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A sequence {xt}∞t=0 ⊂ X is called a trajectory of a (or just a trajectory if the
mapping a is understood) if xt+1 ∈ a(xt) for all integers t ≥ 0.

Let T2 > T1 be integers. A sequence {xt}T2
t=T1

⊂ X is called a trajectory of a

(or just a trajectory if the mapping a is understood) if xt+1 ∈ a(xt) for all integers
t ∈ {T1, . . . , T2 − 1}.

Define

Ω(a) = {z ∈ X : for each ϵ > 0 there is a trajectory {xt}∞t=0

(1.1) such that lim inf
t→∞

ρ(z, xt) ≤ ϵ}.

Clearly, Ω(a) is a nonempty closed subset of (X, ρ). In the literature the set Ω(a)
is called a global attractor of a. Note that in [18, 19] Ω(a) is called a turnpike set
of a. This terminology is motivated by mathematical economics [13,18,19,25].

For each x ∈ X and each nonempty closed subset E ⊂ X put

ρ(x,E) = inf{ρ(x, y) : y ∈ E}.

It is clear that for each trajectory {xt}∞t=0 we have

lim
t→∞

ρ(xt,Ω(a)) = 0.

It is not difficult to see that if for a nonempty closed set B ⊂ X

lim
t→∞

ρ(xt, B) = 0

for each trajectory {xt}∞t=0, then Ω(a) ⊂ B.
Let ϕ : X → R1 be a continuous function such that

(1.2) ϕ(z) ≥ 0 for all z ∈ X,

(1.3) ϕ(y) ≤ ϕ(x) for all x ∈ X and all y ∈ a(x).

It is clear that the function ϕ is a Lyapunov function for the dynamical system
generated by the mapping a. It should be mentioned that in mathematical econom-
ics usually X is a subset of the finite-dimensional Euclidean space and ϕ is a linear
functional on this space [13, 18, 19, 25]. Our goal in [28] was to study approximate
solutions of the problem

ϕ(xT ) → max,

{xt}Tt=0 is a program satisfying x0 = x,

where x ∈ X and a natural number T are given.
The following theorem was obtained in [28].

Theorem 1.1. The following properties are equivalent:

(1) If a sequence {xt}∞t=−∞ ⊂ X satisfies xt+1 ∈ a(xt) and ϕ(xt+1) = ϕ(xt) for
all integers t, then

{xt}∞t=−∞ ⊂ Ω(a).

(2) For each ϵ > 0 there exists a natural number T (ϵ) such that for each tra-
jectory {xt}∞t=0 ⊂ X satisfying ϕ(xt) = ϕ(xt+1) for all integers t ≥ 0 the
inequality ρ(xt,Ω(a)) ≤ ϵ holds for all integers t ≥ T (ϵ).
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For each bounded function ψ : X → R1 set

∥ψ∥ = sup{|ψ(z)| : z ∈ X}.

We denote by Card(A) the cardinality of a set A and suppose that the sum over
empty set is zero.

For each (x1, x1), (y1, y2) ∈ X ×X set

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2).

For each (x1, x2) ∈ X ×X and each nonempty closed subset E ⊂ X ×X put

ρ1((x1, x2), E) = inf{ρ1((x1, x2), (y1, y2)) : (y1, y2) ∈ E}.

In [28] we established the turnpike properties for approximate solutions of the
problem

ϕ(xT ) → max,

{xt}Tt=0 is a program satisfying x0 = x,

where x ∈ X and a natural number T are given. In [30] we established a weak
version of the turnpike property which hold for all trajectories of our dynamical
system which are of a sufficient length and which are not necessarily approximate
solutions of the problem above. This result as well as the turnpike results of [28]
usually hold for model of economic dynamics which are prototypes of our dynamical
system [13,18,19,25]. In particular, it holds for von Neumann-Gale model generated
by a monotone process of convex type which was studied in [17].

Namely, in [30] we prove the following result.

Theorem 1.2. Assume that property (1) of Theorem 1.1 holds and that ϵ > 0.
Then there exists a natural number L such that for each integer T > L and each
trajectory {xt}Tt=0 the following inequality holds:

Card({t ∈ {0, . . . , T} : ρ(xt,Ω(a)) > ϵ}) ≤ L.

