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with

cd,p = p−1

(
1√
π

Γ(d+2
2 )

Γ(d+3
2 )

)p

.

Here and in what follows, we use the notations ≲, ≳ and ≃ to suppress constants
that only depend on d and p.

Remarks. (a) One motivation of this work comes from the study of trace ideal
properties of commutators with singular integral operators. This concerns the case
p = d > 1 in Theorem 1.1. We will discuss the background in further detail
in Subsection 1.1, but for now let us mention that in the context of commutator
bounds, Rochberg and Semmes [32] introduced a discrete analogue of the condition

mf ∈ Ld
weak(R

d+1
+ , νd) and raised the question of characterizing this condition more

directly. Connes, Sullivan and Teleman, in the appendix of their paper [14] together

with Semmes, announced that this discrete condition is equivalent to f ∈ Ẇ 1,d(Rd)
and sketched a proof. The recent paper by Lord, McDonald, Sukochev and Zanin
[26], in conjunction with the results of Rochberg and Semmes [32], provides a com-
plete proof under the additional assumption that f ∈ L∞(Rd). The latter proof,
however, relies on rather deep results in operator theory and the theory of pseudo-
differential operators. Our goal here is to provide a direct proof of (1.1), somewhat
in the spirit of the sketch in [14]. In addition, we will prove (1.2), which is new
and which, in turn, suggests a new result in the study of trace ideal properties of
commutators; see Corollary 1.2. Finally, and importantly, we generalize the above
results, which are restricted to p = d > 1 to general p > 1. We are most grateful
to Jean Van Schaftingen for suggesting this after reading an earlier version of this
manuscript that only concerned the case p = d.
(b) Another motivation comes from the papers [29, 8] by Nguyen and by Brezis,
Van Schaftingen and Yung, which sparked an interest in finding characterizations
of membership to Sobolev spaces that do not involve derivatives and which have
led to a fast growing literature. We discuss this further in Subsection 1.2. Here we
just mention that both (1.1) and (1.2) have their analogues in the corresponding
formulas in [29, 8].
(c) The function mf appears in the characterization of other function spaces. For

instance, always assuming f ∈ L1
loc(Rd), one has

f ∈ BMO(Rd) iff sup
r>0

mf (·, r) ∈ L∞(Rd) ,(1.3)

f ∈ Lp(Rd) + R iff sup
r>0

mf (·, r) ∈ Lp(Rd) , provided 1 < p <∞ ,(1.4)

f ∈ Ċs(Rd) iff sup
r>0

r−smf (·, r) ∈ L∞(Rd) , provided 0 < s < 1 ,(1.5)

f ∈ Ẇ 1,p(Rd) iff sup
r>0

r−1mf (·, r) ∈ Lp(Rd) , provided 1 < p ≤ ∞ .(1.6)

Indeed, (1.3) is simply the definition; equivalence (1.4) can be deduced from [2,
Proposition 8.10] (we are grateful to Mario Milman for showing us this argument,
which improves that in [34, Section IV.2]); for (1.5) see [12] and [15, Theorem 6.3],
and for (1.6) see [11] and [15, Theorem 6.2]. Note that all these classical results
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involve a supremum with respect to r > 0. Closer to the criterion in Theorem 1.1
is the fact that

f ∈ Ẇ d/p,p(Rd) iff mf ∈ Lp(Rd+1
+ , νd) , provided d < p <∞ .(1.7)

This is of relevance in connection with the trace ideal properties mentioned in
(b) and is at least implicitly contained in [32]. Seeger in [33] has identified, in
great generality, function spaces defined in terms of mf as special cases of Triebel–
Lizorkin spaces. As far as we can see, however, the results there are restricted
to (possibly mixed) Lebesgue norms of mf and do not contain weak norms as
in Theorem 1.1. The same applies to other derivative-free characterizations, for
instance, the textbook characterization in [25, Theorem 11.75] as well as the more
recent ones in [1, 36]. It seems somewhat surprising, to us at least, that the strong
norms in (1.7) are replaced by a weak norm in the endpoint case p = d.
(d) We defined mf in terms of an L1-norm. Theorem 1.1 remains valid if we use an
Lq norm with certain 1 ≤ q < ∞, except, of course, that the implicit constant in
(1.1) may depend on q and the value of cd,p in (1.2) changes; see Remark 2.2.
(e) It is worth singling out from Theorem 1.1 a sufficient condition for constancy of

a function. Namely, if 1 < p <∞ and if f ∈ L1
loc(Rd) satisfies mf ∈ Lp

weak(R
d+1
+ , νp)

and lim infκ→0 κ
pνp({mf > κ}) = 0, then f is constant. Related, but different

conditions for constancy are discussed, for instance, in [5, 9].
(f) We have restricted ourselves in Theorem 1.1 to first order Sobolev spaces. It is
natural to expect that similar results also hold in the higher order case where in
the definition of mf not only a constant, but a low degree polynomial needs to be
subtracted. Many of the results mentioned in (c) extend to this case.
(g) It is noteworthy that the case p = 1 is excluded in Theorem 1.1. Our proof
shows that (1.2) remains valid for sufficiently regular functions on Rd (Lemma 3.1)

