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Since the operator A fails to satisfy the Fredholm property, the sequence un may
not be convergent. Let us call a sequence un so that Aun → f a solution in the sense
of sequences of problem Au = f (see [20]). If such sequence converges to a function
u0 in the norm of the space E, then u0 is a solution of this equation. The solution
in the sense of sequences is equivalent in this sense to the usual solution. However,
in the case of the non-Fredholm operators, this convergence may not hold or it can
occur in some weaker sense. In such case, the solution in the sense of sequences
may not imply the existence of the usual solution. In the present work we will
find sufficient conditions of equivalence of solutions in the sense of sequences and
the usual solutions. In the other words, the conditions on the sequences fn under
which the corresponding sequences un are strongly convergent. The solvability in
the sense of sequences for the equations involving the second order differential non-
Fredholm operators raised to fractional powers was studied in [32]. The present
article is our attempt to generalize such results by dealing with the solvability of
the generalized Poisson type equations containing in their left sides the sums of
such second order differential operators without Fredholm property raised to the
two distinct fractional powers, which is relevant to the understanding of the double
scale anomalous diffusion (see e.g. [11]). Note that a fractional power of the negative
Laplacian or a Schrödinger type operator can be defined via the spectral calculus.

Let us first consider the problem

(1.2) [(−∆)s1 + (−∆)s2 ]u = f(x), x ∈ Rd, d ∈ N, 0 < s1 < s2 < 1

with a square integrable right side. The operator (−∆)s is actively used in the stud-
ies of the anomalous diffusion problems (see e.g. [29], [30], [32] and the references
therein). The probabilistic realization of the anomalous diffusion was discussed
in [17]. The equation analogous to (1.2) but with the single standard Laplace op-
erator in the context of the solvability in the sense of sequences was studied in [23].

The situation when the power of the single negative Laplacian s =
1

2
was considered

recently in [31]. The article [15] is devoted to the establishing of the imbedding the-
orems and the studies of the spectrum of a certain pseudodifferential operator. The
necessary and sufficient conditions for the relative form boundedness of the poten-
tial energy operator with respect to the relativistic kinetic energy operator, which
is fundamental to relativistic quantum systems was established in [16]. Clearly, for
the operator in the left side of our equation (1.2)

l := (−∆)s1 + (−∆)s2 : H2s2(Rd) → L2(Rd)

the essential spectrum fills the semi-axis [0, ∞), so that its inverse from L2(Rd) to
H2s2(Rd) is not bounded.

We write down the corresponding sequence of the approximate equations with
n ∈ N as

(1.3) [(−∆)s1 + (−∆)s2 ]un = fn(x), x ∈ Rd, d ∈ N, 0 < s1 < s2 < 1

with the right sides converging to the right side of (1.2) in L2(Rd) as n → ∞. The
inner product of two functions is given by

(1.4) (f(x), g(x))L2(Rd) :=

∫
Rd

f(x)ḡ(x)dx,
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with a slight abuse of notations when these functions are not square integrable.
Indeed, if f(x) ∈ L1(Rd) and g(x) ∈ L∞(Rd), then obviously the integral in the
right side of (1.4) makes sense, like for example in the cases of the functions involved
in the orthogonality conditions of our theorems below. We use the space H2s(Rd)
equipped with the norm

(1.5) ∥u∥2H2s(Rd) := ∥u∥2L2(Rd) + ∥(−∆)su∥2L2(Rd), 0 < s < 1.

First of all, we formulate the solvability conditions for equation (1.2).

Theorem 1.1. Let f(x) : Rd → R, d ∈ N, f(x) ∈ L2(Rd) and 0 < s1 < s2 < 1.

a) Let d = 1. If s1 ∈
(
0,

1

4

)
and in addition f(x) ∈ L1(R), then problem (1.2)

admits a unique solution u(x) ∈ H2s2(R).
Suppose that s1 ∈

[1
4
,
3

4

)
and in addition xf(x) ∈ L1(R). Then equation (1.2)

possesses a unique solution u(x) ∈ H2s2(R) if and only if the orthogonality condition

(1.6) (f(x), 1)L2(R) = 0

is valid.

Suppose that s1 ∈
[3
4
, 1
)

and additionally x2f(x) ∈ L1(R). Then problem (1.2)

admits a unique solution u(x) ∈ H2s2(R) if and only if orthogonality relations (1.6)
and

(1.7) (f(x), x)L2(R) = 0

hold.

b) Let d = 2. Then when s1 ∈
(
0,

1

2

)
and additionally f(x) ∈ L1(R2), problem (1.2)

has a unique solution u(x) ∈ H2s2(R2).

Suppose that s1 ∈
[1
2
, 1
)

and in addition xf(x) ∈ L1(R2). Then problem (1.2)

admits a unique solution u(x) ∈ H2s2(R2) if and only if the orthogonality condition

(1.8) (f(x), 1)L2(R2) = 0

is valid.

c) Let d = 3. If s1 ∈
(
0,

3

4

)
and in addition f(x) ∈ L1(R3), then equation (1.2)

possesses a unique solution u(x) ∈ H2s2(R3).

Suppose that s1 ∈
[3
4
, 1
)

and additionally xf(x) ∈ L1(R3). Then problem (1.2)

possesses a unique solution u(x) ∈ H2s2(R3) if and only if the orthogonality relation

(1.9) (f(x), 1)L2(R3) = 0

is valid.
d) If d ≥ 4 with s1 ∈ (0, 1) and in addition f(x) ∈ L1(Rd), then equation (1.2)
admits a unique solution u(x) ∈ H2s2(Rd).

Note that in the formulation of the theorem above the solvability conditions for
our equation depend on the power s1 of the first fractional Laplacian in (1.2) but
the unique solution of the problem belongs to H2s2(Rd) and 0 < s1 < s2 < 1. The
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operator (−∆)s2 gives us |p|2s2 in the Fourier space, which is the lower order term
than |p|2s1 when the Fourier variable |p| is small enough and it will be used in the
estimates below. Let us turn our attention to the issue of the solvability in the sense
of sequences for our equation.

