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In the present work, using the geometric theory of composition operators on
Sobolev spaces L1

q [27, 33, 35] we introduce a characterization of Ball’s classes in
terms of the composition operators. On this base we obtain accurate volume dis-
tortion estimates of topological mappings (homeomorphisms) of Ball’s classes pos-
sessing the Luzin N -property. The absolute continuity of the of Ball’s classes with
respect to the Sobolev capacity is proved also. The capacity considered as an outer
measure associated with corresponding Sobolev spaces L1

q [3]. This approach allows
us to refine in the capacitary terms results of [12,26] about ”singular” sets.

Remark 1.1. In [26] the change of variables formulas in Theorem 2 of [26] and
Theorem 3 of [26] are valid if the topological mapping φ possesses the Luzin N -
property, since these formulas imply that for any set of measure zero (|A| = 0) we
obtain

|φ(A)| =
∫
A

|J(x, φ)| dx = 0.

Thereby, in the case n − 1 < q < n, the assumption about the Luzin N-property
was missed in [26].

In the present work we study Ball’s classes A+
q,r(Ω; Ω̃) in the case of the minimal

possible second index r, namely r = q/(q − 1) or 1/q + 1/r = 1 and so r = q′.

Remark 1.2. In the case q = n (q′ = n/(n−1)) by the duality composition theorem

(Theorem 3.6) the Ball’s class A+
n,n′(Ω; Ω̃) coincides with the Sobolev space L1

n(Ω; Ω̃)

of mappings with J(x, φ) > 0 for almost all x ∈ Ω.

The class of Sobolev homeomorphisms L1
n(Ω; Ω̃) was studied in details in [25]

under a name BL-homeomorphisms.

Remark 1.3. In [32] it was proved that Sobolev homeomorphisms φ ∈ L1
n,loc(Ω; Ω̃)

possess the Luzin N -property. Therefore Ball’s classes A+
q,q′(Ω; Ω̃), n ≤ q have the

Luzin N -property.

We use the terminology Sobolev homeomorphism because a possible existence of
”singular sets” in Ω [26] for the case n − 1 < q < n. It will be demonstrated later
that the ”singular” sets are sets of capacity zero.

The proposed approach to the geometric properties of the Ball classes A+
q,q′(Ω; Ω̃)

is based on the geometric theory of composition operators on Sobolev spaces [7,
10, 27, 33–36]. We show that a Sobolev topological mapping (homeomorphism)

φ : Ω → Ω̃ such that J(x, φ) > 0 for almost all x ∈ Ω, belongs to A+
q,q′(Ω; Ω̃) if and

only if for any function f ∈ L1
∞(Ω̃) (i.e. for bounded gradients of the stress tensor

after the deformation ), the composition φ∗(f) = f ◦ φ ∈ L1
q(Ω) and the following

inequality is correct

∥f | L1
1(Ω̃)∥ ≤ ∥ adjDφ|Lq′(Ω)∥ · ∥φ∗(f) | L1

q(Ω)∥,
where 1/q + 1/q′ = 1. This inequality states that the second Ball’s condition
adjDφ ∈ Lq′(Ω) is equivalent (for mappings with positive a. e. Jacobians) to the
boundedness of the composition operator

(1.1)
(
φ−1

)∗
: L1

q(Ω) → L1
1(Ω̃), n− 1 < q < ∞,
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generated by the inverse mapping (inverse deformation) φ−1 : Ω̃ → Ω.
Using this composition operators property (1.1) and results of papers [33–35]

we obtain the following volume distortion estimates for mappings of Ball’s classes

(Theorem 4.2 ): Let φ : Ω → Ω̃ belongs to A+
q,q′(Ω; Ω̃), then the following inequality

|φ(A)|1−
1
n ≤

 1

|A|

∫
A

| adjDφ(x)|
q

q−1 dx

1− 1
q

|A|1−
1
n , n− 1 < q ≤ n,

holds for any measurable set A ⊂ Ω.
Using capacitary properties of composition operators on Sobolev spaces we obtain

corresponding estimates for capacity distortion of mappings of the Ball’s classes

A+
q,r(Ω; Ω̃) (Theorem 4.4): Let φ : Ω → Ω̃ belongs to A+

q,q′(Ω; Ω̃), then the following

capacity inequality

cap1(φ(E); Ω̃) ≤ ∥ adjDφ|Lq/(q−1)(Ω)∥ cap
1
q
q (E; Ω), n− 1 < q < ∞,

holds for any Borel set E ⊂ Ω. Corresponding local and point wise estimates are
also correct.