as well as that, if mf ∈ L1
weak(R

d+1
+ , ν1), then f ∈ ˙BV (Rd). On the other hand, it

is easy to see that there is an f ∈ ˙BV (Rd) (for instance, the characteristic function

of a ball) for which mf ̸∈ L1
weak(R

d+1
+ , ν1). At present, no simple characterization

of the condition mf ∈ L1
weak(R

d+1
+ , ν1) seems to be available. In [31] Rochberg and

Semmes show that for d = 1 this space strictly contains the Besov space Ḃ1
1,1(R)

and is strictly contained in a certain weak-type Besov space.

The remainder of this paper is organized as follows. In the following two subsec-
tions, we present our two motivations for this study, namely trace ideal properties in
Subsection 1.1 and derivative-less characterizations of Sobolev spaces in Subsection
1.2. In Section 2, we prove the inequality ≥ in (1.1) and, in Section 3, we prove the
inequality ≤ in (1.1), as well as (1.2).

It is a pleasure to dedicate this paper, in great admiration, to V. Maz’ya, whose
work on Sobolev spaces has inspired many, including the present author.

1.1. Trace ideal properties of commutators. Let us review the context in which
the question answered by Theorem 1.1 arises. There is a substantial literature on
boundedness and compactness properties of operators

[K, f ] := Kf − fK ,
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where K is a Calderón–Zygmund singular integral operator and f is a function
on Rd. We identify f with the operator of multiplication by f . For simplicity,
we assume that K is homogeneous and translation-invariant, and that its kernel is
given by a function that is smooth away from the origin with mean value zero on
spheres centered at the origin. Most of the results below hold under much weaker
assumptions on K, but the present ones do include the important special case of the
Hilbert transform if d = 1 and the Riesz transforms if d ≥ 2. To avoid trivialities,
we also assume K ̸≡ 0.

We will consider the operator [K, f ] on L2(Rd). It is known that it is bounded
if and only if f ∈ BMO(Rd), and it is compact if and only if f ∈ CMO(Rd), the
closure in BMO(Rd) of compactly supported, smooth functions; see [28, 23] for
d = 1 and [13, 35] for general d. (Our references throughout this subsection are far
from complete, and in this specific case some rather concern the periodic than the
whole space case.)

Having established criteria for compactness, the next questions concern quanti-
tative versions of this property, expressed in the decay of singular values. We recall
that the singular values of a compact operator T in a separable Hilbert space are
the square roots of the eigenvalues, counting multiplicities, of the operator T ∗T .
The Schatten spaces Sp and Spweak consist of those T for which the sequence of
singular values belongs to ℓp and ℓpweak, respectively. In dimension d = 1, it was

shown by Peller [30] that, for 1 ≤ p < ∞, [K, f ] ∈ Sp if and only if f ∈ Ḃ1/p
p,p (R),

the latter being a Besov space. (In fact, Ḃ
1/p
p,p (R) = Ẇ 1/p,p(R) if p > 1.) The higher

dimensional case is somewhat different and it was shown by Janson and Wolff [24]

that, for d < p < ∞, [K, f ] ∈ Sp if and only f ∈ Ḃ
d/p
p,p (Rd). The difference to

the one-dimensional case is that, if [K, f ] ∈ Sd for d ≥ 2, then f is constant. The
endpoint case d = p was studied in more detail by Rochberg and Semmes [32] who
showed that, again assuming d ≥ 2, [K, f ] ∈ Sdweak if and only if f belongs to a cer-

tain space Oscd,∞(Rd). They also improved on the Lorentz scale the Janson–Wolff
condition for f to be constant.

One can show that a function f belongs to the spaclinebreak Oscd,∞(Rd) if and

only if mf ∈ Ld
weak(R

d+1
+ , νd). We have not found this statement in the literature.

Its proof is not difficult. The space Oscd,∞(Rd) is defined by the analogue of mf

with dyadic cubes instead of balls and considered not as a function of (a, r) ∈ Rd+1
+ ,

but as a sequence, indexed by dyadic cubes. By definition, Oscd,∞(Rd) is the space
of functions f for which this sequence belongs to ℓdweak.

