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GAUSS-GREEN FORMULAS ON DOMAINS WITH
NON-RECTIFIABLE BOUNDARIES

MICHAEL TAYLOR

ABSTRACT. We discuss versions of the Gauss-Green theorem valid for a bounded
domain §2 that is not of finite perimeter. Thus in the statement of the divergence
theorem for a vector field F', the boundary term pairs F' with a distribution p
more singular than a measure. We investigate geometrical conditions on ) that
lead to information on y, including regularity and localization properties. We see
how some of these results refine pioneering work of Harrison and Norton.

1. INTRODUCTION

Let 2 C R™ be a bounded open set, and set yq(x) = 1 for z € Q, 0 for z € R™\ .
We have the R"-valued distribution,

(1.1) Vxa = € &R,
supported on 92, and basic distribution theory gives
(1:2) (div F,xa) = —(F, ),

for each vector field F' € C°°(R"™). This is a very general version of the Gauss-Green
formula.

Several important, related questions arise. For one, it is of extreme interest to
extend (1.2) to a much broader class of vector fields F'. A related matter is to place
the distribution p in a smaller class of distributions, such as Sobolev spaces. For
example, we clearly have

(1.3) pe H V2R,

a result essentially equivalent to the assertion that (1.2) extends to all F' € HLH(R™),
but we want to do better. A third important question is to investigate what sharper
information on g and on extensions of (1.2) one has under various geometric hy-
potheses on 9f).

Fundamental work of deGiorgi and Federer addressed these issues in the setting
of finite-perimeter domains. These are domains for which g in (1.1) is a finite R"-
valued measure. It was shown that this holds if and only if the measure-theoretic
boundary 0,0 (a subset of 9€) has finite (n — 1)-dimensional Hausdorff measure
(H"1(0.Q) < 00). In such a case, the Radon-Nikodym theorem gives

(1.4) w=vo,
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where o is a positive Borel measure on 0%, v is R™-valued, and |v(z)| = 1 for o-a.e.
x. Then (1.2) can be written

(1.5) /diVFdx:/%Fda,

Q oN
first for ' € C°°(R"™). This result extends to F' satisfying
(1.6) Fc C(R™), divF < L'(R").

In fact, using a mollifier we get Fj, = ¢ x F' € C°(R"),
Fi, — F' locally uniformly,

1.7
(L.7) div Fj, = pp * divF — divF in L'(R").

Applying (1.5) to F}, gives

(1.8) /diVdex—/l/'deU,
Q o0

and taking k — oo and using (1.7) gives (1.5) for all F satisfying (1.6). Expositions
of the theory of finite-perimeter domains are given in [6], [4], and [18], including
proofs that

(1.9) o=H"10,9,

and that 0,€2 is countably rectifiable.

There are results extending (1.5) to much less regular F' under additional hy-
potheses on €2, such as Ahlfors regularity, of use in the analysis of layer potentials.
See for example [12] and [13]. In this note we are pursuing the opposite direction,
examining domains that are rougher than finite-perimeter domains.

Let us return for now to general bounded open €2, and consider the following
extension of (1.2), beyond F € H'(R"). Namely, assume

(1.10) F e LYR"), divF e LYR").
Using a mollifier to obtain Fj = ¢ * I, as above, we have
(1.11) /dikadx: (Fgy 1),

Q

and div F, = ¢y, * div F — div F in L'-norm as k — oo, hence

(1.12) /dika dx — /diVFd:r,
Q Q

as k — oo. By (1.11), (F}, u) also converges to the right side of (1.12) as k — oo, so
p € H-H1(R™) extends to a bounded linear functional on the Banach space V3 (R™)
of vector fields satisfying (1.10), and in that sense we have an extension of (1.2) to
this Banach space V;(R™):

(1.13) e Vi(R") and /didex = (F,p), VFeV(R").
Q
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To put this another way, the space V(R"™) of smooth vector fields on R™ with compact
support is dense in V7 (R™), and p has a unique extension from a continuous linear
functional on V(R™) to a bounded linear functional on V;(R"™), given by

(F,p) = /didea:.
Q
Further extensions, involving

(1.14) F e LP(RY), divF e M(R"),

the space of finite signed Borel measures on R", are given in [1], for general open €2,
following work on finite-perimeter domains in [2], [3], and other works cited there.

