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where 0 < q < 1, f ≥ 0 is a Borel measurable function, and σ ∈ M+(Ω), the cone
of locally finite Radon measures in Ω. (The class of finite Radon measures, with
∥µ∥ := µ(Ω) < ∞, is denoted by M+

b (Ω).)
Here Ω is a locally compact Hausdorff space with countable base, and G is a

linear integral operator with nonnegative kernel G on Ω,

Gσf(x) = G(f dσ)(x) :=

∫
Ω
G(x, y) f(y)dσ(y), x ∈ Ω,

where f ∈ L1
loc(Ω, σ). If f ≡ 1, we use the notation

Gσ(x) :=

∫
Ω
G(x, y) dσ(y), x ∈ Ω,

for the linear G-potential of σ ∈ M+(Ω).
Throughout this paper, we use the following conventions imposed on the kernels

G.

Definition 1.1. A kernel G on Ω is understood to be a lower semicontinuous
function G : Ω × Ω → [0,+∞]. A kernel G is said to be positive if G(x, y) > 0 for
all x, y ∈ Ω.

We observe that, for equations (1.1), the sublinear case 0 < q < 1 is quite
different both from the linear case q = 1 and the superlinear case q > 1, treated, for
instance, in [10] and [20], respectively. In particular, when 0 < q < 1, no “smallness”
assumptions on σ are needed in order for a nontrivial solution u to exist. Moreover,
in contrast to the case q ≥ 1, nontrivial solutions to the homogeneous equations
(f = 0) are treated similarly to non-homogeneous equations (f ̸= 0).

For quasi-metric kernels, or more general quasi-metrically modifiable kernels dis-
cussed below (see also [10], [17], [20]), we obtain matching bilateral pointwise esti-
mates of solutions u to (1.1).

Definition 1.2. A positive kernel G on Ω is said to be quasi-metric, with quasi-
metric constant κ ≥ 1

2 , if G is symmetric, i.e., G(x, y) = G(y, x) for all x, y ∈ Ω,

and d(x, y) := 1
G(x,y) satisfies the quasi-triangle inequality

(1.2) d(x, y) ≤ κ[d(x, z) + d(z, y)], ∀x, y, z ∈ Ω.

Important examples of quasi-metric kernels include Riesz kernels of order α (0 <
α < n), Iα(x, y) = c(α, n)|x−y|α−n, i.e., Green’s kernels of the fractional Laplacian

(−∆)
α
2 , on the entire Euclidean space Rn (n ≥ 1), as well as Green’s kernels of

the Laplace–Beltrami operator on complete, non-compact Riemannian manifolds
M with nonnegative Ricci curvature (see, e.g., [15]).

The restriction that G is symmetric in Definition 1.2 can be relaxed.

Definition 1.3. A kernel G on Ω is said to be quasi-symmetric (QS), with quasi-
symmetry constant a ≥ 1, if

(1.3) a−1G(y, x) ≤ G(x, y) ≤ aG(y, x), ∀x, y ∈ Ω.

The quasi-symmetry condition (1.3) is often used below in combination with a
weak version of the maximum principle.
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Definition 1.4. A kernel G on Ω satisfies the weak maximum principle (WMP),
with constant b ≥ 1, if

(1.4) Gµ(x) ≤ 1, ∀x ∈ Sµ =⇒ Gµ(x) ≤ b, ∀x ∈ Ω,

for any µ ∈ M+(Ω), where Sµ denotes the closed support of µ.

When b = 1, the kernel G is said to satisfy the (Frostman) maximum principle.

Remark 1.5. Quasi-metric kernels are known to satisfy the (WMP) with constant
b = 2κ (see [34, Lemma 2.1]).

Some of the results for sublinear problems (1.1) hold for quasi-metric kernels.
In particular, bilateral pointwise estimates of solutions to (1.1) are given in terms
of the linear potentials Gσ and G(f dσ), as well as certain “intrinsic” nonlinear
potentials Kσ defined below, which depend on q ∈ (0, 1).

Nonlinear potential estimates lead to the existence criteria for all solutions (pos-
sibly unbounded) to (1.1). They complement earlier results on the existence of
positive solutions u ∈ Lq(Ω, σ) (globally) in the homogeneous case f = 0, which
were based on a sublinear version of Schur’s lemma for (QS)&(WMP) kernels G
obtained in [30].

Bilateral pointwise estimates also yield uniqueness of solutions to (1.1) in the
sublinear case (0 < q < 1). We observe that the uniqueness property may fail when
q ≥ 1.

More generally, we consider quasi-metrically modifiable kernels G.

Definition 1.6. A positive kernel G is said to be quasi-metrically modifiable, with
modifier m ∈ C(Ω), m > 0, if the modified kernel

(1.5) G̃(x, y) :=
G(x, y)

m(x)m(y)
, x, y ∈ Ω,

is quasi-metric, with quasi-metric constant κ̃.

A typical modifier for G is given by

(1.6) g(x) := min{1, G(x, x0)}, x ∈ Ω,

where x0 ∈ Ω is a fixed pole, provided g ∈ C(Ω).
Quasi-metrically modifiable kernels have numerous applications to semi-linear

elliptic PDE in domains Ω with a positive Green’s function G, treated in the next
section (see also [10], [11], [12], [16], [17], [30]).

We will discuss sharp lower estimates of (super) solutions, together with matching
upper estimates of (sub) solutions, to equation (1.1), for quasi-metric, or quasi-
metrically modifiable kernels, obtained in [34, Theorem 1.2]. As we will see below,
lower estimates actually hold for (QS)&(WMP) kernels.

1.2. Semilinear elliptic equations. Main applications of the results obtained for
(1.1) are concerned with sublinear elliptic equations of the type

(1.7)

{
(−∆)

α
2 u = σuq + µ, u > 0 in Ω,

u = 0 in Ωc,
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where 0 < q < 1, 0 < α < n, and µ, σ ∈ M+(Ω), in a wide class of domains Ω in
Rn, or a Riemannian manifold, with Green’s function G.

If (−∆)
α
2 has a positive Green’s function G in Ω, then applying Green’s operator

G to both sides, we obtain an equivalent problem where solutions u satisfy the
integral equation (1.1) with f = Gµ. If α = 2, such solutions u to (1.7) in bounded
C2-domains Ω coincide with the so-called very weak solutions (see [25]).

Semilinear elliptic equations of this type have been extensively studied, especially
in the classical case α = 2, in bounded smooth domains Ω and on Rn, for bounded
solutions u, under substantial restrictions on the coefficients and data (see [4], [7],
[23, Sec. 7.2.6], and the literature cited there).

On the entire space Rn, sharp existence and uniqueness results were obtained by
Brezis and Kamin [6] for bounded solutions u > 0 to the equation −∆u = σuq. The
proof of the uniqueness property given in [6] under the assumption lim inf

x→∞
u(x) = 0 is

especially delicate. (Several simpler proofs are given in [6] under the more restrictive
condition lim

x→∞
u(x) = 0.) Pointwise estimates of bounded entire solutions given in

[6] have a gap between the lower and upper bounds.
Matching bilateral pointwise estimates were given recently in [33], [34] for all

solutions u ∈ Lq
loc(Ω, σ) to (1.7), with arbitrary µ, σ ∈ M+(Ω). As a consequence,

the uniqueness problem was solved, and sharp existence criteria were given for such
solutions, in a certain class of bounded domains Ω ⊂ Rn for 0 < α ≤ 2, and on the
entire space Rn for 0 < α < n, as well as on complete, non-compact Riemannian
manifolds M with nonnegative Ricci curvature (see [15]).

More precisely, for (−∆)
α
2 , with 0 < α ≤ 2 (α < n) in bounded uniform domains

Ω ⊂ Rn, along with α = n = 2 in finitely connected domains Ω ⊂ R2, Green’s
kernels are known to be quasi-metrically modifiable (see [17], and the literature
cited there). Hence, the general results for (1.1) are applicable to all solutions of
(1.7) in these cases.

When 0 < α < n, we can treat equations (1.7) for “nice” domains Ω, such as the

balls or half-spaces, where Green’s kernel of (−∆)
α
2 is known to be quasi-metrically

modifiable (see [10]).
On the entire space Ω = Rn, the Green kernel, i.e., the Newtonian kernel if α = 2,

n ≥ 3, and Riesz kernels of order α if 0 < α < n, are quasi-metric. Equations (1.7)
in this case were treated earlier in [8] (existence and bilateral pointwise estimates for
minimal solutions). More complete results, including bilateral pointwise estimates
for all solutions, and consequently uniqueness of solutions, were obtained subse-
quently in [33] on Rn, and in [34] for general quasi-metrically modifiable Green’s
kernels on Ω.