In [31], Rochberg and Semmes address the question of whether the space Oscd,∞(Rd)
coincides with some known function space. As mentioned in Remark (h) following
Theorem 1.1, in dimension d = 1, they prove that this space strictly contains the
Besov space Ḃ1

1,1(R) and is strictly contained in a certain weak-type Besov space. In

dimensions d ≥ 2, they show that Oscd,∞(Rd) ⊃ Ẇ 1,d(Rd). Modulo the equivalence
of the discrete condition defining Oscd,∞(Rd) and our continuous condition, this
proves ≥ in (1.1). In fact, our proof of that inequality uses some ideas from their
argument, but seems to us somewhat more direct.
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As mentioned in Remark (a) after Theorem 1.1, the remaining inclusion

Oscd,∞(Rd) ⊂ Ẇ 1,d(Rd) is stated as a theorem in the appendix of the paper [14]
by Connes, Sullivan and Teleman, where they acknowledge a collaboration with
Semmes. In particular, from our ‘continuous’ point of view the analogue of their
‘discrete’ equation (A3) is

lim sup
κ→0

κdνd({mf > κ}) ≳ ∥∇f∥dLd(Rd) .(1.8)

In view of these results, our contribution in the present paper in the case p = d
is, on the one hand, to fill in the details in the somewhat sketchy presentation in
the appendix of [14] and, on the other hand, to show that the asymptotic bound
(1.8) can be replaced by the limit relation (1.2). (It is not clear to us whether one
can expect a limit to exist in the discrete setting.) Our result (1.2) shows that (1.8)
and thus [14, (A3)] hold with lim inf instead of lim sup.

Motivated by these results we obtain the following condition for constancy, which
strengthends those due to Janson–Wolff [24] and Rochberg–Semmes [32]. We denote
by sn([K, f ]) the sequence of singular values of [K, f ] in nonincreasing order and
repeated according to multiplicities.

Corollary 1.2. Let d ≥ 2 and f ∈ CMO(Rd) with

lim inf
N→∞

N−1+1/d
N∑

n=1

sn([K, f ]) = 0 .

Then f is constant.

Note that we do not assume a-priori that f ∈ Ẇ 1,d(Rd) nor, equivalently, that
s·([K, f ]) ∈ ℓdweak. This is in contrast to the condition for constancy in Remark
(e) following Theorem 1.1. The lim inf condition in the corollary is implied by

the condition limn→∞ n1/dsn([K, f ]) = 0. Since the latter condition is satisfied
whenever s·([K, f ]) belongs to a Lorentz space ℓd,q with q < ∞, the corollary is
stronger than the results in [24, 32] (although, as we shall see, it can be proved
using the methods in [24]).

Proof. We assume that f ∈ CMO(Rd) is not constant and aim at proving that

the lim inf in the corollary is positive. In view of the inequality
∑N

n=1 sn([K, f ]) ≥∑N
n=1 |(ψn, [K, f ]φn)| for all orthonormal (ψn), (φn) ⊂ L2(Rd) (see, e.g, [21, Lemma

4.1]), it suffices to find such orthonormal systems with |(ψn, [K, f ]φn)| ≳ n−1/d. The
functions φn are essentially constructed in [24, Section 3]. Indeed, the functions
there are parametrized by the points ξj in the intersection of Zd with a cone. Their

nondecreasing rearrangement clearly behaves like n−1/d. Moreover, it is shown there

that | ̂[K, f ]φn| ≳ n−1/d on Bδ(ξj). We define ψn by ψ̂n := cn1Bδ(ξj) sgn
̂[K, f ]φn

with cn chosen such that ∥ψn∥L2 = 1. Then |(ψn, [K, f ]φn) ≳ n−1/d, as claimed. □
We finally mention the recent work of Lord, McDonald, Sukochev and Zanin [26]

which concerns a particular operator K, namely the sign of the Dirac operator,
that plays some role in noncommutative geometry. It is shown that, if d ≥ 2 and
f ∈ L∞(Rd), then [K, f ] ∈ Sdweak if and only if f ∈ Ẇ 1,d(Rd). In fact, a simple

approximation argument shows that the a-priori assumption f ∈ L∞(Rd) may be
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replaced by f ∈ BMO(Rd), and then we deduce by the Rochberg–Semmes result
[32] (in particular, the fact that the space Oscd,∞(Rd) is independent of K) that

Oscd,∞(Rd) = Ẇ 1,d(Rd). This argument gives a complete proof (except for the
approximation argument required to remove the boundedness assumption) of the
first part of Theorem 1.1. It is, however, somewhat unsatisfactory that in order to
deduce the real analysis statement in the theorem one needs to go through rather
deep results in operator theory and the theory of pseudodifferential operators. This
motivated us to look for a more direct proof, closer in spirit to the sketch in [14].
However, the intuition gained from the pseudodifferential perspective in [26] was
also helpful in the present argument, in particular, in the proof of Lemma 3.1,
which contains a local version of (1.2). We take this opportunity to thank Fedor
Sukochev and Dmitriy Zanin for a fruitful discussion concerning [26]. Note added
in proof: After the present paper was submitted for publication, the topic of trace
ideal properties of commutators was further explored in [18, 19]

