 2ωαH2, where α = (α1, α2) and for fixed 0 ≤ α2 < α1 < 1 we define,

ωα(z) =


ω1(z) =

4(1− α1)
2|z|−2α1(

1 + |z|2(1−α1)
)2 , 1

2 ≤ |z| < 1,

ω2(z) =
4(1− α2)

2|z|−2α2(
1 + |z|2(1−α2)

)2 , 1 ≤ |z| < 2.

Clearly

ω+ = 2K = 2KeρH2,

where K = ωαe
−ρ ∈ L1(Ω, eρH2). Let us set

u(z) =


log

(
4(1− α1)

2|z|−2α1(
1 + |z|2(1−α1)

)2
)
, 1

2 ≤ |z| < 1,

log

(
4(1− α1)

2|z|−2α2(
1 + |z|2(1−α2)

)2
)
, 1 ≤ |z| ≤ 2.

which is radial, of class C1 in Ω and is a solution of −∆u = 2ωα in Ω in the sense
of distributions. Remark that, by standard elliptic theory, since ωα ∈ L∞(Ω), then
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ρ is C1 in Ω. By the Weyl lemma h = ρ − u is harmonic in Ω. In particular h is
continuous in Ω and

(3.4) −∆u = 2Keρ = 2Keheu in Ω,

in the sense of distributions. At this point, since ρ is radial, by setting c1 =
ρ(z) ||z|=1, we have that

K = ωαe
−ρ,

is radial, continuous in 1
2 ≤ |z| < 1 and in 1 < |z| ≤ 2 and satisfies

lim
r→1−

K(z) = (1− α2)
2e−c1 , lim

r→1+
K(z) = (1− α1)

2e−c1 .

In other words K has a jump discontinuity at the circle |z| = 1 while, by standard
elliptic theory, u ∈ W 2,p(Ω) is a strong solution of (3.4).

Example 6. We use Example 1 in [7] to construct an ASBC
{
B1, e

ρ|dz|2
}
such

that {u, f,K, ωs} = {ua, 0,K, 0} as obtained in Theorem 1.3 have the following
properties:
- eρ ∈ L∞(B1);
- K ∈ L1(B1) but there is no s > 1 such that K ∈ Ls(B1);
- u is not locally bounded;
- u has all the properties claimed in Theorem 1.3.
Let ρ satisfy (1.1)-(1.2) with ω+ ≡ 0,

ω− = 2VaH2, Va =
a

2
|z|−2

(
log

(
e

|z|

))−2

, a ∈ (0, 1),

and

h(z) = −
∫
B1

H(z, y)dω−(y), H(z, y) =
1

2π
log

(
|z|
∣∣∣∣ z

|z|2
− y

∣∣∣∣), z ∈ B1, y ∈ B1.

Since H(z, y) is the regular part of the Green’s function on B1, and since Va is
bounded far away from the origin, then h is harmonic and bounded in B1. Clearly
Va ∈ L1(B1) and

ω = 2K = 2KeρH2,

where K = −Vae
−ρ ∈ L1(B1, e

ρH2). Therefore, setting ua = ρ we have

−∆ua = 2Keρ = 2Keua in B1,

in the sense of distributions. Actually, since for z ∈ ∂B1 we have Γ(z, y)+H(z, y) =
0, ∀y ∈ B1, and since Va is bounded far away from the origin, then ua(z) = 0 for
z ∈ ∂B1. Therefore ua is the unique (radial) function that satisfies ∆ua = 2Va in

B1, ua = 0 on ∂B1, which is ua = −a log
(
log
(

e
|z|

))
, z ∈ B1\{0}. As a consequence

we have

K(z) = −a

2
|z|−2

(
log

(
e

|z|

))−(2−a)

,

and we see that K ∈ L1(B1), e
ua ∈ L∞(B1) and ua(z) → −∞ as z → 0. On the

other side there is no s > 1 such that K ∈ Ls(B1), so there is no chance that K
satisfies the assumption (1.5) of Theorem 1.4. On the other side, it is easy to check
that ua has all the properties claimed in Theorem 1.3.
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Example 7. We use again Example 1 in [7] to construct an ASBC
{
B1, e

ρ|dz|2
}

such that {u, f,K, ωs} = {ua, 0,K, 0} as obtained in Theorem 1.3 have the following
properties:
- eρ /∈ L∞(B1), e

ρ ∈ Lq(B1), for any q ≥ 1;
- K ∈ L1(eρH2, B1) ∩ L1(B1) but there is no s > 1 such that K ∈ Ls(B1);
- u is not locally bounded;
- u has all the properties claimed in Theorem 1.3.
Let ρ satisfy (1.1)-(1.2) with ω− ≡ 0,

ω+ = 2VaH2, Va =
a

2
|z|−2

(
log

(
e

|z|

))−2

, a > 0,

and

h(z) =

∫
B1

H(z, y)dω+(y), H(z, y) =
1

2π
log

(
|z|
∣∣∣∣ z

|z|2
− y

∣∣∣∣), z ∈ B1, y ∈ B1.

Since H(z, y) is the regular part of the Green’s function on B1, and since Va is
bounded far away from the origin, then h is harmonic and bounded in B1.

Clearly Va ∈ L1(B1) and

ω = 2K = 2KeρH2,

where K = Vae
−ρ ∈ L1(B1, e

ρH2). Therefore, setting ua = ρ we have

−∆ua = 2Keρ = 2Keua in B1,

in the sense of distributions. Actually, since for z ∈ ∂B1 we have Γ(z, y)+H(z, y) =
0, ∀y ∈ B1, and since Va is bounded far away from the origin, then ua(z) = 0 for
z ∈ ∂B1. Therefore ua is the unique (radial) function that satisfies −∆ua = 2Va in

B1, ua = 0 on ∂B1, which is ua = a log
(
log
(

e
|z|

))
, z ∈ B1 \{0}. Thus we also have

K(z) =
a

2
|z|−2

(
log

(
e

|z|

))−(2+a)

,

and we see that K ∈ L1(B1), e
ua ∈ Lq(B1) for any q ≥ 1 and ua(z) → +∞ as

z → 0. However, as in Example 2, there is no s > 1 such that K ∈ Ls(B1) while it
is easy to check that ua has all the properties claimed in Theorem 1.3. Remark that,
with the notations of Theorem 1.3, since f ≡ 0 we have q1 = ∞ but in particular it
is not true that eρ = eua+f ∈ Lq1(B1).
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