1.3. Quasilinear elliptic equations. We will also present analogous nonlinear
potential estimates, as well as existence and uniqueness theorems, for quasilinear
elliptic equations involving the p-Laplace operator, with lower order source terms,

(1.8) −∆pu = σuq + µ, u > 0 in Rn, lim inf
x→∞

u = 0,

in the sub-natural growth case 0 < q < p− 1.
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Bilateral pointwise estimates of all entire p-superharmonic solutions (or, equiv-
alently, local renormalized solutions) were obtained in [33]. They involve Havin–
Maz’ya–Wolff potentials Wσ, Wµ, and intrinsic nonlinear potentials Kσ, discussed
in Sec. 2 and Sec. 6 below.

These estimates were used very recently to establish existence and uniqueness of
the so-called reachable p-superharmonic solutions, in joint work with Nguyen Cong
Phuc [29].

More general quasilinear equations of the type (1.8), with A-Laplace operators
divA(x,∇u) in place of ∆p, under standard structural assumptions of order p on
A(x, ξ) (see, e.g., [19]), and sub-natural growth terms, will be discussed as well.

1.4. A brief outline of the paper. Sec. 2 contains some preliminary notions
and basic concepts used throughout the paper. We first consider certain weighted
norm inequalities of (1, q)-type for linear integral operators G in Ω. We then define
intrinsic nonlinear potentials Kσ, using localized versions of the (1, q)-type weighted
norm inequalities. We also discuss the precise definitions of sub- and super-solutions,
and introduce the notion of the Wiener capacity for general kernels G.

In Sec. 3, we state the main results on bilateral pointwise estimates, along with
the existence and uniqueness results, for solutions to sublinear equations (1.1). We
consider integral operators G with quasi-metric and quasi-metrically modifiable
kernels G, first with data f = Gµ, µ ∈ M+(Ω), and then with arbitrary data
f ≥ 0.

In Sec. 4, we consider applications to semilinear elliptic problems of type (1.7) in
uniform domains for 0 < α ≤ 2, as well as the entire space, balls or half-spaces for
0 < α < n. We also treat similar problems involving linear uniformly elliptic op-
erators with bounded measurable coefficients in non-tangentially accessible (NTA)
domains, or more general uniform domains with Ahlfors regular boundary.

In Sec. 5, we focus on the major steps in the proofs of the main theorems stated
in Sec. 3 and provide relevant comments. In particular, we discuss the key lemmas
employed in the proofs of the lower estimates of super-solutions for (QS)&(WMP)
kernelsG, and upper estimates of sub-solutions for quasi-metric and quasi-metrically
modifiable kernels.

Finally, in Sec. 6, we are concerned with analogous nonlinear potential estimates
and their applications for quasilinear equations (1.8) involving the p-Laplacian, as
well as more general A-Laplace operators, in the case 0 < q < p − 1. We first
treat bilateral pointwise estimates for all solutions, and then discuss the notion of a
reachable solution, and present the corresponding existence and uniqueness results.

2. Preliminaries

2.1. Weighted norm inequalities of (1, q)-type. In this subsection, we discuss
certain weighted norm inequalities studied in [30], along with their localized versions
used extensively below.

We recall that throughout this paper, we use the notation M+(Ω) for locally
finite Radon measures in Ω, and M+

b (Ω) for finite Radon measures, with ∥ν∥ :=

ν(Ω) < ∞ if ν ∈ M+
b (Ω). All the kernels G are assumed to be nonnegative lower

semicontinuous functions defined on Ω × Ω.
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For σ ∈ M+(Ω), 0 < q < 1, and a kernel G on Ω, we consider weighted norm
inequalities of (1, q)-type,

(2.1) ∥Gν∥Lq(Ω,σ) ≤ C ∥ν∥, ∀ν ∈ M+
b (Ω).

We denote by κ = κ(G, q, σ) the least constant C in (2.1).
Clearly, (2.1) yields its L1-version with dν = f dσ, f ∈ L1(Ω, σ), that is,

∥Gσf∥Lq(Ω,σ) ≤ C ∥f∥L1(Ω,σ), ∀f ∈ L1(Ω, σ).(2.2)

Remark 2.1. It follows from [14, Lemma 3.I] and [30, Theorem 1.1] that, con-
versely, (2.2)=⇒(2.1), for (QS)&(WMP) kernels G, with a different constant C.
However, it is easy to see that, without the (WMP) restriction, this implication
may fail even for symmetric kernels G.

It is worth observing that inequality (2.2) is the end-point case p = 1 of the
(p, q)-type weighted norm inequality

(2.3) ∥Gσf∥Lq(Ω,σ) ≤ C ∥f∥Lp(Ω,σ), ∀f ∈ Lp(Ω, σ),

where p ≥ 1 and 0 < q < p.
For p > 1, 0 < q < p, inequality (2.3) was characterized recently in [32], where it

was shown that (2.3) holds, for kernels G ≥ 0 that satisfy (QS)&(WMP) conditions,
if and only if

(2.4)

∫
Ω
(Gσ)

q
p−q dσ < ∞.

In the more complicated case p = 1, condition (2.4) is only necessary, but not suf-
ficient, for (2.3) to hold. In [30, Theorem 1.1], it was proved that, for (QS)&(WMP)
kernels G, inequality (2.1), or equivalently (2.2), holds if and only if there exists a
nontrivial super-solution u ∈ Lq(Ω, σ) of the homogeneous equation,

u ≥ G(uqdσ) dσ-a.e. in Ω.

Moreover, the least constant κ in (2.1) satisfies the estimates

(2.5) ∥u∥1−q
Lq(Ω,σ) ≤ κ ≤ C ∥u∥1−q

Lq(Ω,σ),

where C = C(q, a, b) is a positive constant, and a, b are the constants in the
conditions (QS), (WMP), respectively.

This can be viewed as a sublinear version of Schur’s lemma (see [14]). The proof is
based on the notion of the equilibrium measure associated with the Wiener capacity
for kernels G discussed below (see [5], [13]).

In addition to estimates (2.5), we have ([30, Theorem 1.2]),

(2.6) C1 ∥Gσ∥
L

q
1−q (Ω,σ)

≤ κ ≤ C2 ∥Gσ∥
L

q
1−q ,q

(Ω, σ)
,

where C1 = C1(q, b) and C2 = C2(q, a, b) are positive constants. Here Lr,q(Ω, σ)
(0 < r < ∞, 0 < q < ∞) stands for the Lorentz space on Ω with respect to the
measure σ ∈ M+(Ω).
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2.2. Intrinsic nonlinear potentials. Let 0 < q < 1 and σ ∈ M+(Ω). Suppose G
is a kernel on Ω. In this section, we recall the definition of the intrinsic nonlinear
potential Kσ given in [34]. Together with the linear potential Gσ, it controls
pointwise behavior of nontrivial solutions u to the homogeneous sublinear integral
equation

(2.7) u = G(uqdσ), 0 < u < +∞ dσ-a.e., in Ω.

We define a “ball” B = B(x, r) associated with G by

(2.8) B(x, r) := {y ∈ Ω: G(x, y) > 1/r}, x ∈ Ω, r > 0.

Notice that if G is a quasi-metric kernel, then B(x, r) is a quasi-metric ball with
respect to the quasi-metric d = 1/G.

Remark 2.2. By Fubini’s theorem, Gσ can be represented in the form

Gσ(x) =

∫ ∞

0

σ(B(x, r))

r2
dr, x ∈ Ω.

Let dσB = χB dσ be the restriction of σ to a ball B. We will need a localized
version of inequality (2.1), namely,

∥Gν∥Lq(Ω, σB) ≤ C ∥ν∥, ∀ν ∈ M+
b (Ω),(2.9)

By κ(B) we denote the least constant C in (2.9). We remark that by (2.6) with
σB in place of σ, we deduce the following estimates of κ(B),

C1 ∥GσB∥
L

q
1−q (Ω, σB)

≤ κ(B) ≤ C2 ∥GσB∥
L

q
1−q ,q

(Ω, σB)
,

where C1 = C1(q, b) and C2 = C2(q, a, b) are positive constants.
The constants κ(B) with B = B(x, r) are used to construct the nonlinear poten-

tial Kσ, intrinsic to the sublinear problem (2.7),

(2.10) Kσ(x) :=

∫ ∞

0

[κ(B(x, r))]
q

1−q

r2
dr, x ∈ Ω.