This means that topological mappings of Ball’s classes are absolutely continuous
with respect to capacity and an image of cavitation of q-capacity zero (”singular”

set) in a body Ω has 1-capacity zero (also ”singular” set) in Ω̃ and can not lead to
the body breaking upon these deformations. So, the cavitation can be characterized
in capacitary terms. As a consequence we obtain characterization of cavitations in
terms of the Hausdorff measure: for every set E ⊂ Ω such that capq(E; Ω) = 0,

1 ≤ q ≤ n, the Hausdorff measure Hn−1(φ(E)) = 0.
Weak regularity properties of mappings inverse to Sobolev homeomorphisms arise

to [24, 37] and were intensively studied in the last decades. In frameworks of the
geometric theory of composition operators on Sobolev spaces in [28] it was proved
that mappings inverse to Sobolev homeomorphisms of the class L1

q(Ω), q > n − 1,

belong to the class BV (Ω̃) and in [10] it was proved that mappings inverse to
Sobolev homeomorphisms of finite distortions of the class L1

n−1(Ω) possess the Luzin

N -property, belong to the class L1
1(Ω̃) and generate a bounded composition operator(

φ−1
)∗

: L1
∞(Ω) → L1

1(Ω̃).

The weak differentiability of mappings which are inverse to Sobolev homeomor-
phisms of finite distortions of the class W 1

n−1,loc(Ω) was studied in [4] also. Un-

fortunately the Luzin N -property was missed in [4] because of the weak inverse
differential was defined in [4] as a composition with the inverse mapping and mea-
surability had to be proven. The weak differentiability of mappings inverse to
Sobolev homeomorphisms of finite distortion with |Dφ| ∈ Ln−1,1(Ω) was proved
in [15].

In the paper [17] were considered bi-Sobolev mappings φ : Ω → Ω̃ such that φ ∈
L1
n(Ω) and φ−1 ∈ L1

n(Ω̃) in connections with the the nonlinear elasticity problems.
This class of mapping was introduced and studied in [23]. Note that these classes
coincide with classes of weak (n, 1)-quasiconformal mappings [27,34].
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2. Composition operators on Sobolev spaces

In this section we give necessary elements of the Sobolev spaces theory and the
geometric theory of composition operators on Sobolev spaces.

2.1. Sobolev spaces. Let E be a measurable subset of Rn, n ≥ 2. The Lebesgue
space Lp(E), 1 ≤ p ≤ ∞, is defined as a Banach space of p-summable functions
f : E → R equipped with the standard norm.

If Ω is an open subset of Rn, the Sobolev space W 1
p (Ω), 1 ≤ p ≤ ∞, is defined

as a Banach space of locally integrable weakly differentiable functions f : Ω → R
equipped with the following norm:

∥f | W 1
p (Ω)∥ = ∥f | Lp(Ω)∥+ ∥∇f | Lp(Ω)∥.

The homogeneous seminormed Sobolev space L1
p(Ω), 1 ≤ p ≤ ∞, is defined as a

space of locally integrable weakly differentiable functions f : Ω → R equipped with
the following seminorm:

∥f | L1
p(Ω)∥ = ∥∇f | Lp(Ω)∥.

Recall that in Lipschitz domains Ω ⊂ Rn, n ≥ 2, Sobolev spaces W 1
p (Ω) and L1

p(Ω)
are coincide (see, for example, [19]).

Sobolev spaces are Banach spaces of equivalence classes [19]. To clarify the no-
tion of equivalence classes we use the nonlinear p-capacity associated with Sobolev
spaces. With the help of the p-capacity the Lebesgue differentiation theorem was
refined for Sobolev spaces [19].

Recall the definition of the p-capacity [8,13,19]. Suppose Ω is an open set in Rn

and F ⊂ Ω is a compact set. The p-capacity of F with respect to Ω is defined by

capp(F ; Ω) = inf{∥∇f |Lp(Ω)∥p},

where the infimum is taken over all functions f ∈ C0(Ω) ∩ L1
p(Ω) such that f ≥ 1

on F . Such functions are called admissible functions for the compact set F ⊂ Ω. If
U ⊂ Ω is an open set, we define

capp(U ; Ω) = sup
F

{capp(F ; Ω) : F ⊂ U, F is compact}.

In the case of an arbitrary set E ⊂ Ω we define the inner p-capacity

cap
p
(E; Ω) = sup

F
{capp(F ; Ω) : F ⊂ E ⊂ Ω, F is compact},

and the outer p-capacity

capp(E; Ω) = inf
E
{capp(U ; Ω) : E ⊂ U ⊂ Ω, U is open}.

A set E ⊂ Ω is called p-capacity measurable, if cap
p
(E; Ω) = capp(E; Ω). Let

E ⊂ Ω be a p-capacity measurable set. The value

capp(E; Ω) = cap
p
(E; Ω) = capp(E; Ω)

is called the p-capacity measure of the set E ⊂ Ω. By [3] analytical sets (in particular
Borel sets) are p-capacity measurable sets.
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The notion of the p-capacity measure permits us to refine the notion of Sobolev
functions. Let a function f ∈ L1

p(Ω). Then the refined function

f̃(x) = lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y) dy

is defined quasieverywhere i. e. up to a set of p-capacity zero and it is absolutely
continuous on almost all lines [19]. This refined function f̃ ∈ L1

p(Ω) is called the
unique quasicontinuous representation (a canonical representation) of the function

f ∈ L1
p(Ω). Recall that a function f̃ is termed quasicontinuous if for any ε > 0 there

is an open set Uε such that the p-capacity of Uε is less than ε and on the set Ω \Uε

the function f̃ is continuous (see, for example [13,19]). In what follows we will use
the quasicontinuous (refined) functions only.

