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LIST°°_LIFT OF L'-SPACE VIA THE FRACTIONAL HEAT
EQUATION

DER-CHEN CHANG AND JIE XIAO

ABSTRACT. This paper presents a geometric capacity analysis of the weak solu-
tion u = Rq f to the fractional heat equation

(O + (—A2)Mult,z) =0 VY (t,z) € RI™;

u(0,z) = f(x) vV xeR",

subject to f € L*(R") & Rof € Li=“®(RY™, 1) — the weak g-Lebesgue
space on the upper-half space Rf‘” with respect to a given nonnegative Radon
measure p. After stating and validating Theorem 1.1 & Corollary 1.2, we also
address additional aspects of these two results.

1. STATEMENT OF THEOREM 1.1 & COROLLARY 1.2

In taking the limit of p to 1 in Theorem 3.1 [9], we will prove the following
theorem.

Theorem 1.1. Let 0 < a < 1 < ¢ < 0o and pp € M4 (RXT™). Then
Ry : LNR™) — LYRY™, 1) is continuous

1
— (WK))* S C§Ra)(K) ¥ compact K C RI™.
Consequently,

1
K))a

(1.1) sup % < 00
compact KCRT’" Cl @ (K)

= [ Ralall gz < LM(Q) V measurable  C R™.

In this paper, we use the following conventions:

e U < V stands for U < ¢V with a constant ¢ > 0; moreover U ~ V means
UsSVSU.
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o M (RY™™) is the class of all nonnegative Radon measures p with the total
variation ||u|| < oo on the upper-half-space R}ﬁ" = (0,00) x R™ equipped
with the (1 4+ n)-dimensional Lebesgue measure L1,

e (—A,)* denotes the fractional power of the spatial Laplacian which is de-
fined by

(=As)u(-,2) = FH([EP*Fu(-, €))(@) ¥z eR",

where F is the Fourier transform and F~! is its inverse.
o If R” 5 y — dy is the differential of the n-dimensional Lebesgue measure
L™ then

ult,) = Raf(t.o) =78 f@) = | K@= 9)f)dy,
along with
Rola(t,x) = [q Kga) (x — y)dy V indicator 1 of Borel set 2 C R™;
Jo Rala(t, ) do = the fractional heat content of  at time ¢ € (0,00) (cf.[7, 26]);

solves the heat equation of fractional order:

(O + (—An)Y)ult,z) =0 V¥ (t,z) € RI™
u(0,2) = f(x) vV xzeR"™

e With the help of the standard gamma function
oo
(0,00) 2 2= T'(2) = / xe dx,
0
the fractional heat kernel

Kt(a) (x) = (2%)_3/ em'y_t‘y'zady YV (t,x) € R}ﬁ"

n

is the fundamental solution to the heat equation of fractional order - namely

(9 + (~A0)) K (2) = 0 V() € RET
Ko(a)(x) = do(x) = the Diract mass at the origin V z € R".
Respectively, the middle-point o = 27! and the endpoint o = 1 of Kt(a) ()
lead to the standard Poisson kernel
n+1

1

K&R@—wrifr(

)t<t2 TPy

whose situation when n =1 & t = 1 is graphically as shown below and the

heat kernel ,
KD (@) = (4m) " Fe a0
whose situation when n = 2 & t = 272 is graphically shown below

According to [12, 14, 20, 21, 22, 23, 27, 28, 25, 33], there is no explicit

formula valid for Kt(a) () > 0 except a = 271, but there is (see e.g. [2, 3, 8,

13, 17, 31, 32))
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0.15

0.1

5-1072

KV (@)~ t(t2s + o)) 722" Y (t,2) € RY
Jgn Kt(a) (x)dr =1 vVt e (0,00);
limy_y0 K\ (z) = 6o(z) VxR

o LI (R}f”, 1) stands for the weak L9-space on Rf’” with respect to u - i.e. -
it consists of all functions g on Rf" with

Q=

O ii%)\(u({(t,x) RV |g(t,2)| > A})7 < oo,

Naturally, if 4 = LU+™) | then LI(RLIT™, u) is simply written as LI(RIT™).
e Given a compact set K C R}f" and its characteristic function 1g, let

1.3)  CP)(K) :=inf {||f||L1(Rn) . C®(R") S f>0& Rof > 1K},
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where C§°(R"™) comprises all infinitely smooth functions f on R" with com-
pact support. Naturally, if O is an open subset of Rf”, then

CfRO‘)(O) = sup CfRa)(K),

compact KCO

and hence for an arbitrary set A C Rf”, one has

Ro . Ry
) (4) = Ope;néDAC{ )(0).

Importantly, Theorem 1.1 deduces the (n,a)-order isocapacitary inequality as
described below.