1.2. Derivative-less characterizations of Sobolev spaces. In the paper [10],
Brezis, Seeger, Van Schaftingen and Yung, unifying and extending earlier work by
Nguyen [29] (see also [4, 6, 7]) and by Brezis, Van Schaftingen and Yung [8], have
shown the following fact, valid for all 1 < p <∞ and γ ∈ R \ {0}. Denoting by ν̃γ
the measure on X := {(x, y) ∈ Rd×Rd : x ̸= y} with dν̃γ(x, y) = |x−y|γ−d dx dy, a

function f ∈ L1
loc(Rd) belongs to Ẇ 1,p(Rd) if and only if (f(x)− f(y))/|x− y|1+γ/p

belongs to Lp
weak(X , ν̃γ), and

(1.9) ∥∇f∥p
Lp(Rd)

≃ sup
κ>0

κp ν̃γ({(x, y) ∈ X : |f(x)− f(y)|/|x− y|1+γ/p > κ}) .

Moreover, with an explicit constant c̃d,p ∈ R+,

limκp ν̃γ({(x, y) ∈ X : |f(x)− f(y)|/|x− y|1+γ/p > κ})
= |γ|−1c̃d,p ∥∇f∥pLp(Rd)

,(1.10)

where one considers the limit κ→∞ for γ > 0 and κ→ 0 for γ < 0. We emphasize
that the paper [10] contains many more results, including for instance a detailed
analysis of the case p = 1. Clearly, (1.1) and (1.2) share some similarities with
(1.9) and (1.10), respectively. In some vague sense one can think of (x + y)/2 and
|x−y| in (1.9) as our a and r, respectively. However, (1.9) and (1.10) are completely
pointwise criteria, while the function mf in (1.1) and (1.2) involves integrals. The
similarity between (1.1)–(1.2) and (1.9)–(1.10) is also reflected in our proofs, namely,
most clearly, in the one of (1.2), but also in the maximal function argument for ≥
in (1.1). We comment on this in more detail before the respective proofs.

Weak-type estimates were obtained, for instance, in [22]. The work [8] has led
to many follow-up works and we refer to [10] for a partial bibliography. Let us
mention, in particular, [16, Section 7], where it is shown that, if 1 < p < ∞ and

f ∈ Ẇ 1,p(Rd), then

(1.11) ∥∇f∥p
Lp(Rd)

≲ lim inf
κ→0

κp ν0({(a, r) ∈ Rd+1
+ : |(Prf)(a)−f(a)|/r1+1/p > κ}) ,

where Prf = e−r
√
−∆f denotes the Poisson extension of f . This is reminiscent of

(1.2). Note, however, that the measure in Rd+1
+ in (1.11) is the usual Lebesgue
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measure ν0 and not νp. Moreover, [16] only proves a one-sided inequality. For other
related estimates with derivatives of harmonic and caloric extensions, see [17].

2. The lower bound on ∥∇f∥Lp

In this section we shall prove an upper bound on mf for f ∈ Ẇ 1,p(Rd) and deduce

that, if 1 < p <∞, then mf ∈ Lp
weak(R

d+1
+ , νp). We will use the (centered) maximal

function, denoted by M, somewhat in the spirit of [29] and [8, Remark 2.3] (see
also [10, Proposition 2.1]).

Lemma 2.1. If f ∈W 1,1
loc (R

d), then

mf (a, r) ≲ rM|∇f |(a) for all (a, r) ∈ Rd+1
+ .

Proof. By the Poincaré inequality (see, e.g., [20, (7.45)]) we have

mf (a, r) =

 
Br(a)

∣∣∣∣∣f(x)−
 
Br(a)

f(y) dy

∣∣∣∣∣ dx
≲ r

 
Br(a)

|∇f(x)| dx for all (a, r) ∈ Rd+1
+ .

Since the right side is bounded from above by rM|∇f |(a), the lemma follows. □

Proof of Theorem 1.1. First part. Let 1 < p < ∞ and f ∈ Ẇ 1,p(Rd). Then, by
Lemma 2.1,

νp({mf > κ}) ≤ νp({(a, r) ∈ Rd+1
+ : rM|∇f |(a) > κ/C}) for all κ > 0 .

For fixed a ∈ Rd, we computeˆ ∞

0
1(rM|∇f |(a) > κ/C)

dr

rp+1
= p−1

(
CM|∇f |(a)

κ

)p

and, thus,

νp({(a, r) ∈ Rd+1
+ : rM|∇f |(a) > κ/C}) ≤ p−1Cp

κp

ˆ
Rd

(M|∇f |(a))p da .

The claimed bound now follows from the boundedness of the maximal function on
Lp(Rd). (It is at this last step that the assumption p > 1 enters.) □

We note that the above argument fits into the framework of [16, Appendix].
Indeed, we deduce from Lemma 2.1 and the boundedness of the maximal function
that for the operator Ttf(x) := t−1mf (x, t) the assumption [16, (9.1)] is satisfied.
Therefore, [16, (9.2)] with γ = −p gives the bound ≳ in (1.1). We are grateful to
Po-Lam Yung for this remark.