Note that the first weak derivatives of the function f coincide almost everywhere
with the usual partial derivatives (see, e.g., [19] ).

2.2. Composition operators on Sobolev spaces. Let us recall basic notations
and results of the geometric theory of composition operators on Sobolev spaces.
Suppose φ : Ω → Rn is a mapping of the Sobolev class W 1

1,loc(Ω;Rn). Then the

formal Jacobi matrix Dφ(x) and its determinant (Jacobian) J(x, φ) are well defined
at almost all points x ∈ Ω. The norm |Dφ(x)| is the operator norm of Dφ(x),
i. e., |Dφ(x)| = max{|Dφ(x) · h| : h ∈ Rn, |h| = 1}. We also set l(Dφ(x)) =
min{|Dφ(x) · h| : h ∈ Rn, |h| = 1}.

The Sobolev mapping φ : Ω → Rn is a mapping of finite distortion if Dφ(x) = 0
for almost all x from Z = {x ∈ Ω : J(x, φ) = 0} [32]. Of course, the condition
J(x, φ) > 0 for almost all x ∈ Ω of Ball’s classes is stronger than condition of finite
distortion, i.e. any mapping of such classes has the finite distortion. It means that
all general results of this paper are correct for Ball’s classes A+

q,q′(Ω).

Let us reproduce here the change of variable formula for the Lebesgue integral
[5, 11]. Let a mapping φ : Ω → Rn be such that there exists a collection of closed
sets {Ak}∞1 , Ak ⊂ Ak+1 ⊂ Ω for which restrictions φ|Ak

are Lipschitz mappings on
the sets Ak and ∣∣∣∣Ω \

∞⋃
k=1

Ak

∣∣∣∣ = 0.

Then there exists a measurable set S ⊂ Ω, |S| = 0 such that the mapping φ :
Ω \ S → Rn has the Luzin N -property and the change of variable formula

(2.1)

∫
E

f ◦ φ(x)|J(x, φ)| dx =

∫
Rn\φ(S)

f(y)Nf (E, y) dy

holds for every measurable set E ⊂ Ω and every non-negative measurable function
f : Rn → R. Here Nf (y,E) is the multiplicity function defined as the number of
preimages of y under f in E.

Sobolev mappings of the class W 1
1,loc(Ω;Rn) satisfy the conditions of the change

of variable formula [11] and so for Sobolev mappings the change of variable formula
(2.1) holds.
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If the mapping φ possesses the Luzin N -property (the image of a set of measure
zero has measure zero), then |φ(S)| = 0 and the second integral can be rewritten as

the integral on Rn. Note, that Sobolev homeomorphisms of the class W 1
n,loc(Ω; Ω̃)

possess the Luzin N -property [32].

Let Ω and Ω̃ be bounded domains in Rn, n ≥ 2. We say that a homeomorphism

φ : Ω → Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

by the composition rule φ∗(f) = f ◦ φ, if for any function f ∈ L1
p(Ω̃), the compo-

sition φ∗(f) ∈ L1
q(Ω) is defined quasi-everywhere in Ω and there exists a constant

Kp,q(Ω) < ∞ such that

∥φ∗(f) | L1
q(Ω)∥ ≤ Kp,q(Ω)∥f | L1

p(Ω̃)∥.

The problem of composition operators on Sobolev spaces arises in [9] for Sobolev
extension operators in cusp domains and is connected with the Reshennyak’s prob-
lem (1969) [31]. Recall that in connection with the geometric function theory the
p-distortion of a mapping φ at a point x ∈ Ω is defined as

Kp(x) = inf{k(x) : |Dφ(x)| ≤ k(x)|J(x, φ)|
1
p , x ∈ Ω}.

If p = n we have the usual conformal dilatation and in the case p ̸= n the p-dilatation
arises in [6] (see, also, [29]).

The following theorem gives characterizations of mappings which generate bounded
composition operators on Sobolev spaces in the terms of the p-distortion Kp.

Theorem 2.1. A homeomorphism φ : Ω → Ω̃ between two domains Ω and Ω̃
induces a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

if and only if φ is a Sobolev mapping of the class L1
q(Ω; Ω̃), has finite distortion and

Kp,q(φ; Ω) = ∥Kp | Lκ(Ω)∥ < ∞,

where 1/q − 1/p = 1/κ (κ = ∞, if p = q).