Theorem 1.2. Let n ∈ N and fn(x) : Rd → R, fn(x) ∈ L2(Rd), d ∈ N, so that
fn(x) → f(x) in L2(Rd) as n → ∞.

a) Let d = 1. If s1 ∈
(
0,

1

4

)
and in addition fn(x) ∈ L1(R), n ∈ N, so that

fn(x) → f(x) in L1(R) as n → ∞, then problems (1.2) and (1.3) have unique
solutions u(x) ∈ H2s2(R) and un(x) ∈ H2s2(R) respectively, so that un(x) → u(x)
in H2s2(R) as n → ∞.

Suppose that s1 ∈
[1
4
,
3

4

)
. Let in addition xfn(x) ∈ L1(R), n ∈ N, so that xfn(x) →

xf(x) in L1(R) as n → ∞ and the orthogonality relations

(1.10) (fn(x), 1)L2(R) = 0

are valid for all n ∈ N. Then problems (1.2) and (1.3) have unique solutions
u(x) ∈ H2s2(R) and un(x) ∈ H2s2(R) respectively, so that un(x) → u(x) in H2s2(R)
as n → ∞.

Suppose that s1 ∈
[3
4
, 1
)
. Let in addition x2fn(x) ∈ L1(R), n ∈ N, so that x2fn(x) →

x2f(x) in L1(R) as n → ∞ and the orthogonality relations

(1.11) (fn(x), 1)L2(R) = 0, (fn(x), x)L2(R) = 0

are valid for all n ∈ N. Then problems (1.2) and (1.3) possess unique solutions
u(x) ∈ H2s2(R) and un(x) ∈ H2s2(R) respectively, so that un(x) → u(x) in H2s2(R)
as n → ∞.

b) Let d = 2. If s1 ∈
(
0,

1

2

)
and additionally fn(x) ∈ L1(R2), n ∈ N, so that

fn(x) → f(x) in L1(R2) as n → ∞, then problems (1.2) and (1.3) admit unique
solutions u(x) ∈ H2s2(R2) and un(x) ∈ H2s2(R2) respectively, so that un(x) → u(x)
in H2s2(R2) as n → ∞.

Suppose that s1 ∈
[1
2
, 1
)
. Let in addition xfn(x) ∈ L1(R2), n ∈ N, so that xfn(x) →

xf(x) in L1(R2) as n → ∞ and the orthogonality conditions

(1.12) (fn(x), 1)L2(R2) = 0

are valid for all n ∈ N. Then problems (1.2) and (1.3) have unique solutions
u(x) ∈ H2s2(R2) and un(x) ∈ H2s2(R2) respectively, so that un(x) → u(x) in
H2s2(R2) as n → ∞.

c) Let d = 3. Suppose that s1 ∈
(
0,

3

4

)
and additionally fn(x) ∈ L1(R3), n ∈

N, so that fn(x) → f(x) in L1(R3) as n → ∞. Then equations (1.2) and (1.3)
admit unique solutions u(x) ∈ H2s2(R3) and un(x) ∈ H2s2(R3) respectively, so that
un(x) → u(x) in H2s2(R3) as n → ∞.
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Suppose that s1 ∈
[3
4
, 1
)
. Let in addition xfn(x) ∈ L1(R3), n ∈ N, so that xfn(x) →

xf(x) in L1(R3) as n → ∞ and the orthogonality conditions

(1.13) (fn(x), 1)L2(R3) = 0

are valid for all n ∈ N. Then equations (1.2) and (1.3) possess unique solutions
u(x) ∈ H2s2(R3) and un(x) ∈ H2s2(R3) respectively, so that un(x) → u(x) in
H2s2(R3) as n → ∞.
d) Let d ≥ 4 with s1 ∈ (0, 1) and additionally fn(x) ∈ L1(Rd), n ∈ N, so that
fn(x) → f(x) in L1(Rd) as n → ∞. Then problems (1.2) and (1.3) admit unique
solutions u(x) ∈ H2s2(Rd) and un(x) ∈ H2s2(Rd) respectively, so that un(x) → u(x)
in H2s2(Rd) as n → ∞.

Note that in the theorems above each of the cases a)− d) contains the situation
when the orthogonality relations are not required.

Let us use the hat symbol to denote the standard Fourier transform

(1.14) f̂(p) :=
1

(2π)
d
2

∫
Rd

f(x)e−ipxdx, p ∈ Rd, d ∈ N,

so that the inequality

(1.15) ∥f̂(p)∥L∞(Rd) ≤
1

(2π)
d
2

∥f(x)∥L1(Rd)

holds. The second part of the article is devoted to the studies of the equation

(1.16)
{
[−∆+ V (x)]s1 + [−∆+ V (x)]s2

}
u = f(x), x ∈ R3

with 0 < s1 < s2 < 1 and a square integrable right side. The corresponding sequence
of approximate equations for n ∈ N will be

(1.17)
{
[−∆+ V (x)]s1 + [−∆+ V (x)]s2

}
un = fn(x), x ∈ R3

with 0 < s1 < s2 < 1. Their square integrable right sides converge to the right side
of (1.16) in L2(R3) as n → ∞. We make the following technical assumptions on the
scalar potential involved in the problems above. Note that the conditions on V (x),
which is shallow and short-range will be analogous to those given in Assumption 1.1
of [25] (see also [24], [26]). The essential spectrum of such a Schrödinger operator
−∆+ V (x) fills the nonnegative semi-axis (see e.g. [12]).