Remark 2.2. For 1 ≤ q <∞, f ∈ Lq
loc(R

d) and (a, r) ∈ Rd+1
+ , let

m
(q)
f (a, r) :=

( 
Br(a)

∣∣∣∣∣f(x)−
 
Br(a)

f(y) dy

∣∣∣∣∣
q

dx

)1/q

.
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Then clearly m
(q)
f (a, r) is nondecreasing in q. We claim that, if 1 < p < ∞, if

f ∈ Ẇ 1,p(Rd) and if 1 ≤ q < dp/(d − p) for p < d and 1 ≤ q < ∞ for p ≥ d, then

m
(q)
f ∈ L

p
weak(R

d+1
+ , νp) and

(2.1) sup
κ>0

κpνp({m(q)
f > κ}) ≲ ∥∇f∥p

Lp(Rd)
.

(In this and the following remark, implicit constants may also depend on q.) Indeed,
given q as in the claim choose 1 ≤ t < min{p, d} such that q < dt/(d− t) and follow
the proof of [20, (7.45)]) to deduce that

m
(q)
f (a, r) ≲ r

( 
Br(a)

|∇f(x)|t dx

)1/t

for all (a, r) ∈ Rd+1
+ .

Bounding the right side by r(M(|∇f |t)(a)1/t we can argue as in the proof of The-
orem 1.1 above and obtain (2.1).

Remark 2.3. Another variation concerns the quantity, defined for f ∈ Lq
loc(R

d)

and (a, r) ∈ Rd+1
+ ,

m̃
(q)
f (a, r) :=

( 
Br(a)

 
Br(a)

|f(x)− f(y)|q dy dx

)1/q

.

Then clearly m̃
(q)
f (a, r) ≥ m

(q)
f (a, r). On the other hand, by adding and sub-

tracting the mean of f on Br(a) and using the triangle inequality in Lq, we see

that m̃
(q)
f (a, r) ≤ 2m

(q)
f (a, r). We deduce from Remark 2.2 that, if 1 < p < ∞,

f ∈ Ẇ 1,p(Rd) and q as in that remark, then

(2.2) sup
κ>0

κpνp(m̃
(q)
f > κ) ≲ ∥∇f∥p

Lp(Rd)
.

We are grateful to Jean Van Schaftingen for suggesting this argument, which sim-
plifies significantly our original one.

3. The upper bound on ∥∇f∥Lp

In this section we prove that, if f ∈ L1
loc(Rd) satisfies mf ∈ Lp

weak(R
d+1
+ , νp) for

some 1 < p < ∞, then f ∈ Ẇ 1,p(Rd) and the asymptotics (1.2) hold. Our proof
uses some ideas from [29, 8], which, in turn, is inspired by [3].

We begin by computing the asymptotics of νp({mf > κ}) as κ → 0. The differ-
ence from the limit relation (1.2) in Theorem 1.1 is twofold. On the one hand, here
we consider more regular functions, but on the other hand, we study a localized
version of the asymptotics. The constant cd,p is defined in Theorem 1.1.

Lemma 3.1. Let f ∈ L1
loc(Rd). Let Ω ⊂ Rd be a convex, open set and assume that

f ∈ C1(Ω) and ∇f is (globally) Lipschitz on Ω. Then for any bounded, open set
ω ⊂ Rd with ω ⊂ Ω,

lim
κ→0

κpνp({mf > κ} ∩ (ω × R+)) = cd,p

ˆ
ω
|∇f |p dx .
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If Ω = Rd and ∇f is compactly supported, then the assertion remains valid for
ω = Rd.

Proof. Step 1. Let us denote by A the Lipschitz constant of ∇f on Ω. We claim
that

(3.1)
∣∣mf (a, r)− c′d r |∇f(a)|

∣∣ ≤ CAr2 for all a ∈ ω , r ≤ dist(ω,Ωc)

with

c′d :=
1√
π

Γ(d+2
2 )

Γ(d+3
2 )

.

To prove this, we note that

|f(y)− f(x)−∇f(x) · (y − x)| ≤ A|x− y|2 for all x, y ∈ Ω .

(Here we used the convexity of Ω to write f(y) − f(x) = ∇f(ξ) · (y − x) for some
ξ ∈ Ω between x and y.) Now let a and r be as in (3.1). Then, for all x ∈ Ω,∣∣∣∣∣f(x)−

 
Br(a)

f(y) dy −∇f(x) · (x− a)

∣∣∣∣∣
≤
 
Br(a)

|f(x)− f(y)−∇f(x) · (x− y)| dy

≤ A
 
Br(a)

|x− y|2 dy

= A
(
|x− a|2 + d

d+2r
2
)
,

so ∣∣∣∣∣∣∣∣f(x)−
 
Br(a)

f(y) dy
∣∣∣− |∇f(a) · (x− a)|∣∣∣∣∣

≤

∣∣∣∣∣f(x)−
 
Br(a)

f(y) dy −∇f(x) · (x− a)