We remark that nonlinear potentials of this type were introduced for the first
time in [8] for Riesz kernels on Ω = Rn. In that case, B = B(x, r) is a Euclidean

ball of radius r
1

n−α centered at x ∈ Rn.
Intrinsic nonlinear potentials Kσ resemble nonlinear potentials introduced origi-

nally by Havin and Maz’ya in [27], but with σ(B(x, r)) used in place of κ(B(x, r)).
More precisely, the Havin–Maz’ya–Wolff potential Wα,p on Rn (often called Wolff

potential) is defined, for 0 < α < n
p , 1 < p < ∞, by

(2.11) Wα,pσ(x) :=

∫ ∞

0

[σ(B(x, ρ))]
1

p−1

ρ
n−αp
p−1

+1
dρ, x ∈ Rn,

where σ ∈ M+(Rn), and B = B(x, ρ) is a Euclidean ball in Rn of radius ρ centered
at x.

Notice that in the special case p = 2, the potential Wα,2 coincides, up to a
constant multiple, with the linear Riesz potential I2α with kernel I2α on Rn.

Nonlinear potentials Wα,p were used subsequently by Hedberg and Wolff [18]
in relation to the spectral synthesis problem for Sobolev spaces (see [1], and the
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literature cited there). In the special case α = 1, they are fundamental to the
theory of quasilinear elliptic equations of p-Laplace type [22] (see also [19], [24],
[26], and Sec. 6 below).

2.3. Sub- and super-solutions. Let µ, σ ∈ M+(Ω) and 0 < q < 1. A Borel
measurable function u : Ω → [0,+∞] is called a nontrivial super-solution associated
with the equation

(2.12) u = G(uqdσ) +Gµ dσ-a.e. in Ω,

if u > 0 dσ-a.e., and

(2.13) G(uqdσ) +Gµ ≤ u < +∞ dσ-a.e. in Ω.

A sub-solution is defined similarly as a Borel measurable function u : Ω → [0,+∞]
such that

(2.14) u ≤ G(uqdσ) +Gµ < +∞ dσ-a.e. in Ω.

A nontrivial solution to (2.12) is both a sub-solution and a nontrivial super-
solution.

If u is a (super) solution, it is easy to see that actually u ∈ Lq
loc(Ω, σ) ([30, Lemma

2.2]).

2.4. The Wiener capacity. Let G be a kernel on Ω. For µ ∈ M+(Ω), we set

G∗µ(y) :=

∫
Ω
G(x, y) dµ(x), y ∈ Ω.

Notice that the operator G∗ is a formal adjoint of G.
Given a kernel G on Ω, a symmetrized kernel Gs is defined by

Gs(x, y) := G(x, y) +G(y, x), x, y ∈ Ω.

Clearly, Gs is symmetric. If G is a (QS) kernel, then Gs is comparable to G:(
1 + a−1

)
G(x, y) ≤ Gs(x, y) ≤ (1 + a)G(x, y), ∀x, y ∈ Ω.

The kernel Gs corresponds to the integral operator Gs := G +G∗. For a (QS)
kernel G, the least constants in the inequalities

∥Gν∥Lq(Ω,σ) ≤ κ ∥ν∥, ∀ν ∈ M+(Ω),

∥Gsν∥Lq(Ω,σ) ≤ κs ∥ν∥, ∀ν ∈ M+(Ω),

are obviously equivalent:
(
1 + a−1

)
κ ≤ κs ≤ (1 + a)κ.

If G is a (QS) kernel, then there is a nontrivial super-solution u, i.e., G(uqdσ) +
Gµ ≤ u < ∞ dσ a.e. if and only if there is a nontrivial super-solution us to the
symmetrized version, Gs(uqsdσ) +Gµ ≤ us < ∞ dσ a.e. This is easy to see using a
scaled version us = cs u with an appropriate constant cs > 0. A similar conclusion
is true for sub-solutions.

Moreover, if u1 is a sub-solution, and u2 is a nontrivial super-solution such that
u1 ≤ u2 then there exists a solution u such that u1 ≤ u ≤ u2. This means that if G
is a (QS) kernel, then by passing to Gs, without loss of generality we may assume
that G is symmetric (see [34]).
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Definition 2.3. The Wiener capacity cap(K) of a compact set K ⊂ Ω is defined
by

cap(K) := sup {µ(K) : µ ∈ M+(K), G∗µ(y) ≤ 1, ∀ y ∈ Sµ}.(2.15)

Remark 2.4. For positive symmetric kernels G, on any compact set K ⊂ Ω
there exists an extremal measure µ (called equilibrium measure) such that µ(K) =
cap(K) < ∞ in (2.15) (see [5], [13]). Equilibrium measures play an important role
in the proofs of the upper estimates of sub-solutions discussed below.

Definition 2.5. A measure σ ∈ M+(Ω) is said to be absolutely continuous with
respect to the Wiener capacity if σ(K) = 0 whenever cap(K) = 0, for any compact
set K ⊂ Ω.

Remark 2.6. Let 0 < q < 1 and σ ∈ M+(Ω). Let G be a kernel on Ω. If u is a
notrivial super-solution for G∗ in place of G, i.e., u > 0 dσ-a.e. and G∗(uqdσ) ≤
u < ∞ dσ-a.e., then σ is absolutely continuous with respect to the Wiener capacity
(see [30, Lemma 4.2]).

For (QS) kernels, the preceding remark is clearly true for nontrivial super-solutions
G(uqdσ) ≤ u < ∞ dσ-a.e.

3. Main results for sublinear integral equations

3.1. Quasi-metric kernels. We state our main theorem for quasi-metric kernels
G.

Theorem 3.1. Let µ, σ ∈ M+(Ω) (σ ̸= 0) and 0 < q < 1. Suppose G is a quasi-
metric kernel on Ω with quasi-metric constant κ. Then the following statements
hold.

(i) Any nontrivial solution u to equation (2.12) satisfies the bilateral pointwise
estimates

(3.1) c [(Gσ(x))
1

1−q +Kσ(x)] +Gµ(x) ≤ u(x),

(3.2) u(x) ≤ C [(Gσ(x))
1

1−q +Kσ(x) +Gµ(x)],

dσ-a.e. in Ω, where c = c(q, κ), C = C(q, κ) are positive constants. Moreover, such
a solution u is unique.

(ii) Estimate (3.1) holds for any nontrivial super-solution u at all x ∈ Ω such
that

(3.3) G(uqdσ)(x) +Gµ(x) ≤ u(x).

Similarly, (3.2) holds for any sub-solution u at all x ∈ Ω such that

(3.4) u(x) ≤ G(uqdσ)(x) +Gµ(x).
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(iii) A nontrivial (super) solution u to (2.12) exists if and only if the following
three conditions hold: ∫ ∞

a

σ(B(x0, r))

r2
dr < ∞,(3.5) ∫ ∞

a

[κ(B(x0, r))]
q

1−q

r2
dr < ∞,(3.6) ∫ ∞

a

µ(B(x0, r))

r2
dr < ∞,(3.7)

for some (or, equivalently, all) x0 ∈ Ω and a > 0. Any nontrivial solution u satisfies
(3.1), (3.2) at all x ∈ Ω such that

(3.8) u(x) = G(uqdσ)(x) +Gµ(x).

In particular, (3.8) holds dσ-a.e.

We notice that, as in the linear case [12], given a solution u to (3.8) defined
dσ-a.e., we can set

(3.9) ũ(x) := G(uqdσ)(x) +Gµ(x), ∀x ∈ Ω.

Then clearly ũ = u dσ-a.e., and

ũ(x) = G(ũqdσ)(x) +Gµ(x), ∀x ∈ Ω.

Hence, the representative ũ is a solution to (3.8) everywhere in Ω.

Remark 3.2. 1. Under the assumptions of Theorem 3.1, conditions (3.5)–(3.7),
are equivalent to Gσ < +∞, Kσ < +∞, and Gµ < +∞ dσ-a.e. Other equivalent
conditions are given in Lemma 5.9 and Corollary 5.16 below.