Assumption 1.3. The potential function V (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ

with some δ > 0 and x = (x1, x2, x3) ∈ R3 a.e. and it is such that

(1.18) 4
1
9
9

8
(4π)−

2
3 ∥V ∥

1
9

L∞(R3)
∥V ∥

8
9

L
4
3 (R3)

< 1,
√
cHLS∥V ∥

L
3
2 (R3)

< 4π.
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Here C denotes a finite positive constant and cHLS given on p.98 of [14] is the
constant in the Hardy-Littlewood-Sobolev inequality∣∣∣ ∫

R3

∫
R3

f1(x)f1(y)

|x− y|2
dxdy

∣∣∣ ≤ cHLS∥f1∥2
L

3
2 (R3)

, f1 ∈ L
3
2 (R3).

By means of Lemma 2.3 of [25], under Assumption 1.3 above on the potential
function, the operator −∆+V (x) on L2(R3) is self-adjoint and unitarily equivalent
to −∆ via the wave operators (see [13], [19])

Ω± := s− limt→∓∞eit(−∆+V )eit∆,

where the limit is understood in the strong L2 sense (see e.g. [18] p.34, [6] p.90).
Therefore, the operator

(1.19) L = [−∆+ V (x)]s1 + [−∆+ V (x)]s2

in the left sides of equations (1.16) and (1.17) considered on L2(R3) defined via the
spectral calculus has only the essential spectrum

σess(L) = [0, ∞)

and no nontrivial L2(R3) eigenfunctions. By virtue of the spectral theorem, its
functions of the continuous spectrum satisfy

(1.20) Lφk(x) = (|k|2s1 + |k|2s2)φk(x), k ∈ R3,

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [18] p.98)

(1.21) φk(x) =
eikx

(2π)
3
2

− 1

4π

∫
R3

ei|k||x−y|

|x− y|
(V φk)(y)dy

and the orthogonality conditions

(1.22) (φk(x), φq(x))L2(R3) = δ(k − q), k, q ∈ R3.

In particular, when the vector k = 0, we have φ0(x). We denote the generalized
Fourier transform with respect to these functions using the tilde symbol as

(1.23) f̃(k) := (f(x), φk(x))L2(R3), k ∈ R3.

(1.23) is a unitary transform on L2(R3). We have

(1.24) [−∆+ V (x)]sf(x) :=

∫
R3

|k|2sf̃(k)φk(x)dk, 0 < s < 1

for f(x) ∈ L2(R3). The integral operator involved in (1.21) is being designated as

(Qφ)(x) := − 1

4π

∫
R3

ei|k||x−y|

|x− y|
(V φ)(y)dy, φ ∈ L∞(R3).

We consider Q : L∞(R3) → L∞(R3). Under Assumption 1.3, via Lemma 2.1 of [25]
the operator norm ∥Q∥∞ is bounded above by the expression I(V ), which is the left
side of the first inequality in (1.18), so that I(V ) < 1. Corollary 2.2 of [25] under
our conditions yields the bound

(1.25) |f̃(k)| ≤ 1

(2π)
3
2

1

1− I(V )
∥f(x)∥L1(R3).
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Our result concerning the solvability of problem (1.16) is as follows.

Theorem 1.4. Let Assumption 1.3 hold, the powers 0 < s1 < s2 < 1 and f(x) ∈
L2(R3).

1) Let s1 ∈
(
0,

3

4

)
and additionally f(x) ∈ L1(R3). Then equation (1.16) has a

unique solution u(x) ∈ L2(R3).

2) Let s1 ∈
[3
4
, 1
)
and in addition xf(x) ∈ L1(R3). Then problem (1.16) possesses

a unique solution u(x) ∈ L2(R3) if and only if the orthogonality relation

(1.26) (f(x), φ0(x))L2(R3) = 0

holds.

Our final main result is devoted to the solvability in the sense of sequences of
equation (1.16).

Theorem 1.5. Let Assumption 1.3 hold, n ∈ N, the powers 0 < s1 < s2 < 1 and
fn(x) ∈ L2(R3), such that fn(x) → f(x) in L2(R3) as n → ∞.

1) If s1 ∈
(
0,

3

4

)
and additionally fn(x) ∈ L1(R3), n ∈ N, such that fn(x) → f(x)

in L1(R3) as n → ∞, then equations (1.16) and (1.17) admit unique solutions
u(x) ∈ L2(R3) and un(x) ∈ L2(R3) respectively, such that un(x) → u(x) in L2(R3)
as n → ∞.

2) If s1 ∈
[3
4
, 1
)
and in addition xfn(x) ∈ L1(R3), n ∈ N, such that xfn(x) → xf(x)

in L1(R3) as n → ∞ and

(1.27) (fn(x), φ0(x))L2(R3) = 0

holds for all n ∈ N, then equations (1.16) and (1.17) have unique solutions u(x) ∈
L2(R3) and un(x) ∈ L2(R3) respectively, such that un(x) → u(x) in L2(R3) as
n → ∞.

Clearly, under the conditions of Theorem 1.5 stated above we have f(x) ∈ L2(R3),
in part 1) of this theorem f(x) ∈ L1(R3) and in part 2) we obtain xf(x) ∈ L1(R3).
Similarly, the conditions on the limiting function f(x) can be easily derived under
the assumptions of Theorem 1.2 above. Note that (1.26) and (1.27) are the orthog-
onality conditions to the function of the continuous spectrum of our Schrödinger
operator, as distinct from the Limiting Absorption Principle in which one needs to
orthogonalize to the standard Fourier harmonics (see e.g. Lemma 2.3 and Proposi-
tion 2.4 of [10]).

2. Solvability in the sense of sequences in the no potential case

Proof of Theorem 1.1. Evidently, if u(x) ∈ L2(Rd) is a solution of equation (1.2)
with a square integrable right side, it belongs to H2s2(Rd) as well. Indeed, if we
apply the standard Fourier transform (1.14) to both sides of (1.2), we arrive at

(|p|2s1 + |p|2s2)û(p) = f̂(p) ∈ L2(Rd),
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such that ∫
Rd

[|p|2s1 + |p|2s2 ]2|û(p)|2dp < ∞.