Now (1.13) might seem to be a strictly stronger result than (1.5), applied to F'
satisfying (1.6). After all, (1.13) applies to a larger class of domains 2 and to a
larger class of vector fields F'. However, (1.5) has the advantage that the right
side clearly applies strictly to the restriction of F to 0. Generally, if o € £'(R")
and supp a C K, compact, one might have F' € C*°(R"), satisfying F|x = 0 but
(F,a) # 0. (Example: K = {p}, a = (0/0x1)d,.) It is important to investigate
when such a phenomenon can be shown not to arise for a = p, given by (1.1), and
when F' is somewhat less regular than C'*°.

Here is one basic case, yielding localization of x4 on 0.

Proposition 1.1. Let Q C R™ be a bounded open set, and define p by (1.1). Then,
if F' has compact support,

F € Lip(R"), F]aQZO:/didex:O
Q

(1.15)
= (F,p) = 0.

Proof. For k£ € N, define p; : R — R by

PR = 0, for |\ <27F,
(1.16) A—27F for X\>27F

A+27F for A< —2_k,

and set
(1.17) Fy, =ppoF,

where py is applied componentwise to F'(z). Then each Fj € Lip(R"), and, as
k — oo,

(1.18) Fy, — F locally uniformly, VFj, — VF, boundedly and a.e.

Also, each Fj, vanishes on a neighborhood of 9€2, so it is elementary that

(1.19) /dika dr =0, YkeN.

Q
Letting k — 0o, we have [, div Fdz = 0, i.e., the first implication in (1.15), and
this leads to the second implication, via (1.13). O

In turn, this leads to the following.
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Corollary 1.2. In the setting of Proposition 1.1, there is a uniquely defined

(1.20) p € Lip(9Q),
satisfying, for each R™-valued f € Lip(0%2),
(1.21) (f,u®) = (F,p), Y F eLip(R") such that F|89 =f.

Proof. First, given a compact K C R", each f € Lip(K) has an extension to
F ¢ Lip(R"), given, e.g., by the Whitney extension theorem. The fact that p is
well defined then follows by applying Proposition 1.1 to F; — F5, given two extensions

F; € Lip(R™) of f. O
Combining Corollary 1.2 with (1.13), we have
(1.22) /didea: = (f, u?),
Q

for each f € Lip(0%2), and each extension F' € Lip(R").
In a pioneering work, [11] took this further, defining
(1.23) p e Lip" (99,

with r» € (0,1), for a class of bounded open 2 C R™ satisfying further geometric
conditions essentially related to the “box dimension” of 92. Here, given r € (0, 1]
and a bounded function f in a set S C R” (maybe valued in R¥), we say

(1.24) feLip’(5) = [f(z) — fy)| < Clo —y[",
for all z,y € S. Thus Lip!(S) = Lip(S). We set

(1.25) I fllLipr sy = 1f llipr(s) +Sgp If],
with

(1.26) 1) = sup L =IO

etyes T —yl"

The purpose of this note is to present some more results along these lines. Our
hypotheses differ from those of [11] in several respects. For one, [11] works under
the hypothesis that 0f2 is a topological manifold (of topological dimension n — 1).
We do not make that hypothesis. Our basic geometric hypothesis on €2 is

(1.27) §(z) " < oo,
/

where §(z) = dist(z,0). This is related to but weaker than the hypothesis in
[11] that 0Q be “d-summable,” with d = n — 1 + r. The relationship is discussed
in §3. On the other hand, [11] treats vector fields F' (or rather, in their setting,
(n — 1)-forms) that are “d-flat,” a class that contains Lip".

Given a bounded open set  C R™, the functional p# € Lip™(9€)’ is constructed
in §2 by a process similar to that used in [10] (there in the setting of n = 2 and 02
a Jordan curve). A Whitney extension operator W is shown to have the property

(1.28) W : Lip"(09) — C(Q) n HY(Q),
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provided (1.27) holds. In fact, for f € Lip"(992),

(1.29) [1ows@ldz < c( [ sy de) oo
Q Q

Then ;1 is defined by

(1.30) U, it = /diva(x) da.
Q

This is shown to be independent of choices inherent in the construction of W, in
Proposition 2.2.