2. An analogue of Theorem 3.1 holds for equation (1.1) with arbitrary f ≥ 0 (see
Theorem 3.5 below). One only needs to replace Gµ with G(f qdσ)+f in (3.1), (3.2),
and the corresponding estimates for sub- and super-solutions. The term G(f qdσ)
is no longer needed in the special case f = Gµ.

3.2. Quasi-metrically modifiable kernels. We next state our main theorem for

quasi-metrically modifiable kernels G. In this case, Theorem 3.1 holds with G̃ in
place of G, which leads to matching lower and upper global estimates of solutions
up to the boundary of Ω.

The modification procedure is applicable to Green’s kernels G for (−∆)
α
2 in

some domains Ω ⊂ Rn, in particular, balls or half-spaces, if 0 < α < n, or uniform
domains discussed below if 0 < α ≤ 2. In all of these cases, we use modifiers g
defined by (1.6). For bounded C1,1-domains Ω if 0 < α ≤ 2, as well as balls or

half-spaces if 0 < α < n, it is known that g(x) ≈ [dist(x,Ωc)]
α
2 .

Suppose G is a quasi-metrically modifiable kernel, with modifier m, associated

with the quasi-metric d̃ = 1/G̃. We denote by B̃(x, r) a quasi-metric ball

(3.10) B̃(x, r) :=
{
y ∈ Ω: G̃(x, y) > 1/r

}
, x ∈ Ω, r > 0.

Let dσ̃ = m1+qdσ. For a Borel set E ⊆ Ω, by κ̃(E) = κ̃(E, σ̃) we denote the
least constant in the inequality

(3.11) ∥G̃ν∥Lq(Ω,σ̃E) ≤ κ̃(E) ∥ν∥, ∀ ν ∈ M+
b (Ω).
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Using the constants κ̃(B̃(x, r)), we construct the modified intrinsic potential K̃σ
defined by

(3.12) K̃σ(x) :=

∫ ∞

0

[κ̃(B̃(x, r))]
q

1−q

r2
dr, x ∈ Ω.

Theorem 3.3. Let µ, σ ∈ M+(Ω) (σ ̸= 0) and 0 < q < 1. Suppose G is a quasi-
metrically modifiable kernel with modifier m. Then any nontrivial solution u to
equation (2.12) is unique and satisfies the bilateral pointwise estimates

(3.13) cm
([

m−1G(mqdσ)
] 1
1−q + K̃σ

)
+ Gµ ≤ u,

(3.14) u ≤ Cm
([

m−1G(mqdσ)
] 1
1−q + K̃σ

)
+ CGµ,

dσ-a.e. in Ω, where c, C are positive constants which depend only on q and the

quasi-metric constant κ̃ of the modified kernel G̃.
The lower bound (3.13) holds for any nontrivial super-solution u, whereas the

upper bound (3.14) holds for any sub-solution u.

Remark 3.4. 1. Under the assumptions of Theorem 3.3, a nontrivial (super)

solution to (2.12) exists if and only if G(mqdσ) < +∞, K̃σ < +∞, and Gµ < +∞
dσ-a.e.

2. If G is quasi-metrically modifiable with modifier m = g given by (1.6), a
nontrivial (super) solution to (2.12) exists if and only if (Lemma 5.15 below),

(3.15) κ̃(Ω) < ∞ and

∫
Ω
g dµ < ∞.

3.3. Equations with arbitrary data. We now state the main theorem for equa-
tion (1.1) with arbitrary data f ≥ 0 in place of Gµ (see [34, Theorem 6.1]).

Theorem 3.5. Suppose 0 < q < 1, G is a quasi-metric kernel on Ω, σ ∈ M+(Ω)
(σ ̸= 0) and f ≥ 0 is a Borel measurable function in Ω. Then the following state-
ments hold.

(i) Any nontrivial solution u to equation (1.1) is unique and satisfies the bilateral
pointwise estimates

c
[
(Gσ)

1
1−q +Kσ +G(f qdσ)

]
+ f ≤ u,(3.16)

u ≤ C
[
(Gσ)

1
1−q +Kσ +G(f qdσ)

]
+ f,(3.17)

dσ-a.e. in Ω, where c = c(q, κ), C = C(q, κ) are positive constants.
(ii) The lower estimate (3.16) holds for any nontrivial super-solution, whereas

the upper estimate in (3.17) holds for any sub-solution.
(iii) A nontrivial solution u to (1.1) exists if and only if

(3.18) Gσ < ∞, Kσ < ∞, f < ∞, G(f qdσ) < ∞, dσ-a.e. in Ω.

Remark 3.6. 1. In the special case f = Gµ (µ ∈ M+(Ω)) of Theorem 3.5, the
term G(f qdσ) in (3.17) may be dropped if, at the same time, f is replaced with Cf .
Moreover, the condition G(f qdσ) < ∞ dσ-a.e. in (3.18) is redundant (see Theorem
3.1 above).
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2. An analogue of Theorem 3.5 holds for quasi-metrically modifiable kernels G.
This gives an extension of Theorem 3.3 to solutions of equation (1.1) with arbitrary
data f ≥ 0. The corresponding estimates of solutions remain valid once we replace
Gµ with cG(f qdσ)+ f in (3.13), and CG(f qdσ)+ f in (3.14), respectively. In the
existence criteria discussed in Remark 3.4, it suffices to replace Gµ with G(f qdσ).

4. Semilinear elliptic problems

4.1. Equations with the fractional Laplace operator. In the following defi-
nition of a uniform domain (or, equivalently, an interior NTA domain), we rely on
the notions of the interior corkscrew condition and the Harnack chain condition.
We refer to [17] for related definitions, in metric spaces, along with a discussion
of quasi-metric properties, 3-G inequalities, and the uniform boundary Harnack
principle (see also [2]).

Definition 4.1. A uniform domain Ω ⊂ Rn, n ≥ 2, is a bounded domain which
satisfies the interior corkscrew condition and the Harnack chain condition.

Notice that uniform domains are not necessarily regular in the sense of Wiener.
Bounded Lipschitz and non-tangentially accessible (NTA) domains are examples of
regular uniform domains.

The next theorem ([34, Theorem 1.2]) is a direct consequence of Theorem 3.3 and

the fact that Green’s function G of (−∆)
α
2 in a uniform domain Ω for 0 < α ≤ 2

is quasi-metrically modifiable, with m = g and quasi-metric constant κ̃ which does
not depend on the choice of x0 ∈ Ω (see [3], [17]).

Theorem 4.2. Suppose Ω ⊂ Rn, n ≥ 2, is a uniform domain. Suppose G is Green’s
kernel of (−∆)

α
2 in Ω, where 0 < α ≤ 2, α < n. Define the modifier m = g by (1.6)

with pole x0 ∈ Ω.
Let 0 < q < 1, and let µ, σ ∈ M+(Ω), and dσ̃ = g1+qdσ. Then the following

statements hold.
(i) Any nontrivial solution u to equation (1.7) is unique and satisfies estimates

(3.13), (3.14) dσ-a.e., and at all x ∈ Ω where (3.8) holds.
(ii) Any nontrivial super-solution u satisfies the lower bound (3.13), and any

sub-solution u satisfies the upper bound (3.14).
(iii) A nontrivial (super) solution to (1.7) exists if and only if (3.15) holds, for

some (or, equivalently, all) x0 ∈ Ω.

Remark 4.3. Uniqueness of solutions to sublinear problems of the type (1.7) was
previously known only under heavy restrictions on solutions, coefficients, and data,
for instance, for bounded solutions [6], [7], or finite energy solutions [31].

For specific domains Ω ⊆ Rn, Theorem 4.2 can be extended to the full range
0 < α < n.

Theorem 4.4. Let 0 < α < n. Suppose Ω is the entire space Rn, or a ball, or
half-space in Rn. Then an analogue of Theorem 4.2 holds.

Remark 4.5. In all the cases listed in Theorem 4.4, Green’s kernel G of (−∆)
α
2 ,

for 0 < α < n, is known to be either quasi-metric (Riesz kernel Iα of order α if
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Ω = Rn), or quasi-metrically modifiable (Ω is a ball, or half-space), with modifier

m(x) = g(x) ≈ [dist(x,Ωc)]
α
2 (see [10] and the literature cited there).