Using the trivial identity

∥(−∆)s2u∥2L2(Rd) =

∫
Rd

|p|4s2 |û(p)|2dp < ∞,

we easily deduce that (−∆)s2u(x) ∈ L2(Rd), so that via norm definition (1.5) we
obtain that u(x) ∈ H2s2(Rd) as well.

To establish the uniqueness of solutions for our problem, let us suppose that
(1.2) admits two solutions u1(x), u2(x) ∈ H2s2(Rd). Then their difference w(x) :=
u1(x)− u2(x) ∈ H2s2(Rd) as well. Evidently, it satisfies the equation

[(−∆)s1 + (−∆)s2 ]w = 0.

Because the operator l : H2s2(Rd) → L2(Rd) does not have any nontrivial zero
modes, w(x) vanishes in Rd.

Let us apply the standard Fourier transform (1.14) to both sides of equation
(1.2). This yields

(2.1) û(p) =
f̂(p)

|p|2s1 + |p|2s2
χ{|p|≤1} +

f̂(p)

|p|2s1 + |p|2s2
χ{|p|>1}.

Here and throughout the article χA will stand for the characteristic function of a set
A ⊆ Rd. Evidently, the second term in the right side of (2.1) can be estimated from

above in the absolute value by
|f̂(p)|
2

∈ L2(Rd) via the one of our assumptions.

Let us first consider the case a) of our theorem when the dimension of the problem
d = 1. We easily obtain the upper bound on the first term in the right side of (2.1)

in the absolute value using (1.15) by
∥f(x)∥L1(R)√

2π|p|2s1
χ{|p|≤1}. It can be easily verified

that this expression belongs to L2(R) if s1 ∈
(
0,

1

4

)
.

To treat our problem in the situation when s1 ∈
[1
4
,
3

4

)
, we use that

f̂(p) = f̂(0) +

∫ p

0

df(q)

dq
dq.

This allows us to express the first term in the right side of (2.1) as

(2.2)
f̂(0)

|p|2s1 + |p|2s2
χ{|p|≤1} +

∫ p
0

df̂(q)
dq dq

|p|2s1 + |p|2s2
χ{|p|≤1}.

By virtue of the definition of the standard Fourier transform (1.14), we easily derive
that

(2.3)

∣∣∣∣∣df̂(p)dp

∣∣∣∣∣ ≤ 1√
2π

∥xf(x)∥L1(R)
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and similarly for the space of an arbitrary dimension d ∈ N, d ≥ 2

(2.4)

∣∣∣∣∣∂f̂(p)∂|p|

∣∣∣∣∣ ≤ ∥xf(x)∥L1(Rd)

(2π)
d
2

.

Hence, the second term in (2.2) can be estimated from above in the absolute value
by

∥xf(x)∥L1(R)√
2π

|p|1−2s1χ{|p|≤1} ∈ L2(R).

It can be easily checked that the first term in (2.2) is square integrable if and only

if f̂(0) = 0. This is equivalent to orthogonality condition (1.6).
Finally, for the dimension of the problem d = 1, it remains to investigate the

situation when s1 ∈

[
3

4
, 1

)
. For that purpose, we represent

f̂(p) = f̂(0) + p
df̂

dp
(0) +

∫ p

0

(∫ r

0

d2f̂(q)

dq2
dq

)
dr.

This enables us to write the first term in the right side of (2.1) as

(2.5)

[
f̂(0)

|p|2s1 + |p|2s2
+

pdf̂
dp (0)

|p|2s1 + |p|2s2
+

∫ p
0

( ∫ r
0

d2f̂(q)
dq2

dq
)
dr

|p|2s1 + |p|2s2

]
χ{|p|≤1}.

Definition (1.14) gives us∣∣∣∣∣d2f̂(p)dp2

∣∣∣∣∣ ≤ 1√
2π

∥x2f(x)∥L1(R) < ∞

as assumed. This allows us to estimate∣∣∣∣∣
∫ p
0

( ∫ r
0

d2f̂(q)
dq2

dq
)
dr

|p|2s1 + |p|2s2
χ{|p|≤1}

∣∣∣∣∣ ≤ 1

2
√
2π

∥x2f(x)∥L1(R)|p|2−2s1χ{|p|≤1}

∈ L2(R).

By means of formula (1.14), we have

f̂(0) =
1√
2π

(f(x), 1)L2(R),
df̂

dp
(0) = − i√

2π
(f(x), x)L2(R),

such that the sum of the first two terms in (2.5) can be written as

(2.6)

[
(f(x), 1)L2(R)√
2π(|p|2s1 + |p|2s2)

−
ip(f(x), x)L2(R)√
2π(|p|2s1 + |p|2s2)

]
χ{|p|≤1}.

It can be easily verified that expression (2.6) belongs to L2(R) if and only if orthog-
onality conditions (1.6) and (1.7) hold.
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Then we consider the case b) of our theorem when the dimension of the problem
d = 2. We easily estimate the first term in the right side of (2.1) from above in the
absolute value using (1.15) by

∥f(x)∥L1(R2)

2π|p|2s1
χ{|p|≤1} ∈ L2(R2)

for s1 ∈

(
0,

1

2

)
.

To treat the situation when s1 ∈

[
1

2
, 1

)
, we use the identity

(2.7) f̂(p) = f̂(0) +

∫ |p|

0

∂f̂(q, σ)

∂q
dq.

Here and further down σ will stand for the angle variables on the sphere. This
allows us to express the first term in the right side of (2.1) as

(2.8)
f̂(0)

|p|2s1 + |p|2s2
χ{|p|≤1} +

∫ |p|
0

∂f̂(q,σ)
∂q dq

|p|2s1 + |p|2s2
χ{|p|≤1}.