This theorem was proved in [27] (see, also, [34]), case p = ∞ was considered
in [10]. Mappings that satisfy conditions of Theorem 2.1 are called weak (p, q)-
quasiconformal mappings [7,33] and are a natural generalization of quasiconformal
mappings (p = q = n). In [18], where Sobolev spaces W 1

p (Ω) were considered as
spaces of locally-integrable functions defined up to a set of measure zero, another
proof of sufficiency of conditions of Theorem 2.1 was given. Unfortunately, methods
of [18] do not allow to prove necessity conditions of Theorem 2.1. In [20] the theory
of multipliers was applied to the composition operators on Sobolev spaces.

Remark 2.2. The historical survey on the theory of composition operators on
Sobolev spaces can be found in [30]. Unfortunately, this useful work [30] doesn’t
contain essential new results and contains some non-correct citations of previous
original papers [27, 33, 34]. Let us remark also that some proofs are not complete:
for example, the main result of Section 4 of [30] was formulated for general type
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of mappings, but the proof was given for homeomorphisms only (and so it repeats
results of the work [10]) and even in this case contains gaps.

2.3. Capacity estimates of composition operators. Now we give the capaci-
tary distortion estimates of Borel sets under homeomorphisms generating composi-
tion operators on Sobolev spaces.

Theorem 2.3. Let a homeomorphism φ : Ω → Ω̃ generates a bounded composition
operator

φ∗ : L1
p(Ω̃) → L1

p(Ω), 1 ≤ p < ∞.

Then the inequality

cap1/pp (φ−1(Ẽ); Ω) ≤ Kp,p(φ; Ω) cap
1/p
p (Ẽ; Ω̃)

holds for every Borel set Ẽ ⊂ Ω̃.

Proof. Let F ⊂ E = φ−1(Ẽ) be a compact set. Because φ is a homeomorphism

F̃ = φ(F ) ⊂ Ẽ is also a compact set. Let f ∈ C0(Ω̃)∩L1
p(Ω̃) be an arbitrary function

such that f ≥ 1 on F̃ . Then the composition g = φ∗(f) belongs to C0(Ω) ∩ L1
p(Ω),

g ≥ 1 on F and

∥φ∗(f) | L1
p(Ω)∥ ≤ Kp,p(φ; Ω)∥f | L1

p(Ω)∥.
Since the function g = φ∗(f) ∈ C0(Ω) ∩ L1

p(Ω) is an admissible function for the
compact F ⊂ E, then

cap1/pp (φ−1(F̃ ); Ω) ≤ ∥φ∗(f) | L1
p(Ω)∥ ≤ Kp,p(φ; Ω)∥f | L1

p(Ω)∥.

Taking infimum over all functions f ∈ C0(Ω̃)∩L1
p(Ω̃) such that f ≥ 1 on F̃ we have

cap1/pp (φ−1(F̃ ); Ω) ≤ Kp,p(φ; Ω) cap
1/p
p (F̃ ; Ω̃)

for any compact set F̃ ⊂ Ẽ ⊂ Ω̃.

Now for the Borel set Ẽ ⊂ Ω̃ we have (by the definition of the p-capacity of Borel
sets)

cap1/pp (F̃ ; Ω̃) ≤ cap1/p
p

(Ẽ; Ω̃) = cap1/pp (Ẽ; Ω̃).

Hence

cap1/pp (φ−1(F̃ ); Ω) ≤ Kp,p(φ; Ω) cap
1/p
p (Ẽ; Ω̃).

Since F = φ−1(F̃ ) is an arbitrary compact set, F ⊂ E, E is a Borel set as a preimage

of the Borel set Ẽ under the homeomorphism φ, then

cap1/pp (φ−1(Ẽ); Ω) = cap1/p
p

(φ−1(Ẽ); Ω) = sup
F⊂E

cap1/pp (F ; Ω)

≤ Kp,p(φ; Ω) cap
1/p
p (Ẽ; Ω̃).

□

Theorem 2.4. Let a homeomorphism φ : Ω → Ω̃ generates a bounded composition
operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q < p < ∞.
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Then the inequality

cap1/qq (φ−1(Ẽ); Ω) ≤ Kp,q(φ; Ω) cap
1/p
p (Ẽ; Ω̃)

holds for every Borel set Ẽ ⊂ Ω̃.

Proof. Let F ⊂ E = φ−1(Ẽ) be a compact set. Because φ is a homeomorphism

F̃ = φ(F ) ⊂ Ẽ is also a compact set. Let f ∈ C0(Ω̃)∩L1
p(Ω̃) be an arbitrary function

such that f ≥ 1 on F̃ . Then the composition g = φ∗(f) belongs to C0(Ω) ∩ L1
q(Ω),

g ≥ 1 on F and

∥φ∗(f) | L1
q(Ω)∥ ≤ Kp,q(φ; Ω)∥f | L1

p(Ω)∥.

Since the function g = φ∗(f) ∈ C0(Ω) ∩ L1
q(Ω) is an admissible function for the

compact F ⊂ E, then

cap1/qq (φ−1(F̃ ); Ω) ≤ ∥φ∗(f) | L1
q(Ω)∥ ≤ Kp,q(φ; Ω)∥f | L1

p(Ω)∥.