4.2. Equations with uniformly elliptic operators. A similar approach works
also for Green’s kernels G of uniformly elliptic, symmetric operators L in divergence
form,

(4.1) Lu = −div(A∇u), A = (aij(x))
n
i,j=1, aij = aji,

with real-valued coefficients aij ∈ L∞(Ω), in place of (−∆)
α
2 .

Then, as above, Green’s kernel G of L is known to be quasi-metrically modifiable,
with modifier m = g defined by (1.6) with pole x0 ∈ Ω, under certain restrictions
on Ω specified in the following theorem (see [12], [17], [34], and the literature cited
there).

Theorem 4.6. An analogue of Theorem 4.2, for operators L in place of (−∆)
α
2 ,

holds for linear uniformly elliptic operators L with bounded measurable coefficients
given by (4.1), and modifiers m = g, in NTA domains, as well as uniform domains
with Ahlfors regular boundary.

5. Outlines of the proofs of the main theorems

5.1. Lower bounds for super-solutions: (QS)&(WMP) kernels. Let G be
a kernel on Ω. We first consider nontrivial super-solutions to the homogeneous
equation (2.7), i.e., functions u > 0 dσ-a.e. such that (see Sec. 2.3)

(5.1) G(uqdσ) ≤ u < +∞ dσ-a.e. in Ω.

We start with the following lower bound for super-solutions obtained in [16,
Theorem 1.3] for (WMP) kernels.

Lemma 5.1. Let σ ∈ M+(Ω) and 0 < q < 1. Suppose G is a kernel on Ω which
satisfies the (WMP) with constant b in (1.4). Then any nontrivial super-solution u
satisfies the estimate

(5.2) u(x) ≥ c [Gσ(x)]
1

1−q ,

where c = (1− q)
1

1−q b
− q

1−q , for all x ∈ Ω such that G(uqdσ)(x) ≤ u(x). In particu-
lar, (5.2) holds dσ-a.e.

There is another lower estimate for super-solutions ([34, Lemma 3.2]), which
complements (5.2) in a crucial way. It holds for kernels G which satisfy both the
(WMP) and (QS) conditions. Using a symmetrized kernel, we may assume without
loss of generality that G is symmetric.

Lemma 5.2. Let σ ∈ M+(Ω) and 0 < q < 1. Suppose G is a symmetric kernel on
Ω which satisfies the (WMP) with constant b. Then any nontrivial super-solution
u satisfies the estimate

(5.3) u(x) ≥ cKσ(x),

where c = (1− q)
1

1−q b
− q

1−q , for all x ∈ Ω such that u(x) ≥ G(uqdσ)(x). In particu-
lar, (5.3) holds dσ-a.e.
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For (QS)&(WMP) kernels, the constant c in (5.3) will depend on q, b, and addi-
tionally the constant a in (1.3). Combining (5.2) with (5.3) and the trivial estimate
u ≥ Gµ, we obtain the main lower estimate for any nontrivial super-solution u to
(2.12).

Corollary 5.3. Let µ, σ ∈ M+(Ω) and 0 < q < 1. Suppose G is a (QS)&(WMP)
kernel on Ω with constants a, b in (1.3), (1.4), respectively. Then any nontrivial
super-solution u to (2.12) satisfies the estimate

(5.4) u(x) ≥ c [(Gσ(x))
1

1−q +Kσ(x)] +Gµ(x),

where c = c(q, a, b), for all x ∈ Ω such that

(5.5) u(x) ≥ G(uqdσ)(x) +Gµ(x).

In particular, (5.4) holds dσ-a.e.

5.2. Upper bounds for sub-solutions: quasi-metric kernels. In this section,
we discuss the main steps involved in the proof of the upper estimates (3.2) of sub-
solutions associated with equation (2.12), for quasi-metric kernels G. They match
the lower estimates of super-solutions obtained in Corollary 5.3.

We start with the following key estimate ([34, Lemma 5.4]).

Lemma 5.4. Let G be a quasi-metric kernel on Ω with quasi-metric constant κ.
Let 0 < q < 1 and ν, σ ∈ M+(Ω). Then, for all x ∈ Ω,

(5.6) G[(Gν)qdσ](x) ≤ C (Gν(x))q
[
Gσ(x) + (Kσ(x))1−q

]
,

where C = (2κ)q.

The following lemma, which is deduced from Lemma 5.4, yields the desired upper
estimate for sub-solutions, but only dσ-a.e. The remaining difficulty is to prove the
upper estimate for points x where possibly u(x) = +∞; it is handled in Lemma 5.6
below.

Lemma 5.5. Let G be a quasi-metric kernel on Ω with quasi-metric constant κ.
Let 0 < q < 1 and µ, σ ∈ M+(Ω). Then any sub-solution u ≥ 0 such that u ≤
G(uqdσ) +Gµ < +∞ dσ-a.e., satisfies the estimate

(5.7) u(x) ≤ C
[
(Gσ(x))

1
1−q +Kσ(x) +Gµ(x)

]
,

for all x ∈ Ω such that u(x) ≤ G(uqdσ)(x)+Gµ(x) < +∞, where C = (8κ)
q

1−q . In
particular, (5.7) holds dσ-a.e.

In what follows, we will repeatedly use the fact, mentioned in Remark 1.5 above,
that a quasi-metric kernel with quasi-metric constant κ obeys the (WMP) with
constant b = 2κ.

The next lemma is used to deduce estimate (5.7) for all x ∈ Ω such that u(x) ≤
G(uqdσ)(x) +Gµ(x), including the case u(x) = +∞.

Lemma 5.6. Let G be a quasi-metric kernel on Ω with quasi-metric constant κ.
Let 0 < q < 1 and µ, σ ∈ M+(Ω). Then the function

(5.8) h(x) := (Gσ(x))
1

1−q +Kσ(x) +Gµ(x), x ∈ Ω,
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satisfies the estimate

(5.9) G(hqdσ)(x) ≤ C h(x), ∀x ∈ Ω,

where C is a constant which depends only on q and κ.

Combining Lemma 5.5 and Lemma 5.6 yields the following corollary.

Corollary 5.7. Let G be a quasi-metric kernel on Ω with quasi-metric constant
κ. Let 0 < q < 1 and µ, σ ∈ M+(Ω). Then every sub-solution u for which u ≤
G(uqdσ) +Gµ < +∞ dσ-a.e. satisfies the estimate

(5.10) u(x) ≤ (8κ)
q

1−q

[
(Gσ(x))

1
1−q +Kσ(x) +Gµ(x)

]
,

for all x ∈ Ω such that u(x) ≤ G(uqdσ)(x) + Gµ(x). In particular, (5.10) holds
dσ-a.e.

The following lemma provides bilateral pointwise estimates of solutions to (2.12)
for quasi-metric kernels, together with the existence criteria.

Lemma 5.8. Let µ, σ ∈ M+(Ω) (σ ̸= 0) and 0 < q < 1. Suppose G is a quasi-
metric kernel on Ω. Then a nontrivial solution u to (2.12) exists if and only if
Gσ < +∞, Kσ < +∞, and Gµ < +∞ dσ-a.e., and satisfies the bilateral pointwise
estimates

c [(Gσ(x))
1

1−q +Kσ(x)] +Gµ(x) ≤ u(x),(5.11)

u(x) ≤ C [(Gσ(x))
1

1−q +Kσ(x) +Gµ(x)],(5.12)

dσ-a.e. in Ω, where c, C are positive constants which depend only on q and the
quasi-metric constant κ of the kernel G.

Existence criteria can be stated in several equivalent forms using the following
lemma.

Lemma 5.9. Let µ, σ ∈ M+(Ω) (σ ̸= 0) and 0 < q < 1. Suppose G is a quasi-
metric kernel on Ω. Then the following conditions are equivalent:

(i) Gσ < +∞, Kσ < +∞, and Gµ < +∞ dσ-a.e.
(ii) Gσ ̸≡ +∞, Kσ ̸≡ +∞, and Gµ ̸≡ +∞.
(iii) Conditions (3.5)–(3.7) hold for some (or, equivalently, all) x0 ∈ Ω and a > 0.

Remark 5.10. An alternative criterion for the existence of (super) solutions in the
case of quasi-metric kernels G is deduced in Corollary 5.16 below.