The second term in (2.8) can be easily bounded from above in the absolute value
using inequality (2.4) by

∥xf(x)∥L1(R2)

2π
|p|1−2s1χ{|p|≤1} ∈ L2(R2).

It can be checked that the first term in (2.8) belongs to L2(R2) if and only if

f̂(0) = 0. This is equivalent to orthogonality condition (1.8).
Let us turn our attention to the case c) of the theorem. We estimate the first

term in the right side of (2.1) from above in the absolute value via (1.15) by
∥f(x)∥L1(R3)

(2π)
3
2 |p|2s1

χ{|p|≤1}. It can be easily verified that this expression is square in-

tegrable in R3 for s1 ∈

(
0,

3

4

)
.

If s1 ∈

[
3

4
, 1

)
, we will use the analog of formula (2.7) in the space of three

dimensions, such that the first term in the right side of (2.1) is given by the analog
of (2.8). By means of (2.4), we derive∣∣∣∣∣

∫ |p|
0

∂f̂(q,σ)
∂q dq

|p|2s1 + |p|2s2
χ{|p|≤1}

∣∣∣∣∣ ≤ ∥xf(x)∥L1(R3)

(2π)
3
2

|p|1−2s1χ{|p|≤1} ∈ L2(R3).

It turns out that
f̂(0)

|p|2s1 + |p|2s2
χ{|p|≤1} ∈ L2(R3)

if and only if f̂(0) vanishes. This is equivalent to orthogonality relation (1.9).
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We conclude the proof of the theorem by considering the case d) when the di-
mension of the problem d ≥ 4. Let us obtain the upper bound on the first term in
the right side of (2.1) in the absolute value using (1.15) by

∥f(x)∥L1(Rd)

(2π)
d
2 |p|2s1

χ{|p|≤1} ∈ L2(Rd)

for s1 ∈ (0, 1). □

We proceed to establishing the solvability in the sense of sequences for our prob-
lem in the no potential case.

Proof of Theorem 1.2. Suppose u(x) and un(x), n ∈ N are the unique solutions of
problems (1.2) and (1.3) in H2s2(Rd), d ∈ N respectively, 0 < s1 < s2 < 1 and it is
known that un(x) → u(x) in L2(Rd) as n → ∞. Then un(x) → u(x) in H2s2(Rd)
as n → ∞ as well. Indeed,

[(−∆)s1 + (−∆)s2 ](un(x)− u(x)) = fn(x)− f(x).

Using the standard Fourier transform (1.14), we easily obtain

∥(−∆)s2(un(x)− u(x))∥L2(Rd) ≤ ∥fn(x)− f(x)∥L2(Rd) → 0, n → ∞

as assumed. Norm definition (1.5) implies that un(x) → u(x) inH2s2(Rd) as n → ∞.
If u(x) and un(x), n ∈ N are the unique solutions of equations (1.2) and (1.3) in
H2s2(Rd), d ∈ N respectively, by applying the standard Fourier transform (1.14)
we easily obtain

(2.9) ûn(p)− û(p) =
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|≤1} +

f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|>1}.

Obviously, the second term in the right side of identity (2.9) can be bounded from
above in the absolute value in the space of any dimension by

|f̂n(p)− f̂(p)|
2

.

Hence ∥∥∥∥∥ f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|>1}

∥∥∥∥∥
L2(Rd)

≤
∥fn(x)− f(x)∥L2(Rd)

2
→ 0, n → ∞

via the one of our assumptions.
Let us first consider the case a) of our theorem when the dimension of the prob-

lem d = 1. Then, if s1 ∈
(
0,

1

4

)
by means of the part a) of Theorem 1.1, prob-

lem (1.2) and each of equations (1.3) have unique solutions u(x) ∈ H2s2(R) and
un(x) ∈ H2s2(R), n ∈ N respectively. Evidently, the first term in the right
side of (2.9) can be estimated from above in the absolute value using (1.15) by
1√
2π

∥fn(x)− f(x)∥L1(R)
χ{|p|≤1}

|p|2s1
, so that its L2(R) norm can be bounded from

above by
1√
π
∥fn(x)− f(x)∥L1(R)

1√
1− 4s1

→ 0, n → ∞
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as assumed if s1 ∈
(
0,

1

4

)
. Therefore, in this case un(x) → u(x) in L2(R) as n → ∞.

Then we turn our attention to the situation when s1 ∈
[1
4
,
3

4

)
in dimension d = 1.

Note that by virtue of the parts a) and b) of Lemma 4.1 of [32], under the given
conditions, we have fn(x) ∈ L1(R), n ∈ N, so that fn(x) → f(x) in L1(R) as
n → ∞. Then, by means of (1.10) we derive

|(f(x), 1)L2(R)| = |(f(x)− fn(x), 1)L2(R)| ≤ ∥fn(x)− f(x)∥L1(R) → 0

as n → ∞. Hence,

(2.10) (f(x), 1)L2(R) = 0

is valid. By virtue of the part a) of Theorem 1.1, when s1 ∈
[1
4
,
3

4

)
, problems

(1.2) and (1.3) have unique solutions u(x), un(x) ∈ H2s2(R), n ∈ N respectively.
Orthogonality conditions (2.10) and (1.10) imply that

f̂(0) = 0, f̂n(0) = 0, n ∈ N
in our case. This enables us to express

f̂(p) =

∫ p

0

df̂(q)

dq
dq, f̂n(p) =

∫ p

0

df̂n(q)

dq
dq, n ∈ N,

which allows us to write the first term in the right side of formula (2.9) as

(2.11)

∫ p
0

(
df̂n(q)
dq − df̂(q)

dq

)
dq

|p|2s1 + |p|2s2
χ{|p|≤1}.

Using (2.3), we obtain the inequality

(2.12)

∣∣∣∣∣df̂n(p)dp
− df̂(p)

dp

∣∣∣∣∣ ≤ 1√
2π

∥xfn(x)− xf(x)∥L1(R).