In [31] we showed that the turnpike property established in Theorem 1.2 is stable
under small perturbations. More precisely, following result was obtained in [31].

Theorem 1.3. Assume that property (1) of Theorem 1.1 holds and that ϵ > 0.
Then there exists a natural number Q and δ > 0 such that for each integer T > Q,
each function ψ : X → R1 satisfying

|ψ(z)− ϕ(z)| ≤ δ, z ∈ X

and each sequence {xt}Tt=0 such that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and

ρ1((xt, xt+1), graph(a)) ≤ δ

the following inequality holds:

Card({t ∈ {0, . . . , T} : ρ(xt,Ω(a)) > ϵ}) ≤ Q.
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It should be mentioned that turnpike properties are well known in mathematical
economics. The term was first coined by Samuelson in 1948 (see [21]) where he
showed that an efficient expanding economy would spend most of the time in the
vicinity of a balanced equilibrium path (also called a von Neumann path and a
turnpike). This property was further investigated for optimal trajectories of models
of economic dynamics. See, for example, [13, 19, 25] and the references mentioned
there. Recently it was shown that the turnpike phenomenon holds for many impor-
tant classes of problems arising in various areas of research [6,10–12,14,15,22,23,29].
For related infinite horizon problems see [1–5,8, 9, 20,25].

In this paper we obtain a strong version of Theorem 1.3 assuming that the fol-
lowing property holds which was introduced in [28].

(P1) If x1, x2 ∈ Ω(a) satisfies ϕ(x1) = ϕ(x2), then x1 = x2.
Note that for models of economic growth which are prototype of our dynamical

system property (P1) holds [13,18,19,25].
We prove the following turnpike result.

Theorem 1.4. Assume that property (P1) and property (1) of Theorem 1.1 hold
and that ϵ > 0. Then there exist natural numbers L,Q and δ > 0 such that for every
natural number T > L, every function ψ : X → R1 satisfying

|ψ(z)− ϕ(z)| ≤ δ, z ∈ X

and every sequence {xt}Tt=0 ⊂ X such that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt)

and

ρ1((xt, xt+1), graph(a)) ≤ δ

there exist nonnegative integers ai < bi ≤ T , i = 1, . . . , q, where q ∈ {1, . . . , Q} is
an integer, and zi ∈ Ω(a), i = 1, . . . , q such that

ai+1 > bi, i ∈ {1, . . . , q} \ {q},
for each i ∈ {1, . . . , q},

ρ(xt, zi) ≤ ϵ, t = ai, . . . , bi

and that

Card({0, . . . , T} \ ∪q
i=1{ai, . . . , bi}) ≤ L.

Theorem 1.4 is proved in Section 3 while Section 2 contains auxiliary results.

2. Auxiliary results

The following lemma was obtained in [31].

Lemma 2.1. Assume that property (1) of Theorem 1.1 holds and that ϵ > 0. Then
there exist δ > 0 and a natural number L such that for each integer T > 2L and
each sequence {xt}Tt=0 which satisfies for all integers t = 0, . . . , T − 1,

|ϕ(xt+1)− ϕ(xt)| ≤ δ

and

ρ1((xt, xt+1), graph(a)) ≤ δ
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the following inequality holds:

ρ(xt,Ω(a)) ≤ ϵ, t = L, . . . , T − L.

Lemma 2.2. Assume that property (1) of Theorem 1.1 and property (P1) hold and
that ϵ > 0. Then there exist δ > 0 and a natural number L such that for each integer
T > 2L, each function ψ : X → R1 satisfying

|ψ(z)− ϕ(z)| ≤ δ, z ∈ X

and each sequence {xt}Tt=0 ⊂ X such that for all integers t = 0, . . . , T − 1,

ψ(xt+1) ≤ ψ(xt),

ρ1((xt, xt+1), graph(a)) ≤ δ

and

ψ(x0) ≤ ψ(xT ) + δ

there exists z ∈ Ω(a) such that for each t ∈ {L, . . . , T − L},

ρ(xt, z) ≤ ϵ.