∣∣∣∣∣+ |(∇f(x)−∇f(a)) · (x− a)|
≤ A

(
2|x− a|2 + d

d+2r
2
)

and, integrating with respect to x ∈ Br(a),∣∣∣∣∣mf (a, r)−
 
Br(a)

|∇f(a) · (x− a)| dx

∣∣∣∣∣
≤
 
Br(a)

∣∣∣∣∣
∣∣∣∣∣f(x)−

 
Br(a)

f(y) dy

∣∣∣∣∣− |∇f(a) · (x− a)|
∣∣∣∣∣ dx

≤ A
 
Br(a)

(
2|x− a|2 + d

d+2r
2
)
dx = 3d

d+2 Ar
2 .

It remains to note that 
Br(a)

|∇f(a) · (x− a)| dx = c′d r |∇f(a)| ,
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since, for v ∈ Rd, 
Br(a)

|v · (x− a)| dx =

´ r
0 ρ

d dρ´ r
0 ρ

d−1 dρ

´
Sd−1 |v · ω| dω
|Sd−1|

=
d

d+ 1
r |v|

´ π
0 | cos θ| sin

d−2 θ dθ´ π
0 sind−2 θ dθ

and, with B denoting the beta function,´ π
0 | cos θ| sin

d−2 θ dθ´ π
0 sind−2 θ dθ

=

´ 1
−1 |t|(1− t

2)(d−3)/2 dt´ 1
−1(1− t2)(d−3)/2 dt

=

´ 1
0 (1− u)

(d−3)/2 du´ 1
0 u

−1/2(1− u)(d−3)/2 du

=
B(1, d−1

2 )

B(12 ,
d−1
2 )

=
1√
π

Γ(d2)

Γ(d+1
2 )

.

This proves (3.1).

Step 2. It follows from (3.1) that, abbreviating δ := dist(ω,Ωc),

{(a, r) ∈ ω × (0, δ] : c′dr|∇f(a)| − CAr2 > κ}
⊂ {(a, r) ∈ ω × (0, δ] : mf (a, r) > κ}
⊂ {(a, r) ∈ ω × (0, δ] : c′dr|∇f(a)|+ CAr2 > κ} .(3.2)

In this step we will show that

(3.3) lim
κ→0

κpνp({(a, r) ∈ ω × R+ : c′dr|∇f(a)| ± CAr2 > κ} = cd,p

ˆ
ω
|∇f(a)|p da .

Since

νp(ω × (δ,∞)) = |ω|
ˆ ∞

δ

dr

rp+1
<∞ ,

this, together with (3.2), proves the assertion in the lemma.
The proof of (3.3) is elementary, but somewhat lengthy. The basic observation

is that

νp({(a, r) ∈ ω × R+ : c′dr|∇f(a)| > κ}) =
ˆ
ω

ˆ ∞

κ/(c′d|∇f(a)|)

dr

rp+1
da

= p−1

ˆ
ω

(
c′d|∇f(a)|

κ

)p

da

= cd,pκ
−p

ˆ
ω
|∇f(a)|p da .

To include the perturbation ±CAr2, we exploit the fact that, since r−p−1 is not
integrable near r = 0, only the small r behavior of the bound in (3.1) is relevant
and therefore the error term CAr2 is negligible compared with the main term.

Let us give the details of the proof of (3.3). We begin with the + case. We have
c′dr|∇f(a)|+ CAr2 > κ if and only if r > R with

R :=

√
κ

CA
+

(
c′d|∇f(a)|

2CA

)2

−
c′d|∇f(a)|

2CA
.
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Thus, ˆ ∞

0
1(c′dr|∇f(a)|+ CAr2 > κ)

dr

rp+1
= p−1R−p .

We rewrite

p−1R−p = p−1


√

κ
CA +

(
c′d|∇f(a)|

2CA

)2
+

c′d|∇f(a)|
2CA

κ
CA


p

=
cd,p
κp

(√
CA
c′2d
κ+

(
1
2 |∇f(a)|

)2
+ 1

2 |∇f(a)|
)p

.

Thus,

νp({(a, r) ∈ ω × R+ : c′dr|∇f(a)|+ CAr2 > κ})

=
cd,p
κp

ˆ
ω

(√
CA
c′2d
κ+

(
1
2 |∇f(a)|

)2
+ 1

2 |∇f(a)|
)p

da .

Dominated convergence (recalling that ω has finite measure) implies (3.3) with +.
We turn to the proof of (3.3) with -. Assuming κ < (c′d|∇f(a)|)2/(4AC), we have

c′dr|∇f(a)| − CAr2 > κ if and only if R− < r < R+ with

R± :=
c′d|∇f(a)|

2CA
±

√(
c′d|∇f(a)|

2CA

)2

− κ

CA
.