Then expression (2.11) can be estimated from above in the absolute value by

1√
2π

∥xfn(x)− xf(x)∥L1(R)|p|1−2s1χ{|p|≤1}.

Thus, we derive∥∥∥∥∥
∫ p
0

(
df̂n(q)
dq − df̂(q)

dq

)
dq

|p|2s1 + |p|2s2
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ 1√
π(3− 4s1)

∥xfn(x)− xf(x)∥L1(R)

→ 0

as n → ∞ as assumed. Therefore,

un(x) → u(x) in L2(R), n → ∞

when the dimension of the problem d = 1 and s1 ∈
[1
4
,
3

4

)
.

Let us proceed to the proof of our theorem when s1 ∈
[3
4
, 1
)

and d = 1. By

virtue of the parts c) and d) of Lemma 4.1 of [32] under the given conditions we
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have xfn(x) ∈ L1(R), n ∈ N, so that xfn(x) → xf(x) in L1(R) as n → ∞. Then by
means of the parts a) and b) of Lemma 4.1 of [32] we have fn(x) ∈ L1(R), n ∈ N,
so that fn(x) → f(x) in L1(R) as n → ∞. Orthogonality relation (2.10) here can
be easily derived using the limiting argument as above. By virtue of the second
orthogonality condition in (1.11), we arrive at

|(f(x), x)L2(R)| = |(f(x)− fn(x), x)L2(R)| ≤ ∥xfn(x)− xf(x)∥L1(R) → 0

as n → ∞. Thus,

(2.13) (f(x), x)L2(R) = 0

is valid. By means of the part a) of Theorem 1.1, if s1 ∈
[3
4
, 1
)
, problems (1.2) and

(1.3) admit unique solutions u(x), un(x) ∈ H2s2(R), n ∈ N respectively. Definition
of the standard Fourier transform (1.14) along with orthogonality conditions (2.10),
(1.11) and (2.13) imply that for n ∈ N

f̂(0) = 0, f̂n(0) = 0,
df̂

dp
(0) = 0,

df̂n

dp
(0) = 0,

so that

f̂(p) =

∫ p

0

(∫ r

0

d2f̂(q)

dq2
dq

)
dr, f̂n(p) =

∫ p

0

(∫ r

0

d2f̂n(q)

dq2
dq

)
dr, n ∈ N.

From definition (1.14) we easily obtain the inequality∣∣∣∣∣d2f̂n(p)

dp2
− d2f̂(p)

dp2

∣∣∣∣∣ ≤ 1√
2π

∥x2fn(x)− x2f(x)∥L1(R).

This yields the upper bound

|f̂n(p)− f̂(p)| ≤ 1√
2π

∥x2fn(x)− x2f(x)∥L1(R)
p2

2
,

which enables us to derive the estimate from above on the absolute value of the first
term in the right side of equality (2.9) by

1

2
√
2π

∥x2fn(x)− x2f(x)∥L1(R)|p|2−2s1χ{|p|≤1}.

Thus,∥∥∥∥∥ f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ 1

2
√
π(5− 4s1)

∥x2fn(x)− x2f(x)∥L1(R) → 0

when n → ∞ as assumed. Therefore,

un(x) → u(x) in L2(R), n → ∞

when the dimension d = 1 and s1 ∈
[3
4
, 1
)
.

In the situation when the dimension d = 2, we first treat the case of s1 ∈
(
0,

1

2

)
.

By means of the part b) of Theorem 1.1, equation (1.2) and each of equations (1.3)
admit unique solutions u(x) ∈ H2s2(R2) and un(x) ∈ H2s2(R2), n ∈ N respectively.
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Evidently, the first term in the right side of (2.9) can be bounded from above in

the absolute value via (1.15) by
1

2π
∥fn(x)− f(x)∥L1(R2)

χ{|p|≤1}

|p|2s1
, so that its L2(R2)

norm can be estimated from above by

1

2
√
π(1− 2s1)

∥fn(x)− f(x)∥L1(R2) → 0, n → ∞

due to the one of our assumptions in the space of two dimensions with s1 ∈
(
0,

1

2

)
.

Hence, in this case

un(x) → u(x) in L2(R2), n → ∞.

For the values of the power of the two dimensional negative Laplacian s1 ∈
[1
2
, 1
)
,

the orthogonality condition

(2.14) (f(x), 1)L2(R2) = 0

can be obtained via the simple limiting argument, analogously to (2.10). Note that
under the given conditions we have fn(x) ∈ L1(R2), n ∈ N and fn(x) → f(x) in
L1(R2) as n → ∞ by virtue of the parts a) and b) of Lemma 4.1 of [32]. By means of
the part b) of Theorem 1.1, equations (1.2) and (1.3) have unique solutions u(x) ∈
H2s2(R2) and un(x) ∈ H2s2(R2), n ∈ N respectively. Orthogonality conditions
(2.14) and (1.12) give us

f̂(0) = 0, f̂n(0) = 0, n ∈ N

in the space of two dimensions with s1 ∈
[1
2
, 1
)
. This allows us to express

(2.15) f̂(p) =

∫ |p|

0

∂f̂(q, σ)

∂q
dq, f̂n(p) =

∫ |p|

0

∂f̂n(q, σ)

∂q
dq, n ∈ N.

Let us write the first term in the right side of formula (2.9) as

(2.16)

∫ |p|
0

(
∂f̂n(q,σ)

∂q − ∂f̂(q,σ)
∂q

)
dq

|p|2s1 + |p|2s2
χ{|p|≤1}.

Inequality (2.4) yields

(2.17)

∣∣∣∣∣∂f̂n(p)∂|p|
− ∂f̂(p)

∂|p|

∣∣∣∣∣ ≤ 1

2π
∥xfn(x)− xf(x)∥L1(R2).