Proof. Property (P1) implies that there exists

ϵ0 ∈ (0, ϵ/4)

such that the following property holds:
(i) for each z1, z2 ∈ Ω(a) satisfying

|ϕ(z1)− ϕ(z2)| ≤ ϵ0

we have ρ(z1, z2) ≤ ϵ/4.
By the uniform continuity of ϕ, there exists

ϵ1 ∈ (0, ϵ0/2)

such that the following property holds:
(ii) for each y1, y2 ∈ X satisfying ρ(y1, y2) ≤ ϵ1 we have

|ϕ(y1)− ϕ(y2)| ≤ ϵ0/4.

Lemma 2.1 implies that there exist

δ ∈ (0, ϵ1/16)

and a natural number L such that the following property holds:
(iii) for each integer T > 2L and each sequence {xt}Tt=0 which satisfies for all

integers t = 0, . . . , T − 1,

|ϕ(xt+1)− ϕ(xt)| ≤ 3δ

and

ρ1((xt, xt+1), graph(a)) ≤ δ

we have

ρ(xt,Ω(a)) ≤ ϵ1, t = L, . . . , T − L.

Assume that an integer T > 2L, a function ψ : X → R1 satisfies

(2.1) |ψ(z)− ϕ(z)| ≤ δ, z ∈ X
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and that a sequence {xt}Tt=0 ⊂ X satisfies for all integers t = 0, . . . , T − 1,

(2.2) ψ(xt+1) ≤ ψ(xt),

(2.3) ρ1((xt, xt+1), graph(a)) ≤ δ

and

(2.4) ψ(x0) ≤ ψ(xT ) + δ.

By (2.1), (2.2) and (2.4), for all t = 0, . . . , T − 1,

|ψ(xt)− ψ(x0)| ≤ δ,

|ψ(xt)− ψ(xt+1)| ≤ δ,

(2.5) |ϕ(xt)− ϕ(xt+1)| ≤ 3δ.

Property (iii), (2.3) and (2.5) imply that

(2.6) ρ(xt,Ω(a)) ≤ ϵ1, t = L, . . . , T − L.

Let
t0, t ∈ {L, . . . , T − L}.

In view of (2.6), there exist

(2.7) z0, z1 ∈ Ω(a)

such that

(2.8) ρ(x0, z0) ≤ ϵ1, ρ(xt, z) ≤ ϵ1.

Property (ii) and (2.8) imply that

(2.9) |ϕ(xt0)− ϕ(z0)| ≤ ϵ0/4, |ϕ(xt)− ϕ(z)| ≤ ϵ0/4.

By (2.2) and (2.4),

(2.10) |ψ(xt)− ψ(xt0)| ≤ δ.

By (2.1) and (2.10),

(2.11) |ϕ(xt)− ϕ(xt0)| ≤ 3δ.

It follows from (2.9) and (2.11),

(2.12)
|ϕ(z0)− ϕ(z)| ≤ |ϕ(z0)− ϕ(xt0)|+ |ϕ(xt0)− ϕ(xt)|+ |ϕ(xt)− ϕ(z0)|

≤ ϵ0/4 + ϵ0/4 + 3δ < ϵ0.

Property (i), (2.7) and (2.12) imply that

(2.13) ρ(z0, z) ≤ ϵ/4.

In view of (2.8) and (2.13),

ρ(z0, xt) ≤ ρ(z0, z) + ρ(z, xt) ≤ ϵ/4 + ϵ1 < ϵ.

Thus
z0 ∈ Ω(a)

and
ρ(z0, xt) < ϵ, t ∈ {L, . . . , T − L}.

Lemma 2.2 is proved. □



TURNPIKE PHENOMENON 409

3. Proof of Theorem 1.4

Lemma 2.2 implies that there exist

δ ∈ (0,min{ϵ, 1})
and a natural number L0 such that the following property holds:

(a) for each integer T > 2L0, each function ψ : X → R1 satisfying

(3.1) |ψ(z)− ϕ(z)| ≤ δ, z ∈ X

and each sequence {xt}Tt=0 ⊂ X such that for all integers t = 0, . . . , T − 1,

(3.2) ψ(xt+1) ≤ ψ(xt),

(3.3) ρ1((xt, xt+1), graph(a)) ≤ δ

and

(3.4) ψ(x0) ≤ ψ(xT ) + δ

there exists z ∈ Ω(a) such that for each t ∈ {L0, . . . , T − L0},
ρ(xt, z) ≤ ϵ.