Corollary 1.2. If0<a<1,0<7 <7 < oo, L s the Lebesque measure on
RY™, K is a compact subset of [11, 7o) x R", and H™)(K) denotes the (n, a)-order
Hausdorff capacity of K defined by

HE(K) = inf { 32,75 K € URB (1)) |

Bﬁ?)(tj,xj) = {(s,y) : 7«32,0 <s—t; < 27"]2-0‘ &y —zj| < 2*173},

then
(1.4) LK) < (0 (K))

2a+n 2a+n
2. VALIDATION OF THEOREM 1.1 & COROLLARY 1.2

This section is devoted to proving Theorem 1.1 & Corollary 1.2.

Proof of Theorem 1.1. Tt suffices to check the equivalence which readily derives

(1.1).

On the one hand, suppose that

Ry : LY(R™) — LY(RLT", 1) is continuous.

Then
(2.1) 1Bafllagrny S If i@ ¥ F € CE (Y.
If

K is a compact subset of R}ﬁ”;
0< feCER);
R(ch Z 1K7

then (2.1) & (1.2) derive

1
(u(F))® < [ Rafll paggron y < 1F ey

and hence the first formula of (1.3) implies

(2.2) (n(K))7 < O (k).
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On the other hand, assume that (2.2) holds for any compact set K C R}f”. If

f € C(R™);
A>0;
L(Rof, A) == {(t,x) € RI"™ : |Ro f(t,2)| > A},

then (2.2), coupled with the first formula of (1.3), implies

q
(LR, N) S (CF (RS N) ) S IS
and hence (2.1) follows from (1.2). O

Proof of Corollary 1.2. The left-hand inequality of (1.4) follows from both the nec-
essary part “=-" of Theorem 1.1 with

= L(H")![TI ] xR the restriction of LI+ to [r1, 7] x R”

and the continuity of
2a+4n
R : LY(R™) — L, ™ ([t1,t2] x R™).
Needless to say, we are required to verify the last continuity. Given

()\,t,’r‘,ﬁ) € (O’OO) X [7—177—2] X (0,00) X Rn;
€= 2?}”_“’_1” <n;

— _n_ _ nt2a
qin—ei n

we utilize the approximate estimate of Kt(a) (y — x) to estimate

A < |Raf(t,2)
< [ K=l
= —2a—n
< /R (i3 + |y — 2)~207) £ () |dy
1 —200—€ 1 €E—n
5/R (E35 + [y — ) 243 + |y — o) F(y)|dy
SEE [ Jy—al )y
Rn
Since the e-Riesz potential operator

R 5w Lfa) = [ ly—al ")y

n

continuously maps L'(R") to L{ = (R") (cf. [1, Theorem 5.1] or [29, Lemma 2.1))),
we have

q
L(")({x eR": |Lf(z)] > Ati}) < <”JC!§(R)> ,
2a
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thereby finding
L(Hn)({(t,x) €[m,m] xR": A< |Raf(t,x)|})

< / ’ L(”)<{x eR": |I.f(z)| > Ati})dt

1

< /T2 (HfHLle(R"))th
~Un At2a

_ a [T
S (V)" [

T1

So, we get the desired result:

(23) |Raf || 2ot S Il ey

([r1,m2] xR™)

The right-hand inequality of (1.4) follows from [9, Corollary 1(i)]:
H™)(K) > C’ﬁR‘*)(K) V compact set K C RY™.

3. BEYOND THEOREM 1.1 & COROLLARY 1.2

This section presents six perspectives on geometric capacity analysis of Theorem
1.1 & Corollary 1.2.

Remark 3.1. If Q ¢ R"22 is a uniformly C'-regular bounded domain - namely -

there exist two positive constants ¢p, ¢z such that for any z € 99 (the boundary of
Q) the set

NN{yeR": |ly—z| <ci}
is a graph of a C'™!-function ¢ with
IV Lo mr-1) < €2,
and if H™1) is the (n — 1)-dimensional Hausdorff measure, then [26, Theorem 1.2]

& [15] give the following three-fold assertion.
o If0 < o< 27!, then

. 1 __ sin(ma)T(a+%) drd .
limy 0t fpug Ralalt,w) de = —2=2=3 [o Jpmo [mapzeee

(3.1) 12,7
L(Q) < kpo (fQ Jgn %> "7** for a sharp constant K-

\Q Jy—a[?etn

Actually, the second inequality of (3.1) is the fractional 0 < 2« < 1 isoperi-
metric inequality.
o If « =271 then

(3.2) lim(—¢Int)~? / Rilg(t,z)de = n ' H®=D(HQ).
R™\Q

t—0 2

Thus, (3.2) exists as the limiting case o — 271 of the first formula in (3.1).
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e If27! < a <1, then

(3.3 lim; ot~ 2a Jamq Rala(t,z) de = o~ 'T (251 H 1 (99);
. _1 _ o .
SUDPte(0,00) E 20 fRn\Q Rolg(t,x)de < 1F(%)H( 1)(8Q).