Hence, expression (2.16) can be estimated from above in the absolute value by

1

2π
∥xfn(x)− xf(x)∥L1(R2)|p|1−2s1χ{|p|≤1}.

Thus,∥∥∥∥∥
∫ |p|
0

(
∂f̂n(q,σ)

∂q − ∂f̂(q,σ)
∂q

)
dq

|p|2s1 + |p|2s2
χ{|p|≤1}

∥∥∥∥∥
L2(R2)

≤
∥xfn(x)− xf(x)∥L1(R2)

2
√
2π(1− s1)

→ 0
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as n → ∞ by means of the one of our assumptions. Therefore,

un(x) → u(x) in L2(R2), n → ∞

in the space of two dimensions with s1 ∈
[1
2
, 1
)
.

We proceed to the proof of the part c) of our theorem, when the dimension d = 3

and s1 ∈
(
0,

3

4

)
. In this case, by virtue of the part c) of Theorem 1.1, equations (1.2)

and (1.3) admit unique solutions u(x) ∈ H2s2(R3) and un(x) ∈ H2s2(R3), n ∈ N
respectively. Using (1.15), we derive the estimate from above in the absolute value
on the first term in the right side of (2.9) by

∥fn(x)− f(x)∥L1(R3)

(2π)
3
2 |p|2s1

χ{|p|≤1},

so that its L2(R3) norm can be bounded from above by

1

π
√
2(3− 4s1)

∥fn(x)− f(x)∥L1(R3) → 0, n → ∞

via the one of the given conditions. Therefore,

un(x) → u(x) in L2(R3), n → ∞

in the situation when the dimension d = 3 with s1 ∈
(
0,

3

4

)
.

For the higher values of the power of the three dimensional negative Laplacian

s1 ∈
[3
4
, 1
)
, we have fn(x) ∈ L1(R3), n ∈ N, such that fn(x) → f(x) in L1(R3) as

n → ∞ by means of the parts a) and b) of Lemma 4.1 of [32]. Then the orthogonality
relation

(2.18) (f(x), 1)L2(R3) = 0

can be derived via the simple limiting argument, similarly to (2.10). By virtue of
the part c) of Theorem 1.1, problems (1.2) and (1.3) admit unique solutions u(x) ∈
H2s2(R3) and un(x) ∈ H2s2(R3), n ∈ N respectively. Orthogonality conditions
(2.18) and (1.13) give us

f̂(0) = 0, f̂n(0) = 0, n ∈ N

when the dimension d = 3 and s1 ∈
[3
4
, 1
)
. This enables us to derive here the

expressions analogous to (2.15). We use the three dimensional analog of inequality
(2.17) to obtain the estimate from above on the first term in the right side of (2.9)
in the absolute value by

∥xfn(x)− xf(x)∥L1(R3)

(2π)
3
2

|p|1−2s1χ{|p|≤1},

so that its L2(R3) norm can be bounded from above by

1

π
√

2(5− 4s1)
∥xfn(x)− xf(x)∥L1(R3) → 0, n → ∞
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as assumed. Therefore,

un(x) → u(x) in L2(R3), n → ∞

in the situation when the dimension d = 3 and s1 ∈
[3
4
, 1
)
.

Let us turn our attention to the case d) of the theorem. By means of the part d)
of Theorem 1.1 problems (1.2) and (1.3) possess unique solutions u(x) ∈ H2s2(Rd)
and un(x) ∈ H2s2(Rd), n ∈ N respectively. Using inequality (1.15), we obtain the
upper bound on the first term in the right side of (2.9) in the absolute value by

∥fn(x)− f(x)∥L1(Rd)

(2π)
d
2 |p|2s1

χ{|p|≤1}, d ≥ 4,

so that its L2(Rd) norm can be estimated from above by

1

(2π)
d
2

√
|Sd|

d− 4s1
∥fn(x)− f(x)∥L1(Rd) → 0, n → ∞

by means of the one of our assumptions. Here Sd stands for the unit sphere centered
at the origin in our space of d dimensions and |Sd| for its Lebesgue measure. Thus,

un(x) → u(x) in L2(Rd), d ≥ 4, n → ∞

with s1 ∈ (0, 1). □

3. Solvability in the sense of sequences with a scalar potential

Proof of Theorem 1.4. To establish the uniqueness of solutions for our problem, we
suppose that there exist both u1(x) and u2(x) which are square integrable in R3

and satisfy (1.16). Then their difference w(x) := u1(x)− u2(x) ∈ L2(R3) solves the
equation

Lw = 0.

The fact that the operator L defined in (1.19) has no nontrivial L2(R3) zero modes
as discussed above implies that w(x) vanishes a.e. in R3.

We apply the generalized Fourier transform (1.23) with the functions of the con-
tinuous spectrum of our Schrödinger operator to both sides of equation (1.16). This
gives us

(3.1) ũ(k) =
f̃(k)

|k|2s1 + |k|2s2
χ{|k|≤1} +

f̃(k)

|k|2s1 + |k|2s2
χ{|k|>1}.

The second term in the right side of (3.1) can be easily bounded from above in the
absolute value as ∣∣∣∣∣ f̃(k)

|k|2s1 + |k|2s2
χ{|k|>1}

∣∣∣∣∣ ≤ |f̃(k)|
2

∈ L2(R3)

due to the one of our assumptions. Let us first discuss the case when 0 < s1 <
3

4
.

Then the first term in the right side of (3.1) can be estimated from above in the
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absolute value via inequality (1.25) as∣∣∣∣∣ f̃(k)

|k|2s1 + |k|2s2
χ{|k|≤1}

∣∣∣∣∣ ≤ 1

(2π)
3
2

1

1− I(V )
∥f(x)∥L1(R3)

χ{|k|≤1}

|k|2s1
∈ L2(R3).