5.3. Bilateral bounds: quasi-metrically modifiable kernels. In this section,
we give both lower estimates of super-solutions and upper estimates of sb-solutions
to sublinear integral equations (2.12) with quasi-metrically modifiable kernels G
and modifiers m > 0, as defined in the Introduction.

Examples of quasi-metrically modifiable kernels can be found in [3], [10], [12],
[17]. In particular, for bounded domains Ω ⊂ Rn satisfying the boundary Harnack
principle, such as bounded Lipschitz, NTA or uniform domains, Green’s kernels G
for the Laplacian and fractional Laplacian (in the case 0 < α ≤ 2, α < n) are
quasi-metrically modifiable.
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Let 0 < q < 1 and µ, σ ∈ M+(Ω). We discuss relations between solutions (as
well as sub- and super-solutions) to the equations

u = G(uqdσ) +Gµ, 0 < u < ∞ dσ-a.e. in Ω,(5.13)

v = G̃(vqdσ̃) + G̃µ̃, 0 < v < ∞ dσ̃-a.e. in Ω,(5.14)

where G̃ is the modified kernel (1.5) with modifier m, and

v :=
u

m
, dσ̃ := m1+q dσ, dµ̃ = mdµ.(5.15)

Clearly, equations (5.13) and (5.14) are equivalent.
Similarly, the following two weighted norm inequalities are equivalent,

∥Gν∥Lq(mdσ) ≤ κ̃(Ω)
∫
Ω
mdν, ∀ ν ∈ M+(Ω),(5.16)

∥G̃ν ∥Lq(Ω,σ̃) ≤ κ̃(Ω) ∥ν∥, ∀ ν ∈ M+
b (Ω).(5.17)

In (5.16), without loss of generality we may assume
∫
Ωmdν < ∞.

Remark 5.11. The least constant κ̃ = κ̃(Ω) is the same in (5.16) and (5.17), since

the latter is an equivalent restatement of the former, in terms of G̃, σ̃ in place of
G, σ.

Let B̃ = B̃(x, r) be a quasi-metric ball in Ω associated with the quasi-metric

d̃ = 1/G̃, i.e.,

(5.18) B̃(x, r) :=
{
y ∈ Ω: G̃(x, y) > 1/r

}
, x ∈ Ω, r > 0.

We denote by κ̃(B̃) the least constant in the localized versions of inequalities
(5.16), (5.17) with σ

B̃
in place of σ, and σ̃

B̃
in place of σ̃, respectively.

Then the modified intrinsic potential K̃σ is defined by

(5.19) K̃σ(x) :=

∫ ∞

0

[κ̃(B̃(x, r))]
q

1−q

r2
dr, x ∈ Ω.

The following lemma ([34, Lemma 5.1]) contains a lower bound for super-solutions
to sublinear integral equations for quasi-metrically modifiable kernels G.

Lemma 5.12. Let G be a (QS) kernel on Ω with quasi-symmetry constant a, such

that the modified kernel G̃, defined by (1.5) with modifier m, satisfies the (WMP)
with constant b. Then any nontrivial super-solution u to (5.13) satisfies the estimate

(5.20) u ≥ cm
([

m−1G(mqdσ)
] 1
1−q + K̃σ

)
+ Gµ dσ-a.e.,

where c = c(q, a, b) is a positive constant.

The following lemma ([34, Lemma 5.2]) provides a matching upper bound for sub-
solutions to sublinear integral equations, for quasi-metrically modifiable kernels G.

Lemma 5.13. Let G be a quasi-metrically modifiable kernel on Ω with modifier m.
Then any sub-solution u to (5.13) satisfies the estimate

(5.21) u ≤ Cm
([

m−1G(mqdσ)
] 1
1−q + K̃σ

)
+ CGµ dσ-a.e.,
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where C = C(q, κ̃), and κ̃ is the quasi-metric constant for the modified kernel G̃.

We next consider the modifiers m = g given by

(5.22) g(x) = gx0(x) := min{1, G(x, x0)}, x ∈ Ω,

where x0 ∈ Ω is a fixed pole.
Let G be a quasi-metric kernel on Ω, so that d := 1/G obeys the quasi-triangle

inequality (1.2) with quasi-metric with constant κ. The proof of the following lemma
([34, Lemma 5.3]) is based on the so-called Ptolemy’s inequality (see [10, Sec. 3]):
for all x0, x, y, z ∈ Ω,

(5.23) d(x, y)d(x0, z) ≤ 4κ2
[
d(x, z)d(y, x0) + d(x0, x)d(z, y)

]
.

Lemma 5.14. Let G be a quasi-metric kernel on Ω with quasi-metric constant κ.
Let x0 ∈ Ω, and let g(x) = min{1, G(x, x0)}. Then

(5.24) G̃(x, y) =
G(x, y)

g(x)g(y)

is a quasi-metric kernel on Ω with quasi-metric constant 4κ2. In particular, G̃
satisfies the (WMP) with constant b = 8κ2.

In the next lemma, we give a criterion for the existence of (super) solutions in
the case of quasi-metrically modified kernels G.

Lemma 5.15. Let µ, σ ∈ M+(Ω) and 0 < q < 1. Suppose G is a quasi-metrically
modifiable kernel on Ω with modifier m = g ∈ C(Ω) defined by (5.22). Then there
exists a nontrivial (super) solution to equation (5.13) if and only if conditions (3.15)
hold, i.e.,

(5.25)

∫
Ω
g dµ < ∞ and κ̃(Ω) < ∞,

where κ̃(Ω) is the least constant in the weighted norm inequality (5.16) with m = g.

We now go back to quasi-metric kernels G. The following corollary is a direct

consequence of Lemma 5.15, since in this case the modified kernels G̃ defined by
(5.24) are also quasi-metric by Lemma 5.14.

Corollary 5.16. Let µ, σ ∈ M+(Ω) and 0 < q < 1. Suppose G is a quasi-metric
kernel on Ω such that g ∈ C(Ω), where g is defined by (5.22). Then there exists a
nontrivial (super) solution to equation (5.13) if and only if (5.25) holds.

6. Quasilinear equations with sub-natural growth terms

6.1. Nonlinear potential estimates. In this section, we present bilateral point-
wise estimates of solutions to quasilinear elliptic equations of the type

(6.1)

{
−∆pu = σuq + µ, 0 < u < ∞ dσ-a.e. in Rn,

lim inf
x→∞

u(x) = 0,

where µ, σ ∈ M+(Rn), in the sub-natural growth case 0 < q < p− 1.
Here all solutions u are understood to be p-superharmonic. This is a natural

class of solutions to (6.1), since ν := σuq +µ ≥ 0 in the sense of measures. We may
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assume here, without loss of generality, that u ∈ Lq
loc(R

n, dσ), so that ν ∈ M+(Rn)
(see [33]).

The notion of a p-superharmonic function is discussed below in a more general
setting of A-superharmonic functions associated with quasilinear equations involv-
ing the A-Laplace operator, namely,

(6.2) −div(A(x,Du)) = ν in Ω,

where Ω ⊆ Rn, ν ∈ M+(Ω), D is the generalized gradient defined below, and A
obeys certain monotonicity and growth assumptions discussed below (see [19]).

Remark 6.1. For equations (6.2) with data ω ∈ M+(Ω), the class ofA-superharmonic
solutions coincides in a sense with the class of local renormalized solutions. We refer
to [21] for the proof of this important fact, and the discussion of the literature on
renormalized solutions.

We will present matching upper and lower estimates of solutions to (6.1) in
terms of certain nonlinear potentials defined below. Our estimates hold for all
p-superharmonic solutions u. In particular, they yield an existence criterion for
solutions to (6.1).

These results, obtained recently in [33], are new even in the special case µ = 0,
i.e., for the equation

(6.3)

{
−∆pu = σuq, u ≥ 0 in Rn,

lim inf
x→∞

u(x) = 0.

Equation (6.3) was considered earlier in [8], but the upper pointwise estimate
was obtained only for the minimal solution u. Moreover, we will discuss uniqueness
results for reachable solutions u obtained very recently in [29].

We will use the notion of the p-capacity for compact sets K ⊂ Rn.

Definition 6.2. Let 1 < p < ∞ and K ⊂ Rn be a compact set. The p-capacity of
K is defined by

(6.4) capp(K) = inf

{∫
Rn

|∇u|pdx : u ≥ 1 on K, u ∈ C∞
0 (Rn)

}
.