So, the second inequality of (3.3) may be treated as a nice addition to
Corollary 1.2.

Remark 3.2. A measurable set Q C R"2? is said to be of finite perimeter provided
that the distributional gradient D1g of 1q is a vector-valued Radon measure on R"
with finite total variation (cf. (1.2))

|D1g|(R™) := sup {/ divg(z)dz : P € CHR™,R") & [|¢]| poo(rny < 1} < 0.
E

Of course, if Q has a smooth boundary 99, then |D1g|(R™) coincides with H™~1(9Q);
see also [6] for a concept of the perimeter on a measurable space with respect to a
c-additive function and its variational mean curvature.

e In accordance with [5, Theorem] or [16, Theorem 2.1], if @ C R" is a mea-
surable set of finite perimeter, then there exists a so-called variational mean
curvature h € L'(R"™) such that the variational inequality

Do) (R) _/ h(z) da < |D1,|(RY) — / h(z) do
Q A
holds for any Lebesgue measurable set
A CR"™ with |DIA|(R") < oc.

Moreover, [4] derives another variational mean curvature hq € L'(R") such
that

Iahallzien < Il i) = [D1a]®) = [ Lemohallzs ey < I8l @),
However, (2.3) indicates that ||[1qhq||z1(rr) has a nice lower bound as given
below

Loh ) > | Ralohal| 20in :
ehalli@n 2 I1Ralabell 2o

e Interestingly, [16, Remark 2.3] derives
I1ohl L1 @®ny > [D1lg|(R™).
This last inequality corresponds to (2.3)-induced inequality
1oh ny 2 [Raloh| 2a4n
1ol Li@n) 2 [|Rale HL%(m,m]an)

whose right-hand-side may be more or less treated as a fractional variant of
the perimeter of 2.

e Even more interestingly, if h is continuous at x € 9€2 which is smooth near z,
then the classical mean curvature (the arithmetic average of n — 1 principle
curvatures) Hpq(z) of 0§ at x is given by (n — 1)7'h(z), and hence the
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above-achieved function (n — 1)"'h may be regarded as a variational mean
curvature of 9. Consequently, if

F() = (~A0)h(z)
— F(%) T — 200—n
(34) - (Wm;n%ar (a)) | hwle =gy
= <4F+(n_22a)> Lo h(z),

72 24T (a)

or equivalently,
h(z) = (=A:)" f(2),

then the well-known fractional weak Sobolev inequality holds

— -« n = n < n
(35) 120l g = I S [l

and hence (n — 1)71(—A,)® exists in the sense of the variational mean
curvature operator (cf. [30]). Evidently, (3.5) may be viewed as an analytic
version of the geometric inequality described in the second inequality in
(3.1).

Remark 3.3. As a kind of the limiting case 1 < p < ¢ — 1 of Adams’ [1, Theorem
4.1], we find that if 0 < 8 < @ < 1 and K is the same as in Corollary 1.2, then
there holds the capacity inequality

(3.6) " (K) 5 (K.
As a matter of fact, for
Ce°(R™) > f = 0;

RaleK;
0<m <t < < oo,

we estimate

Raf(x) ~ /R Kt + [y — )27 F(y)dy

thereby arriving at (3.6) through the definitions of

o) (k) & o) (k).
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Remark 3.4. The S,-case of [24, Theorem 1.1] can be successfully driven to the
limit p — 1. More precisely, for g € LH”(an) suppose

t
Sag(t,z) ::/ e~ =(=8a) o5 a)ds
0

t
-/ ( / K§“1<x—y>g<s,y>ds>dy v (ta) € L,

which is the weak solution u(t, z) of the inhomogeneous heat equation of fractional
order:

(O + (—Ap)*)ult,z) = g(t,z) V (t,z) € R}ﬁ".
e Firstly, an argument similar to that for Theorem 1.1 derives that
Se : LY(RIT™) — LYRY™, 1) is continuous
1 Se, .
= (u(K))* S O (1) o= inf { gy gaeny - CERE™) 2920 & Sag > 1k}
VY compact K C Rf",

and, consequently,

1
pK))e
(37) sup ((S))
compact KCR_lj" Cl “ (K)
= HSalQHLE(R}j" 0 S LIH(Q) ¥V measurable Q C RL™.
Obviously, (3.7) is the S,-analogue of (1.1).

e Secondly, in order to get an S(®-analogue of Corollary 1.2, we choose

(+n & 0< 7 <7y <00,

_ )

B= L }[Tl,TQ}XRn

thereby applying
To—Ti<|[t—s|<mi4+m V n<t<n&0<s<t
9(=s,y) :== g(s,y) V (s,y) € R,

to obtain
t
1 —2a—n
Sag(t.2)| < /R /0 (t— )((t = 8)7% + |y — ) " |g(s,)|dsdy

o = sl =) g, ) sy

=: Ié%ffi)|g|(t, z) (the 2(1 — a)-Reisz potential of |g|).