This completes the proof of part 1) of the theorem. We conclude the argument by

considering the case when the power
3

4
≤ s1 < 1. Let us express

f̃(k) = f̃(0) +

∫ |k|

0

∂f̃(q, σ)

∂q
dq.

Here

f̃(0) = (f(x), φ0(x))L2(R3).

Therefore, the first term in the right side of (3.1) can be written as

(3.2)
f̃(0)

|k|2s1 + |k|2s2
χ{|k|≤1} +

∫ |k|
0

∂f̃(q,σ)
∂q dq

|k|2s1 + |k|2s2
χ{|k|≤1}.

Obviously, the second term in sum (3.2) can be easily bounded above in the absolute
value as∣∣∣∣∣

∫ |k|
0

∂f̃(q,σ)
∂q dq

|k|2s1 + |k|2s2
χ{|k|≤1}

∣∣∣∣∣ ≤ ∥∇qf̃(q)∥L∞(R3)|k|1−2s1χ{|k|≤1} ∈ L2(R3).

Note that under the given assumptions ∇qf̃(q) ∈ L∞(R3) via Lemma 2.4 of [25].
Thus, it remains to analyze the term

(3.3)
f̃(0)

|k|2s1 + |k|2s2
χ{|k|≤1}.

It can be easily checked that (3.3) is square integrable if and only if f̃(0) vanishes.
This is equivalent to orthogonality condition (1.26). □

Let us turn our attention to the establishing of our final main statement dealing
with the solvability in the sense of sequences.

Proof of Theorem 1.5. Evidently, each problem (1.17) admits a unique solution
un(x) ∈ L2(R3), n ∈ N via the result of Theorem 1.4 above. It can be easily
checked that in case 2) of the theorem the limiting orthogonality condition

(3.4) (f(x), φ0(x))L2(R3) = 0

is valid. Indeed, by virtue of (1.27) along with inequality (1.25)

|(f(x), φ0(x))L2(R3)| = |(f(x)− fn(x), φ0(x))L2(R3)| ≤

≤ 1

(2π)
3
2

1

1− I(V )
∥fn(x)− f(x)∥L1(R3) → 0, n → ∞.

Note that via the assumptions of part 2) of our theorem we have fn(x) ∈ L1(R3), so
that fn(x) → f(x) in L1(R3) as n → ∞ by means of the parts a) and b) of Lemma
4.1 of [32]. Thus, in both cases of the theorem, limiting problem (1.16) has a unique
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solution u(x) ∈ L2(R3) due to the result of Theorem 1.4. We apply the generalized
Fourier transform (1.23) to both sides of equation (1.17). This yields

ũn(k) =
f̃n(k)

|k|2s1 + |k|2s2
, n ∈ N,

such that

(3.5) ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

|k|2s1 + |k|2s2
χ{|k|≤1} +

f̃n(k)− f̃(k)

|k|2s1 + |k|2s2
χ{|k|>1}.

Evidently, the second term in the right side of (3.5) can be easily bounded from

above in the absolute value by
|f̃n(k)− f̃(k)|

2
. Thus,∥∥∥∥∥ f̃n(k)− f̃(k)

|k|2s1 + |k|2s2
χ{|k|>1}

∥∥∥∥∥
L2(R3)

≤ 1

2
∥fn(x)− f(x)∥L2(R3) → 0, n → ∞

as assumed. First we consider the case when 0 < s1 <
3

4
. (1.25) gives us

|f̃n(k)− f̃(k)| ≤ 1

(2π)
3
2

1

1− I(V )
∥fn(x)− f(x)∥L1(R3).

Hence, we derive the estimate from above for the first term in the right side of (3.5)
in the absolute value as∣∣∣∣∣ f̃n(k)− f̃(k)

|k|2s1 + |k|2s2
χ{|k|≤1}

∣∣∣∣∣ ≤ 1

(2π)
3
2

1

1− I(V )
∥fn(x)− f(x)∥L1(R3)

χ{|k|≤1}

|k|2s1
.

Clearly, this implies∥∥∥∥∥ f̃n(k)− f̃(k)

|k|2s1 + |k|2s2
χ{|k|≤1}

∥∥∥∥∥
L2(R3)

≤ 1√
2π

1

1− I(V )

∥fn(x)− f(x)∥L1(R3)√
3− 4s1

→ 0

as n → ∞ as assumed. Thus, un(x) → u(x) in L2(R3) as n → ∞ in the situation

when s1 ∈
(
0,

3

4

)
.

Let us turn our attention to the case when s1 ∈
[3
4
, 1
)
. As discussed above,

it is sufficient to consider the first term in the right side of (3.5). Orthogonality
conditions (3.4) and (1.27) imply that

f̃(0) = 0, f̃n(0) = 0, n ∈ N,

so that

f̃(k) =

∫ |k|

0

∂f̃(q, σ)

∂q
dq, f̃n(k) =

∫ |k|

0

∂f̃n(q, σ)

∂q
dq, n ∈ N.

This allows us to express the first term in the right side of (3.5) as∫ |k|
0

[
∂f̃n(q,σ)

∂q − ∂f̃(q,σ)
∂q

]
dq

|k|2s1 + |k|2s2
χ{|k|≤1},
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which can be easily bounded from above in the absolute value by

∥∇q[f̃n(q)− f̃(q)]∥L∞(R3)|k|1−2s1χ{|k|≤1}.

Hence, ∥∥∥∥∥ f̃n(k)− f̃(k)

|k|2s1 + |k|2s2
χ{|k|≤1}

∥∥∥∥∥
L2(R3)

≤ ∥∇q[f̃n(q)− f̃(q)]∥L∞(R3)
2
√
π√

5− 4s1
.

By virtue of the result of Lemma 3.4 of [23] under the stated assumptions we have

∥∇q[f̃n(q)− f̃(q)]∥L∞(R3) → 0, n → ∞,

which completes the proof of our theorem. □
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