Notice that the p-capacity on Rn is nontrivial only if 1 < p < n.
We recall the following definition.

Definition 6.3. A measure σ ∈ M+(Rn) is said to be absolutely continuous with
respect to the p-capacity if σ(K) = 0 whenever capp(K) = 0, for any compact set
K ⊂ Rn. In this case, we write σ << capp.

We observe that the existence of a (super) solution to (6.1) yields σ << capp.
More precisely, it follows from [8, Lemma 3.6] that if u is a nontrivial super-solution
to (6.3) in the case 0 < q ≤ p− 1, then

(6.5) σ(K) ≤ capp(K)
q

p−1

(∫
K
uqdσ

) p−1−q
p−1

,

for all compact sets K ⊂ Rn.
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Among our main tools are certain nonlinear potentials associated with (6.3). We
recall that the Havin–Maz’ya–Wolff potential Wα,p is defined, for 1 < p < ∞ and
0 < α < n

p , by (2.11).

In the special case α = 1 (1 < p < n) used in Sec. 6, this nonlinear potential will
be denoted by Wp, i.e., for µ ∈ M+(Rn), we set

(6.6) Wpµ(x) :=

∫ ∞

0

[
µ(B(x, ρ))

ρn−p

] 1
p−1 dρ

ρ
, x ∈ Rn,

where B = B(x, ρ) is a Euclidean ball in Rn of radius ρ centered at x.
For µ ∈ M+(Rn), we consider the equation

(6.7)

{
−∆pu = µ, u ≥ 0 in Rn,
lim inf
x→∞

u = 0,

The following important global estimate, together with its local counterpart, is
due to T. Kilpeläinen and J. Malý [22]. Suppose u ≥ 0 is a p-superharmonic solution
to (6.7). Then

(6.8) K−1Wpµ(x) ≤ u(x) ≤ KWpµ(x),

where K = K(p, n) is a positive constant.
Moreover, it is known (see [28]) that a nontrivial solution u to (6.7) exists if and

only if

(6.9)

∫ ∞

1

[
µ(B(0, ρ))

ρn−p

] 1
p−1 dρ

ρ
< ∞.

This is equivalent toWpµ(x) < ∞ for some x ∈ Rn, or equivalently quasi-everywhere
(q.e.) on Rn with respect to the p-capacity. In particular, (6.9) may hold only in
the case 1 < p < n, unless µ = 0.

We next recall the definition the so-called intrinsic nonlinear potential Kp,q as-
sociated with (6.3), which was introduced in [8].

To define Kp,qσ for σ ∈ M+(Rn), we first consider the weighted norm inequality

(6.10)

(∫
Rn

|φ|q dσ
) 1

q

≤ C ∥∆pφ∥
1

p−1 ,

for all test functions φ which are p-superharmonic in Rn, and such that lim inf
x→∞

φ(x) =

0. Here −∆pφ = ν is the Riesz measure of φ, and without loss of generality we may
assume ∥∆pφ∥ = ν(Rn) < ∞.

By κ(Rn) we denote the least constant in (6.10).
The nonlinear potentialKp,qσ is defined in terms of the localized version of (6.10),

namely,

(6.11)

(∫
B
|φ|q dσ

) 1
q

≤ C ∥∆pφ∥
1

p−1 ,

where B is a Euclidean ball in Rn, for the same class of p-superharmonic test
functions φ in Rn as in (6.10).
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By κ(B) we denote the least constant in (6.11) with σB in place of σ, where
σB = σ|B is restricted to a ball B = B(x, ρ). Then the intrinsic nonlinear potential
Kp,qσ is defined by

(6.12) Kp,qσ(x) :=

∫ ∞

0

κ(B(x, ρ))
q(p−1)
p−1−q

ρn−p

 1
p−1

dρ

ρ
, x ∈ Rn.

As was noticed in [8], Kp,qσ ̸≡ +∞ if and only if

(6.13)

∫ ∞

1

κ(B(0, ρ))
q(p−1)
p−1−q

ρn−p

 1
p−1

dρ

ρ
< ∞.

If (6.13) holds, then actually Kp,qσ < +∞ dσ-a.e., and q.e. with respect to the
p-capacity.

Remark 6.4. In the case p = 2 and Ω = Rn, the potential K2,q is closely related
to the nonlinear potential K, defined by (2.10). Notice that in (2.10) in this special
case, B(x, r) stands for a quasi-metric ball with respect to the quasi-metric d(x, y) =
|x − y|n−2, n ≥ 3, whereas in (6.12), B(x, ρ) is a Euclidean ball. Hence, using the

substitution ρ = r
1

n−2 , we see that K = (n− 2)K2,q.

We now state the main result of [33], which establishes global bilateral estimates
and existence criteria for all solutions to (6.1). Besides (6.9), (6.13), we will use
additionally the condition Wpσ ̸≡ +∞, i.e.,

(6.14)

∫ ∞

1

[
σ(B(0, ρ))

ρn−p

] 1
p−1 dρ

ρ
< ∞.

Theorem 6.5. Let 1 < p < n, 0 < q < p − 1, and µ, σ ∈ M+(Rn). There exists a
nontrivial p-superharmonic solution u to (6.1) if and only if conditions (6.9), (6.13),
and (6.14) hold. Moreover, any such a solution u satisfies the estimates

C1

[
(Wpσ(x))

p−1
p−1−q +Kp,qσ(x) +Wpµ(x)

]
≤ u(x)(6.15)

u(x) ≤ C2

[
(Wpσ(x))

p−1
p−1−q +Kp,qσ(x) +Wpµ(x)

]
,(6.16)

dσ-a.e. on Rn, with positive constants Ci = Ci(p, q, n) (i = 1, 2).
If n ≤ p < ∞, there are no nontrivial p-superharmonic solutions.

Remark 6.6. As in the case of sublinear problems discussed above, (6.15) holds
for all nontrivial p-superharmonic super-solutions, whereas (6.16) holds for all p-
superharmonic sub-solutions.

6.2. Equations involving A-Laplace operators. Our next goal is to introduce
the notion of a reachable solution to equation (6.7), and discuss criteria of existence
and uniqueness for reachable solutions to equation (6.1) in the case 0 < q < p− 1.

We actually consider more general quasilinear A-Laplace operators in place of
∆p.

Let A : Rn×Rn → Rn be a Carathéodory function such that the map x → A(x, ξ)
is measurable for all ξ ∈ Rn, and the map ξ → A(x, ξ) is continuous for a.e. x ∈ Rn.
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We also assume that there are constants 0 < α ≤ β < ∞ and 1 < p < n such that
for a.e. x in Rn,

(6.17)
A(x, ξ) · ξ ≥ α|ξ|p, |A(x, ξ)| ≤ β|ξ|p−1, ∀ ξ ∈ Rn,

[A(x, ξ1)−A(x, ξ2)] · (ξ1 − ξ2) > 0, ∀ ξ1, ξ2 ∈ Rn, ξ1 ̸= ξ2.

For the uniqueness results, we will assume additionally

(6.18) A(x, λξ) = λp−1A(x, ξ), ∀ ξ ∈ Rn, λ > 0.

Condition (6.18) is often used in the literature ( [19], [22]).
The special case A(x, ξ) = |ξ|p−2ξ gives the p-Laplacian ∆p.

For an open set Ω ⊂ Rn, it is well known that every weak solution u ∈ W 1, p
loc (Ω)

to the equation

−divA(x,∇u) = 0 in Ω(6.19)

has a continuous representative. Such continuous solutions are said to be A-
harmonic in Ω. If u ∈ W 1, p

loc (Ω) and∫
Ω
A(x,∇u) · ∇φdx ≥ 0,

for all nonnegative φ ∈ C∞
0 (Ω), i.e., −divA(x,∇u) ≥ 0 in the distributional sense,

then u is called a super-solution to (6.19) in Ω.
A function u : Ω → (−∞,∞] is called A-superharmonic if u is not identically

infinite in each connected component of Ω, u is lower semicontinuous, and for all
open sets D such that D ⊂ Ω, and all functions h ∈ C(D), A-harmonic in D, it
follows that h ≤ u on ∂D implies h ≤ u in D.