Choose an integer

(3.5) Q > 1 + 2δ−1(∥ϕ∥+ 1)

and an integer

(3.6) L > 2L0 + 2 + (4L0 + 8)(1 + 2δ−1(∥ϕ∥+ 1))

Assume that T > L is an integer, ψ : X → R1 satisfies (3.1) and that a sequence
{xt}Tt=0 ⊂ X satisfies (3.2) and (3.3).

By induction we define a strictly increasing finite sequence of integers ti ∈ [0, T ],
i = 0, . . . , q. Set

t0 = 0.

If

ψ(xT ) ≥ ψ(x0)− δ,

then set

t1 = T

and the construction is completed.
Assume that

ψ(xT ) < ψ(x0)− δ.

Evidently, there exists an integer t1 ∈ (t0, T ] such that

ψ(xt1) < ψ(x0)− δ

and that if an integer S satisfies

t0 < S < t1,

then

ψ(xS) ≥ ψ(x0)− δ.

If t1 = T , then the construction is completed.
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Assume that k is a natural number and that we defined a strictly increasing
sequence of nonnegative integers t0, . . . , tk ∈ [0, T ] such that

t0 = 0, tk ≤ T

and that for each i ∈ {0, . . . , k − 1},
ψ(xti+1) < ψ(xti)− δ

and if an integer S satisfies ti < S < ti+1, then

ψ(xS) ≥ ψ(xti)− δ.

(It is not difficult to see that our assumption holds for k = 1.)
If tk = T, then our construction is completed. Assume that tk < T . If

ψ(xT ) ≥ ψ(xtk)− δ,

then we set tk+1 = T and our construction is completed.
Assume that

ψ(xT ) < ψ(xtk)− δ.

Clearly, there exists an integer

tk+1 ∈ (tk, T ]

such that
ψ(xtk+1

) < ψ(xtk)− δ

and that if an integer S satisfies

tk < S < tk+1,

then
ψ(xS) ≥ ψ(xtk)− δ.

It is clear that the assumption made for k also holds for k + 1. Therefore by
induction, we constructed the strictly increasing finite sequence of integers ti ∈
[0, T ], i = 0, . . . , q, where q is a natural number such that

(3.7) t0 = 0, tq = T

and that for each i satisfying 0 ≤ i < q − 1,

(3.8) ψ(xti+1) < ψ(xti)− δ

and for each i ∈ {0, . . . , q − 1} and each integer S satisfies ti < S < ti+1, we have

(3.9) ψ(xS) ≥ ψ(xti)− δ.

By (3.1), (3.5) and (3.8),

2∥ϕ∥+ 2 ≥ 2∥ψ∥ ≥ ψ(xt0)− ψ(xtq−1)

=
∑

{ψ(xti)− ψ(xti+1) : i is an integer, 0 ≤ i ≤ q − 2} ≥ δ(q − 1)

and

(3.10) q ≤ 1 + 2δ−1(∥ϕ∥+ 1) < Q.

Set

(3.11) E = {i ∈ {0, . . . , q − 1} : ti+1 − ti ≥ 2L0 + 4}.
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Let

(3.12) i ∈ E.

By (3.11) and (3.12),

(3.13) ti+1 − 1− ti ≥ 2L0 + 3.

Equations (3.9) and (3.13) imply that

(3.14) ψ(xti+1−1) ≥ ψ(xti)− δ.

Equations (3.1)-(3.3), (3.13), (3.14) and property (a) applied to the program

{xt}ti+1−1
t=ti

imply that there exists

zi ∈ Ω(a)

such that

ρ(xt, zi) ≤ ϵ, t = ti + L0, . . . , ti+1 − 1− L0.

Set

ai = ti + L0, bi = ti+1 − L0 − 1.

By (3.6), (3.7), (3.10), (3.11) and the equation above,

Card({0, . . . , T} \ ∪i∈E{ai, . . . , bi})
≤ Card(∪{{ti, . . . , ti+1} : i ∈ {0, . . . , q − 1} \ E})
+ Card(∪{{ti, . . . , ti + L0 − 1} ∪ {ti+1 − L0, . . . , ti+1} : i ∈ E})

≤ (2L0 + 4)(2 + 4δ−1(∥ϕ∥+ 1)) < L.

Theorem 1.4 is proved.
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