Taking infimum over all functions f ∈ C0(Ω̃)∩L1
p(Ω̃) such that f ≥ 1 on F̃ we have

cap1/qq (φ−1(F̃ ); Ω) ≤ Kp,q(φ; Ω) cap
1/p
p (F̃ ; Ω̃)

for any compact set F̃ ⊂ Ẽ ⊂ Ω̃.

Now for the Borel set Ẽ ⊂ Ω̃ we have (by the definition of the p-capacity of Borel
sets)

cap1/pp (F̃ ; Ω̃) ≤ cap1/p
p

(Ẽ; Ω̃) = cap1/pp (Ẽ; Ω̃).

Hence

cap1/qq (φ−1(F̃ ); Ω) ≤ Kp,q(φ; Ω) cap
1/p
p (Ẽ; Ω̃).

Since F = φ−1(F̃ ) is an arbitrary compact set, F ⊂ E, E is a Borel set as a preimage

of the Borel set Ẽ under the homeomorphism φ, then

cap1/qq (φ−1(Ẽ); Ω) = cap1/q
q

(φ−1(Ẽ); Ω) = sup
F⊂E

cap1/qq (F ; Ω)

≤ Kp,q(φ; Ω) cap
1/p
p (Ẽ; Ω̃).

□

3. Composition operators and Ball’s classes

In this section we consider applications of the geometric theory of composition
operators on Sobolev spaces to nonlinear elasticity problems. These application
build on a notion of an inner distortion which is used for a study of ”inverse” com-
position operators. This notion gives a geometric interpretation of the integrability
condition of adjDφ in the original definition of Ball’s classes A+

q,q′(Ω).
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3.1. Inverse composition operators. Let Ω and Ω̃ be two bounded domains in

Rn and φ : Ω → Ω̃ be a mapping of finite distortion of the class W 1
1,loc(Ω; Ω̃). We

define the ”normalized” inner s-distortion of φ at a point x as

KI
s (x, φ) =

 |J(x,φ)|
1
s

l(Dφ(x)) , J(x, φ) ̸= 0,

0, J(x, φ) = 0,

where l(Dφ(x)) is defined as min
h=1

|Dφ(x) · h|.
Its global integral version is called the inner (q, s)-distortion, 1 ≤ s ≤ q ≤ ∞:

KI
q,s(φ; Ω) = ∥KI

s (φ) | Lκ(Ω)∥, 1/κ = 1/s− 1/q, (κ = ∞, if q = s).

Proposition 3.1. Let a homeomorphism φ : Ω → Ω̃ belongs to L1
q(Ω; Ω̃) and

J(x, φ) > 0 for almost all x ∈ Ω. Then∫
Ω

(
|J(x, φ)|
l(Dφ(x))

) q
q−1

dx


q−1
q

=

∫
Ω

|adjDφ(x)|
q

q−1 dx


q−1
q

.

Proof. Using the following equalities (see, for example, [10]):

(Dφ(x))−1 = J−1(x, φ) adjDφ(x)

and

min
h=1

|Dφ(x) · h| =
(
max
h=1

|(Dφ(x))−1 · h|
)−1

we have

KI
q,1(φ; Ω) =

∫
Ω

(
|J(x, φ)|
l(Dφ(x))

) q
q−1

dx


q−1
q

=

∫
Ω

|adjDφ(x)|
q

q−1 dx


q−1
q

.

□

The following theorem give the characterization of composition operators in
Sobolev spaces in the terms of the inner (q, s)-distortion.

Theorem 3.2. Let φ : Ω → Ω̃ be a Sobolev homeomorphism of finite distortion and

belongs to L1
q(Ω; Ω̃). Then the inverse homeomorphism φ−1 : Ω̃ → Ω generates a

bounded composition operator

(3.1)
(
φ−1

)∗
: L1

q(Ω) → L1
s(Ω̃), 1 ≤ s < q < ∞,

if and only if φ−1 ∈ L1
s(Ω̃; Ω), possesses the Luzin N−1-property (φ possesses the

Luzin N -property) and

KI
q,s(φ; Ω) =

∫
Ω

KI
s (x, φ)

qs
q−s dx


q−s
qs

< ∞.
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Proof. Necessity. Let the inverse mapping φ−1 : Ω̃ → Ω generates a bounded
composition operator(

φ−1
)∗

: L1
q(Ω) → L1

s(Ω̃), 1 ≤ s < q < ∞.

Then by Theorem 2.1, the inverse mapping φ−1 : Ω̃ → Ω belongs to the Sobolev

space L1
s(Ω̃; Ω), has finite distortion and

∫
Ω̃

(
|Dφ−1(y)|q

|J(y, φ−1)|

) s
q−s

dy


q−s
qs

< ∞, 1 ≤ s < q < ∞.