Thus, if κ < (c′d|∇f(a)|)2/(4AC),ˆ ∞

0
1(c′dr|∇f(a)| − CAr2 > κ)

dr

rp+1
= p−1

(
R−p

− −R
−p
+

)
.

We rewrite, similarly as before,

p−1R−p
− =

cd,p
κp

(√(
1
2 |∇f(a)|

)2 − CA
c′2d
κ+ 1

2 |∇f(a)|
)p

.

Thus,

κpνp({(a, r) ∈ ω × R+ : c′dr|∇f(a)| − CAr2 > κ}) = I1(κ)− I2(κ) ,
where

I1(κ) := cd,p

ˆ
ω∩{|∇f |>

√
4CAκ/c′d}

(((
1
2 |∇f(a)|

)2 − CA
c′2d
κ
) 1

2
+ 1

2 |∇f(a)|
)p

da ,

I2(κ) :=
κp

p

ˆ
ω∩{|∇f |>

√
4CAκ/c′d}

(
c′d|∇f(a)|

2CA +

((
c′d|∇f(a)|

2CA

)2
− κ

CA

) 1
2

)−p

da .

By monotone convergence, I1(κ) → cd,p∥∇f∥pLp(ω). For I2(κ), we note that on

{|∇f | >
√
4CAκ/c′d}

c′d|∇f(a)|
2CA +

((
c′d|∇f(a)|

2CA

)2
− κ

CA

)1/2

≥
√

κ

CA
,
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so

κpp−1

(
c′d|∇f(a)|

2CA +

((
c′d|∇f(a)|

2CA

)2
− κ

CA

)1/2
)−p

≤ κp/2p−1(CA)p/2 .

Thus, using again the fact that ω has finite measure, I2(κ) → 0. This completes
the proof of (3.3) with -.

Step 3. Finally, we assume that f is constant in {|x| ≥ R0}. Applying what we
have proved so far with ω = {|x| < 2R0}, we obtain

lim
κ→0

κpνp({mf > κ} ∩ {(a, r) : |a| < 2R0})

= cd,p

ˆ
|a|<2R0

|∇f |p dx = cd,p

ˆ
Rd

|∇f |p dx .

Thus, it suffices to prove that κpνp({mf > κ} ∩ {(a, r) : |a| ≥ 2R0}) → 0. The
constancy assumption on f implies that mf (a, r) = 0 for |a| − r ≥ R0. Thus, it
suffices to consider the intersection of {mf > κ} with {R0 + r > |a| ≥ 2R0}.

We write f = g+ c where g is supported in {|x| ≤ R0} and c is a constant. Then

mf (a, r) =

 
Br(a)

∣∣∣g(x)−  
Br(a)

g(y) dy
∣∣∣dx ≤ 2|Br(a)|−1

ˆ
Rd

|g(x)| dx =: γr−d,

and we conclude that, if mf (a, r) > κ, then r < (γ/κ)1/d. Thus,ˆ
|a|≥2R0

ˆ ∞

|a|−R0

1(mf (r, a) > κ)
dr

rp+1
da

≤
ˆ
R0+(γ/κ)1/d>|a|≥2R0

ˆ ∞

|a|−R0

dr

rp+1
da

= p−1

ˆ
R0+(γ/κ)1/d>|a|≥2R0

da

(|a| −R0)p
.

When p > d this is uniformly bounded in κ, when p = d it is bounded by a constant
times ln+(γ/(κR

d
0)) and when p < d it is bounded by a constant times (γ/κ)(d−p)/d.

In any case, the bound, multiplied by κp, tends to zero as κ→ 0, as claimed. □

Lemma 3.2. Let 1 < p < ∞. There is a constant Cd,p < ∞ such that for all

f ∈ L1
loc(Rd) and all 0 ≤ φ ∈ L1

c(Rd) with
´
φdx = 1,

sup
κ>0

κpνp({mφ∗f > κ}) ≤ Cd,p sup
κ>0

κpνp({mf > κ}) .

Proof. We bound, using Minkowski’s inequality,

mφ∗f (a, r) =

 
Br(a)

∣∣∣∣∣
ˆ
Rd

φ(z)

(
f(x− z)−

 
Br(a)

f(y − z) dy

)
dz

∣∣∣∣∣ dx
≤
ˆ
Rd

φ(z)

 
Br(a)

∣∣∣∣∣f(x− z)−
 
Br(a)

f(y − z) dy

∣∣∣∣∣ dx dz
=

ˆ
Rd

φ(z)mf (a− z, r) dz .
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Passing to a norm in Lp
weak(R

d+1
+ , νp) that is equivalent to the quasi-norm in the

statement of the lemma (this is possible since p > 1), we obtain the assertion from
Minkowski’s inequality. □

Proof of Theorem 1.1. Second part. Throughout this proof, let 1 < p < ∞ and let
f ∈ L1

loc(Rd) with mf ∈ Lp
weak(R

d+1
+ , νp). We proceed in two steps.