A

This in turn derives not only the weak-type embedding inequality (cf. (2.3))

[Sagll __12n S gl gy gasn
@ L2078 () gy LR

but also its geometric version - the isocapacitary inequality

(14n) < ((\Sa) pEa e n
L (K) (01 (K)) vV compact set K C [r,T2] x R"™.

~
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e Thirdly, in a manner similar to establishing (3.6) & [9, Corollary 1(i)], we
can achieve that if 0 < f < a < 1 then

C;SB)(K) S C}Sa)(K) < H™M(K) V compact set K C [r, 2] x R™.

o0

Remark 3.5. In a similar manner, we can push [18, Theorem 3.1(i)] to the limit
p — 1. More precisely, if

(=) £ (y)
720 (a) /Rn (

Pof(t,x) = —dy ¥ (t,z) € R

2+ |z —yl?) 2

is the Caffarelli-Silvestre solution wu(¢,x) to the elliptic partial differential equation
(cf. [13])

diV(t,x) (tl_QaV(tJ)u(t, l‘)) =0 V (t,x)e R1++n;

u(0,z) = f(x) vV xeR",
then

I« . x)— P, f(t,x
(=A)*f (@) = 27r2ar((1)— o) % 4 ()2a)_11]:2(0‘ )

gives an important explanation of the fractional Laplacian (—A)%, and, conse-
quently, if

vV z e R,

C£Pa)(K) = inf {Hf”Ll(Rn) : Cgo(Rn) > f >0& Paf > 1K}
is the P,-type capacity of a given compact set K C R}f”, then Theorem 1.1 &
Corollary 1.2 as well as (3.6) hold for P,. O
Remark 3.5. Since (3.4) ensures that under f € C§°(R"™) there holds

I(=2)2 fllzan) = [[li—2a Ve f|| Lageny
N Vo f(z)
~ ‘ /]R" ‘x_y‘n-l—Zoa—l dx

according to Maz’ya’s [19, Theorem 1.7], if & : R™ — [0, 00) is continuous, (o, q) €
(0,271) x (1, 00), and y is a nonnegative Radon measure on R™, then the imbedding
inequality

(38) 1520V f | gy < 18V fllisgny ¥ F € CFRY)

Y (a,q) € (0,271 x (1,00),

La(R")

amounts to the isoperimetric inequality

< / ddH"!
oN

V bounded open 2 C R" with smooth 012,

/ n, dH ™ (y)
0!

o |z —y[rt2e-l

(3.9) ‘

La(R™,p)

where n,, is the unit outer normal vector at y € 9€). Consequently, we have the
forthcoming weak-type analogue of the equivalence (3.8)<=-(3.9).
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o If
(3'10) HIl*ZQvaHLZ(R”,,u) 5 H(I)vszLl(R") vV fe C(?O(Rn)’

then choosing f in (3.10) as a mollification of 1q derives that the weak-type
isoperimetric inequality

/ ny dHn_l(y) </ (I)dH(nfl)
o L@y Jon

A1
(3 ) ’ o ]x y|n+2a—l
vV bounded open 2 C R"™ with smooth 0.

e Conversely, suppose that (3.11) (which is weaker than (3.9)) is valid for any
bounded open 2 C R™ with smooth boundary 9. Note that (cf. [11, p.
202, Theorem 5.18])

1—g
Li®n ) & SUD (M(E)) q /]Il_gavxf]du(x).
0<p(E)<oo E

(3.12) l11—2aVz f]

So, the co-area formula, (3.12), the L!-Minkowski inequality, and (3.11)
deduce

HIl_%‘vaHLZ(R”,u)

n, dH"1(y)
n+2a—1 dt
R \ J{wern:f@)=t} | — Y

~
~

Li(R™,p)
1g n, dH ™1
~ sup (uwE)) 9 / / / y—m_m(_yl) dt| du(x)
0<u(E)<oco E [JR \ J{yeR": f(y)=t} [z —y
1-g n dH("*l)(y)
< swp (u(e)' " [ [ Ry A ) ) e
/R(O<M(E)<OO( ) E | yerm )=ty 2 —y[r2e!

dt

- / / ny dH"V(y)
R {yeRn: f(y)=t} ’x_y’n_‘_Qa_l LY(R™ 1)

5/ (/ @dH("U) dt
R \ J{weRm:f(z)=t}

~ [ B@IV.f@)]do
= 1®Vafllprgny ¥V f e (R,
whence yielding (3.10) (which is weaker than (3.8)).
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