Note, that in the case q ≥ n, the homeomorphism φ : Ω → Ω̃ of the class L1
q(Ω; Ω̃)

possesses the Luzin N -property [8] and in the case 1 ≤ s < q < n the mapping φ−1

which generates a bounded composition operator(
φ−1

)∗
: L1

q(Ω) → L1
s(Ω̃), 1 ≤ s < q < n,

possesses the Luzin N−1-property [34]. It means that φ : Ω → Ω̃ possesses the
Luzin N -property for all 1 ≤ s < q < ∞.

Hence, under the conditions of the theorem, φ−1 ∈ L1
s(Ω̃; Ω), possesses the Luzin

N−1-property for all 1 ≤ s < q < ∞ and we can put KI
q,s(φ; Ω) = 0 on the set

Z = {x ∈ Ω : J(x, φ) = 0}. So

KI
q,s(φ; Ω) =

 ∫
Ω\Z

(
|J(x, φ)|
l(Dφ(x))s

) q
q−s

dx


q−s
qs

=

 ∫
Ω\Z

(
|Dφ−1(φ(x))|q

|J(φ(x), φ−1)|

) s
q−s

|J(x, φ)| dx


q−s
qs

=

∫
Ω̃

(
|Dφ−1(y)|q

|J(y, φ−1)|

) s
q−s

dy


q−s
qs

< ∞.

Sufficiency. Let φ−1 ∈ L1
q(Ω̃; Ω), possesses the Luzin N−1-property and

KI
q,s(φ; Ω) =

∫
Ω

(
|J(x, φ)|
l(Dφ(x))s

) q
q−s

dx


q−s
qs

< ∞.
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Then∫
Ω̃

(
|Dφ−1(y)|q

|J(y, φ−1)|

) s
q−s

dy


q−s
qs

=

 ∫
Ω\Z

(
|Dφ−1(φ(x))|q

|J(φ(x), φ−1)|

) s
q−s

|J(x, φ)| dx


q−s
qs

=

 ∫
Ω\Z

(
|J(x, φ)|
l(Dφ(x))s

) q
q−s

dx


q−s
qs

= KI
q,s(φ; Ω) < ∞.

Then by Theorem 2.1 the mapping φ−1 generates a bounded composition operator(
φ−1

)∗
: L1

q(Ω) → L1
s(Ω̃), 1 ≤ s < q < ∞.

□

Now we give the description of Ball’s classes A+
q,q′(Ω; Ω̃) in the terms of compo-

sition operators on Sobolev spaces.

Theorem 3.3. The homeomorphism φ : Ω → Ω̃ between bounded domains Ω, Ω̃ ⊂
Rn belongs to the Ball class A+

q,q′(Ω; Ω̃) for q > n − 1, 1/q + 1/q′ = 1, if and only

if φ ∈ L1
q(Ω; Ω̃), J(x, φ) > 0 for almost all x ∈ Ω, possesses the Luzin N -property

and the inverse mapping generates the bounded composition operator(
φ−1

)∗
: L1

q(Ω) → L1
1(Ω̃),

with ∥
(
φ−1

)∗ ∥ ≤ ∥ adjDφ | Lq′(Ω)∥.

Proof. By Lemma 3.1 we have, that the inner integral distortion

KI
q,1(φ; Ω) =

∫
Ω

(
|J(x, φ)|
l(Dφ(x))

) q
q−1

dx


q−1
q

=

∫
Ω

|adjDφ(x)|
q

q−1 dx


q−1
q

< ∞.

Hence, by Theorem 3.2 the inverse mapping generates the bounded composition
operator (

φ−1
)∗

: L1
q(Ω) → L1

1(Ω̃),

if and only if φ belongs to the Ball class A+
q,q′(Ω; Ω̃), q > n− 1, 1/q+1/q′ = 1. The

estimate of the composition operator norm follows from [27,34].
□
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Now we consider two-sides estimates of composition operators. In [10] it was
proved that the inequality

∥φ∗(f) | L1
q(Ω)∥ ≤ ∥φ | L1

q(Ω)∥ · ∥f | L1
∞(Ω̃)∥, 1 ≤ q < ∞,

holds for any f ∈ L1
∞(Ω̃) if and only if φ ∈ L1

q(Ω).
Combining the previous theorem and this inequality we immediately obtain

Theorem 3.4. Let a homeomorphism φ : Ω → Ω̃ between bounded domains Ω, Ω̃ ⊂
Rn belongs to the Ball class A+

q,q′(Ω; Ω̃) for q > n− 1, 1/q+1/q′ = 1. Then for any

function f ∈ L1
∞(Ω̃) following inequalities

∥ adjDφ | Lq′(Ω)∥−1 · ∥f | L1
1(Ω̃)∥ ≤ ∥φ∗(f) | L1

q(Ω)∥

≤ ∥φ | L1
q(Ω)∥ · ∥f | L1

∞(Ω̃)∥
hold.

This theorem demonstrates variations of the nonlinear elastic potential energy
under weak quasiconformal deformations of elastic bodies.