It is well known that if u is an A-superharmonic function, then for any k > 0,
its truncation uk = min{u, k} is A-superharmonic as well. Moreover, uk ∈ W 1, p

loc (Ω)
(see [19]). We will need the notion of the weak (generalized) gradient of u defined
by

Du := lim
k→∞

∇[min{u, k}] a.e. in Ω.

We observe that Du gives the usual distributional gradient ∇u if either u ∈
L∞
loc(Ω) or u ∈ W 1, 1

loc (Ω). Moreover, there exists a unique measure µ = µ[u] ∈
M+(Ω) called the Riesz measure of u such that

(6.20) −divA(x,Du) = µ in Ω.

Let µ ∈ M+(Rn). We first treat the problems of existence and uniqueness of
A-superharmonic solutions to the equation

(6.21)

{
−divA(x,Du) = µ, u ≥ 0 in Rn,
lim inf
x→∞

u = 0,

where µ ∈ M+(Rn).
We notice that, under conditions (6.17), the Kilpeläinen–Malý estimates (6.8)

hold for all A-superharmonic solutions to (6.21), i.e.,

(6.22) K−1Wpµ(x) ≤ u(x) ≤ KWpµ(x),

where K = K(p, n, α, β) is a positive constant (see [22], [24]).
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Moreover, it is known [28] that a necessary and sufficient condition for the exis-
tence of an A-superharmonic solution to (6.21) is given by (6.9), as in the case of
equation (6.7) for the p-Laplacian.

We next observe that Theorem 6.5 has a complete analogue (see [33, Remark
4.3(2)]) for the equation

(6.23)

{
−divA(x,Du) = σuq + µ, 0 < u < ∞ dσ-a.e. in Rn,

lim inf
x→∞

u(x) = 0,

where µ, σ ∈ M+(Rn).
A natural existence criterion for equation (6.23), together with bilateral pointwise

estimates, is contained in the following theorem.

Remark 6.7. Some corrections in the proof of existence, provided in [29, Lemma
4.1], are needed in the comparison principle for A-superharmonic functions in
bounded domains Ω ([8, Lemma 5.2]) used in the constructions of solutions in [8]
for µ = 0, and [33] for µ ̸= 0.

Theorem 6.8. Let 1 < p < n, 0 < q < p− 1, and µ, σ ∈ M+(Rn). Suppose that A
satisfies conditions (6.17). Then there exists a nontrivial A-superharmonic solution
u to (6.23) if and only if conditions (6.9), (6.13), and (6.14) hold.

Moreover, any nontrivial solution u satisfies estimates (6.15) with positive con-
stants Ci = Ci(p, q, n, α, β) (i = 1, 2).

If n ≤ p < ∞, then there exist no nontrivial A-superharmonic solutions to (6.23).

An analogue of Remark 6.6 remains true for A-superharmonic sub- and super-
solutions of (6.23).

6.3. Reachable solutions to basic quasilinear equations. In this section, we
will define reachable A-superharmonic solutions to (6.21) for which existence is
obtained under the sole condition (6.9), and uniqueness is ensured if additionally
µ << capp. We recall that (6.9) is necessary for the existence of an A-superharmonic
solution.

We first notice the existence of a minimal solution to (6.21) if (6.9) holds and
µ << capp.

Theorem 6.9. Let µ ∈ M+(Rn), where µ << capp. Suppose that (6.9) holds.
Then there exists a minimal A-superharmonic solution to equation (6.21).

Remark 6.10. 1. It is not known if condition (6.9) alone is enough for the existence
of the minimal solution in Theorem 6.9.

2. It is also not known whether, under condition (6.9) combined with µ << capp,
an A-superharmonic solution to (6.21) is unique, and hence coincides with the
minimal solution. Some partial results in this direction will be discussed below.

We now consider the following notion of a reachable solution suitable for our
purposes (see [9, Definition 2.3] in the case of bounded domains).

Definition 6.11. Let µ ∈ M+(Rn). A function u : Rn → [0,+∞] is said to be an
A-superharmonic reachable solution to equation (6.21) if u is an A-superharmonic
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solution of (6.21), and there exist two sequences {ui} and {µi}, i = 1, 2, . . . , such
that
(i) Each µi ∈ M+(Rn) is compactly supported in Rn, and µi ≤ σ;
(ii) Each ui is an A-superharmonic solution of (6.21) with µi in place of µ;
(iii) ui → u a.e. in Rn.

Remark 6.12. The requirement that µi ≤ µ in Definition 6.11 is important in the
proof of uniqueness in the case µ << capp.

The next theorem is the main result of [29] on reachable solutions to equation
(6.21).

Theorem 6.13. Suppose µ ∈ M+(Rn), and (6.9) holds. Then there exists an A-
superharmonic reachable solution to (6.21). Moreover, if additionally µ << capp,
then any A-superharmonic reachable solution is unique and coincides with the min-
imal solution.

Remark 6.14. For µ ∈ M+
b (R

n), it is known [29, Theorem 3.12] that any A-
superharmonic solution u to (6.21) is unique, and coincides with the minimal A-
superharmonic solution.

The next theorem proved in [29] shows that all A-superharmonic solutions to
(6.21) are reachable, provided the condition lim inf

x→∞
u = 0 is replaced with lim

x→∞
u = 0.

Theorem 6.15. Let µ ∈ M+(Rn), and µ << capp. Suppose that u is an A-
superharmonic solution to the equation

(6.24)

{
−divA(x,Du) = µ, u ≥ 0 in Rn,
lim
x→∞

u = 0,

Then u is the unique A-superharmonic solution of (6.24), which coincides with the
minimal A-superharmonic reachable solution of (6.21).

6.4. Existence of reachable solutions: sub-natural growth. We now discuss
criteria of existence for nontrivial reachable A-superharmonic solutions u to equation
(6.23). As above, we assume without loss of generality that u ∈ Lq

loc(R
n, σ), so that

σuq + µ ∈ M+(Rn), and σ << capp.
We first consider homogeneous equations (6.23) with µ = 0. By Theorem 6.8,

there exists a nontrivial A-superharmonic solution u if and only if Wpσ ̸≡ +∞,
Kp,qσ ̸≡ +∞, i.e., conditions (6.9), (6.13) hold. This theorem is complemented by
the following statement proved in [29, Theorem 4.2].

Theorem 6.16. Let 0 < q < p − 1, and let σ ∈ M+(Rn). Then the nontrivial
minimal A-superharmonic solution u of

(6.25)

{
−divA(x,Du) = σuq, u ≥ 0 in Rn,
lim inf
x→∞

u = 0,

constructed in the proof of [8, Theorem 1.1] under conditions (6.9), (6.13), is in fact
an A-superharmonic reachable solution.



380 IGOR E. VERBITSKY

The following statement ([29, Theorem 4.3]) provides an analogue of Theorem
6.16 for reachable solutions to inhomogeneous equations (6.23). In contrast to
the construction of an A-superharmonic solution (not necessarily reachable) in [33,
Theorem 1.1], the proof for µ ̸= 0 is different, and relies on the extra assumption
µ << capp.

Theorem 6.17. Let 0 < q < p − 1, and let µ, σ ∈ M+(Rn), where µ << capp.
Then, under conditions (6.9), (6.13), and (6.14), there exists a nontrivial minimal
reachable A-superharmonic solution of (6.23).

6.5. Uniqueness of reachable solutions: sub-natural growth. In conclusion,
we discuss the uniqueness property for (reachable) solutions of (6.23). The following
main theorem was obtained [29, Theorem 4.4].

Theorem 6.18. Let 0 < q < p − 1, and let µ, σ ∈ M+(Rn), where µ << capp.
Suppose A satisfies conditions (6.17) and (6.18). Then nontrivial A-superharmonic
reachable solutions of (6.23) are unique.

It is known that in some cases listed below the restriction to reachable solutions
in this uniqueness property can be dropped.

Remark 6.19. 1. In the case p = 2 of Theorem 6.18, for linear uniformly elliptic op-
erators L with bounded measurable coefficients given by (4.1), all L-superharmonic
solutions of (6.23) are unique, without the extra restriction µ << cap.

2. All nontrivial A-superharmonic solutions in Theorem 6.18 are unique if any
one of the following conditions hold ([29, Corollary 4.5]):
(i) lim

x→∞
u(x) = 0;

(ii) u ∈ Lq(Rn, dσ) and µ ∈ M+
b (R

n);
(iii) |∇u| ∈ Lp(Rn).
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