Step 1. Let 0 ≤ φ ∈ C2
c (Rd) with

´
φdx = 1 and set φt(x) := t−dφ(x/t). Note

that φt ∗ f ∈ C2(Rd) with D2(φt ∗ f) ∈ L∞
loc(Rd). Thus, by Lemma 3.1, for any

bounded, open set ω ⊂ Rd,

lim
κ→0

κpνp({mφt∗f > κ} ∩ (ω × R+)) = cd,p

ˆ
ω
|∇(φt ∗ f)|p dx .

On the other hand, by Lemma 3.2,

lim
κ→0

κpνp({mφt∗f > κ} ∩ (ω × R+)) ≤ lim inf
κ→0

κpνp({mφt∗f > κ})

≤ sup
κ>0

κpνp({mφt∗f > κ})

≤ Cd,p sup
κ>0

κpνp({mf > κ}) .

Thus, ˆ
ω
|∇(φt ∗ f)|p dx ≤ c−1

d,pCd,p sup
κ>0

κpνp({mf > κ}) =: C ′ ,

where the right side depends neither on t nor on ω. By monotone convergence, we
conclude that ∇(φt ∗ f) ∈ Lp(Rd) and

ˆ
Rd

|∇(φt ∗ f)|p dx ≤ C ′ .

By weak compactness (using again p > 1), we deduce that for a sequence tj → 0,

∇(φtj ∗ f) ⇀ F in Lp(Rd). On the other hand, φt ∗ f → f in L1
loc(Rd) as t → 0.

Thus, for any Φ ∈ C1
c (Rd,Rd),

ˆ
Rd

Φ · F dx←
ˆ
Rd

Φ · ∇(φtj ∗ f) dx = −
ˆ
Rd

(∇ · Φ)φtj ∗ f dx→ −
ˆ
Rd

(∇ · Φ)f dx .

This proves that f ∈ Ẇ 1,p(Rd) with ∇f = F . Moreover, by weak convergence,
ˆ
Rd

|∇f |p dx ≤ lim inf
j→∞

ˆ
Rd

|∇(φtj ∗ f)|p dx

≤ C ′ = c−1
d,pCd,p sup

κ>0
κpνp({mf > κ}) ,

which proves the claimed upper bound on ∥∇f∥Lp(Rd) in (1.1).

Step 2. It remains to deduce the limit relation (1.2) for f . This follows by
a density argument, using the fact that there is a sequence (fn) ⊂ C2(Rd) with
∇fn compactly supported such that ∇fn → ∇f in Lp(Rd); see, for instance, [25,
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Theorem 11.43]. Note that |mfn −mf | ≤ mfn−f . Thus, for any δ ∈ (0, 1),

νp({mf > κ}) ≤ νp({mfn +mfn−f > κ})
≤ νp({mfn > (1− δ)κ}) + νp({mfn−f > δκ}),

νp({mfn >
κ

1−δ}) ≤ νp({mf +mfn−f >
κ

1−δ})

≤ νp({mf > κ}) + νp({mfn−f >
δκ
1−δ}) .

By the first part of Theorem 1.1, we deduce that

lim sup
κ→0

κpνp({mf > κ})

≤ lim sup
κ→0

κpνp({mfn>(1− δ)κ}) + Cδ−p∥∇(fn − f)∥pLp(Rd)
,

lim inf
κ→0

κpνp({mfn >
κ

1−δ})

≤ lim inf
κ→0

κpνp({mf > κ}) + Cδ−p(1− δ)p∥∇(fn − f)∥pLp(Rd)
.

On the other hand, by Lemma 3.1,

lim
κ→0

κpνp({mfn > ακ}) = α−pcd,p∥∇fn∥pLp(Rd)
.

Thus, we have shown that

lim sup
κ→0

κpνp({mf > κ})

≤ (1− δ)−pcd,p∥∇fn∥pLp(Rd)
+ Cδ−p∥∇(fn − f)∥pLp(Rd)

,

(1− δ)pcd,p∥∇fn∥dLp(Rd)

≤ lim inf
κ→0

κpνp({mf > κ}) + Cδ−p(1− δ)p∥∇(fn − f)∥pLp(Rd)
.

Letting first n → ∞ and then δ → 0, we obtain (1.2). This completes the proof of
Theorem 1.1. □

Similarly as in Section 2, let us view the above proof from within the framework
of [16, Appendix]. Let again Ttf(x) := t−1mf (x, t). Then (3.1) in the proof of
Lemma 3.1 shows that assumption [16, (9.3)] with g = c′d|∇f | is satisfied for f ∈
C1(Rd) with ∇f compactly supported. Therefore, [16, (9.4)] with γ = −p gives
(1.2) for such f . On the other hand, as far as we can see, [16] does not consider

the question whether mf ∈ Lp
weak(R

d, νp) implies f ∈ Ẇ 1,p(Rd). We are grateful to
Po-Lam Yung for this remark.
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