3.2. The weak regularity of inverse Sobolev mappings. In the geometric
theory of composition operators on Sobolev spaces the significant role plays the
following composition duality property [27]. This property represents the weak
inverse mapping theorem (in the part of regularity of inverse mappings) for Sobolev
mappings.

Theorem 3.5. Let a homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ Rn, induces a bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n− 1 < q ≤ p < ∞.

Then the inverse mapping φ−1 : Ω̃ → Ω induces a bounded composition operator(
φ−1

)∗
: L1

q̃(Ω) → L1
p̃(Ω̃), n− 1 < p̃ ≤ q̃ < ∞,

where p̃ = p/(p− n+ 1) and q̃ = q/(q − n+ 1).

In the present work we prove this property in the limit case p = ∞.

Theorem 3.6. Let a homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ Rn, be a mappings of
finite distortion, possesses the Luzin N -property and induces a bounded composition
operator

φ∗ : L1
∞(Ω̃) → L1

q(Ω), n− 1 < q < ∞.

Then the inverse mapping φ−1 : Ω̃ → Ω induces a bounded composition operator(
φ−1

)∗
: L1

q̃(Ω) → L1
1(Ω̃), q̃ = q/(q − n+ 1).

Proof. Since φ : Ω → Ω̃ generates a bounded composition operator

φ∗ : L1
∞(Ω̃) → L1

q(Ω), n− 1 < q < ∞,

then by [10] the mapping φ ∈ L1
q(Ω; Ω̃). Because φ possesses the Luzin N -property,

then the inverse mapping belongs to W 1
1,loc(Ω̃) and is a mapping of finite distortion



COMPOSITION OPERATORS ON SOBOLEV SPACES AND BALL’S CLASSES 105

[10]. Denote by Z = {x ∈ Ω | J(x, φ) = 0} and S is the set from the change of
variables formula (2.1), |S| = 0. Then [27]

|Dφ−1(y)| ≤ |Dφ(x)|n−1

|J(x, φ)|
,

for almost all x ∈ Ω \ (S ∪ Z), y = φ(x) ∈ Ω̃ \ φ (S ∪ Z), and

|Dφ−1(y)| = 0 for almost all y ∈ φ(S).

Then∫
Ω̃

(
|Dφ−1(y)|q̃

|J(y, φ−1)|

) 1
q̃−1

dy =

∫
Ω̃\φ(S∪Z)

(
|Dφ−1(y)|q̃

|J(y, φ−1)|

) 1
q̃−1

dy

≤
∫

Ω̃\φ(S∪Z)

((
|Dφ(φ−1(y))|n−1

|J(φ−1(y), φ)|

)q̃

· 1

|J(y, φ−1)|

) 1
q̃−1

dy

=

∫
Ω̃\φ(S∪Z)

|Dφ(φ−1(y))|q

|J(φ−1(y), φ)|
dy =

∫
Ω\(S∪Z)

|Dφ(x)|q

|J(x, φ)|
|J(x, φ)| dx

≤
∫
Ω

|Dφ(x)|q dx < ∞.

Hence [27] φ−1 : Ω̃ → Ω generates a bounded composition operator(
φ−1

)∗
: L1

q̃(Ω) → L1
1(Ω̃),

where q̃ = q/(q − n+ 1). □

Corollary 3.7. Let φ : Ω → Ω̃ be a Sobolev homeomorphism of bounded domains

Ω, Ω̃ such that J(x, φ) > 0 for almost all x ∈ Ω. Then φ ∈ L1
n(Ω; Ω̃) if and only if

φ ∈ A+
n,n′(Ω; Ω̃), n′ = n/(n− 1).

Proof. The inclusion

A+
n,n′(Ω; Ω̃) ⊂ L1

n(Ω; Ω̃)

holds by the definition of Ball’s class A+
n,n′(Ω; Ω̃). Now let φ ∈ L1

n(Ω; Ω̃). Then

by Theorem 3.6 the inverse mapping φ−1 : Ω̃ → Ω induces a bounded composition
operator (

φ−1
)∗

: L1
n(Ω) → L1

1(Ω̃).

By Theorem 3.3 the mapping φ ∈ A+
n,n′(Ω; Ω̃), n′ = n/(n− 1). □

The key point in proof of the regularity of mappings of Ball’s classes plays the
regularity of mappings which are inverse to Sobolev mappings. This topic arises
in [37] and was studied by many authors, see, for example, [4, 10, 15, 16, 28]. In the
present work we use the following theorem from [10]:
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Theorem 3.8. [10] Let a homeomorphism φ : Ω → Ω̃ between two domains

Ω, Ω̃ ⊂ Rn belong to the Sobolev space L1
n−1(Ω; Ω̃), possess the Luzin N -property

and have finite distortion. Then the inverse mapping φ−1 belongs to the Sobolev

space L1
1(Ω̃; Ω).

4. Measure and capacity distortion estimates

4.1. Measure distortion estimates. In this section we give the volume distortion
property of mappings of Ball’s classes. Let us recall the following theorem [34] in
the convenient for us form, because in [34] this theorem was proved for general (not

necessary homeomorphic mappings). Let φ : Ω → Ω̃ be a Sobolev mapping, then
the inverse s-distortion function is defined [34] by

Hs(y) =


( ∑

x∈φ−1(y)\S,J(x,φ) ̸=0

|Dφ(x)|s
|J(x,φ)|

) 1
s

,

0, otherwise,

where S is the set from the change of variables formula (2.1).

Theorem 4.1. [34] Let a homeomorphism φ : Ω → Ω̃ generates a bounded compo-
sition operator

φ∗ : L1
q(Ω̃) → L1

s(Ω), 1 ≤ s ≤ q ≤ n.

Then for any measurable set Ã ⊂ Ω̃ the following inequality

(4.1) |φ−1(Ã)|
1
s
− 1

n ≤ ∥Hs | Lκ(Ã)∥|Ã|
1
q
− 1

n , 1/κ = 1/s− 1/q,

holds.

Hence, we obtain

Theorem 4.2. Let a homeomorphism φ belongs to the Ball’s class A+
q,q′(Ω; Ω̃),

n− 1 < q ≤ n, 1/q + 1/q′ = 1, then the inequality

|φ(A)|1−
1
n ≤

 1

|A|

∫
A

| adjDφ(x)|
q

q−1 dx

1− 1
q

|A|1−
1
n , n− 1 < q ≤ n,

holds for any measurable set A ⊂ Ω.

Proof. By Theorem 3.3 the inverse mapping φ−1 : Ω̃ → Ω generates the bounded
composition operator (

φ−1
)∗

: L1
q(Ω) → L1

1(Ω̃).

Hence by [34] we have

|φ(A)|1−
1
n ≤ ∥H1 | Lκ(A)∥|A|

1
q
− 1

n , 1/κ = 1− 1/q,
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Now we calculate the norm ∥H1 | Lκ(A)∥. Since J(x, φ) > 0 for almost all x ∈ Ω
and φ possesses the Luzin N -property, then

∥H1 | Lκ(A) =

∫
A

(
|Dφ−1(φ(x))|
|J(φ(x), φ−1)|

) q−1
q

dx


q

q−1

=

∫
A

(
|J(x, φ)|
l(Dφ(x))

) q
q−1

dx


q−1
q

=

∫
A

|adjDφ(x)|
q

q−1 dx


q−1
q

.

□
4.2. Capacity distortion estimates. In this section we prove that topological
mappings (homeomorphism) of Ball’s classes which possess the Luzin N -property
are absolutely continuous with respect to the corresponding p-capacities, which con-
sidered as outer measures associated with Sobolev spaces. It refines corresponding
results of [12,26]. Recall that Borel sets are measurable for the p-capacity [19].

In the following theorem we give the capacitary distortion estimates of the map-
pings with integrable inner distortion.

Theorem 4.3. Let a homeomorphism of finite distortion φ : Ω → Ω̃ belong to
L1
q(Ω), 1 < q < ∞, possess the Luzin N -property and such that

KI
q,s(φ; Ω) = ∥KI

s (φ) | Lκ(Ω)∥ < ∞, 1 ≤ s < q < ∞,

where 1/κ = 1/s− 1/q. Then for every Borel set E ⊂ Ω the inequality

cap
1
s
s (φ(E); Ω̃) ≤ KI

q,s(φ; Ω) cap
1
q
q (E; Ω)

holds.

Proof. By Theorem 3.2 the inverse mapping φ−1 : Ω̃ → Ω generates a bounded
composition operator

(φ−1)∗ : L1
q(Ω) → L1

s(Ω̃), 1 ≤ s < q < ∞.

Hence, by Theorem 2.4 for any Borel set E ⊂ Ω the inequality

cap
1
s
s (φ(E); Ω̃) ≤ KI

q,s(φ; Ω) cap
1
q
q (E; Ω)

holds. □
Using this theorem we obtain that topological mappings of Ball’s classes are

absolutely continuous with respect to capacity, which is considered as an outer
measure associated with the Sobolev spaces. This result refines results of [12,26].

Theorem 4.4. Let a homeomorphism φ ∈ A+
q,q′(Ω; Ω̃), 1/q + 1/q′ = 1, then the

inequality

cap1(φ(E); Ω̃) ≤

∫
Ω

| adjDφ(x)|
q

q−1 dx

1− 1
q

cap
1
q
q (E; Ω)

holds for any Borel set E ⊂ Ω.
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Proof. By Lemma 3.1 we have, that the inner integral distortion

KI
q,1(φ; Ω) =

∫
Ω

(
|J(x, φ)|
l(Dφ(x))

) q
q−1

dx


q−1
q

=

∫
Ω

|adjDφ(x)|
q

q−1 dx


q−1
q

< ∞.

Hence by Theorem 4.3 we obtain the required inequality. □

Therefore we obtain that mappings of Ball’s classes are absolutely continuous
with respect to capacity.
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