To tie in p# in (1.23) with x# in (1.20), we need to face the fact that Lip(9)
is not dense in Lip"(99), in the norm topology, when r < 1. This issue is dealt
with in Propositions 2.7-2.8. It is shown that, for each f € Lip"(0€2), there exist
fr € Lip(09Q), satisfying

(1.31) | frllLipro0) < A < o0, [Ifk — fllco@a) — 0,
and, whenever this holds,
k—o0

A key to this is a refinement of the estimate (1.29), to

C
(1.33) /IVWf(w)l dz < Cwra(€)] fllipro0) + —m(Q) I flleoan),
Q

valid for all € € (0, 1]. Here,

(1.34) wrale) = §(z) " du,
{zeQ:é(x)<e}

having the property that w, o(¢) — 0 as € — 0. Also, we use the notation

1.35 _ ~ it ’
(1.35) | fllco(s) sup £l [ flleos)y Jnf If = allcogs)

for bounded f : S — RF. As we will see in §4, it is useful to know that the constants
C' on the right side of (1.33) are independent of € (given n).

In §3 we discuss the geometrical significance of the hypothesis (1.27), and relate it
to the box dimension and box counting function of 9€2. We show that the hypothesis
of [11] that 0 is d-summable, with d = n — 1 + r, is equivalent to the validity of
(1.27) plus the following:

(1.36) m(0Q) =0, and /5(m)r_1 dx < oo,
o=

where Q= = Bg \ Q, given an open ball Bg D Q. We discuss examples of bounded
open sets 2 C R™ that satisfy (1.27) but not (1.36).
In §4 we seck conditions on a sequence of domains 2; C R™ such that

(1'37) (F, Mj> — <F7 :u>
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(with p; = Vxq,), with particular attention to which spaces of vector fields F' this
holds for. One simple result is that if

(1.38) F € Lip"(R"), divF € LY(R"),

and Q, Q; all satisfy (1.27), then

(1.39) (Fyp— py) = / div F dx,
QAQ,

which tends to 0 as j — oo provided

(1.40) m(QAQ;) — 0.

However, it is of greater interest to know when (1.37) holds for all F' € Lip"(R").
Proposition 4.2 states that if all Q; lie in some ball Br, R < oo, and if (1.27) holds
uniformly, in the sense that there exist w(e) so that, for all j € N; € € (0,1],

(1.41) wra;(e) Sw(e), w(e) =0,

and if (1.40) holds, then (1.37) holds for all F' € Lip"(R™). The validity of the
estimate (1.33), with C independent of 2, plays a key role in the proof.

2. GAUSS-GREEN WITH Lip” BOUNDARY VALUES

Here we extend p# from a continuous linear functional on Lip(9Q) to one on
Lip"(0f?), under a metric condition on §2, which we derive below. One tool we use
is the Whitney extension map, which we now recall (cf. [17], or [15], Appendix C).

Let 2 C R™ be a bounded, open set. Whitney’s construction says there exist
C,M € (0,00) and a partition of unity {®; : j > 1} on € such that each ®; €
C5°(€2), and furthermore the following hold.

(a) Each x € Q is in the support of at most M of the ®;.

(b) For each 6 > 0, if x € supp ®; and dist(z, 92) = J, then

(2.1) diam supp ®; < g,
and

C
(2.2) V(o) <

Having this, and given r € (0, 1], we construct

(2.3) W : Lip" (9Q) — C(Q) N C*(R)

as follows. For each j € N, let y; be a point in 92 of minimal distance from supp @;.
Then, for f € Lip"(09), set

(24) Wiz) =3 Fu))®s(@), @€
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Since this sum is locally finite, we clearly have W : Lip"(0Q2) — C*°(Q2). Now
suppose x € Q, z € 9, and |x — z| = §. Then

zesuppP; = |z —y;| < C6
(2.5) = |z —y;| <06
= [ f(y;) — f(2)] £ CF",

SO

Wi(z) = f(z) + Z{f(yj) — [(2)};(x)

= f(2)+O(5").

(2.6)

This implies

(2.7) W Lip" (0Q) = C(Q), Wfl|,, = f.
We next estimate Vu(x), for v = W[, = € Q. Noting that
(2.8) > Voi(x)=0 on Q,
J
we have
(2.9) Vo(x) =Y {f(y) — f(2)}V(x), VzedQ
J

For each x € €2, there are at most M terms in this sum, for which x € supp ®;. Say
x € supp @y, and pick z = y,. It follows from (2.1)-(2.2) that

Vo) <1 (y;) = Flyo)| - IV@;(2)|
(2.10) J
< C8(x)" M f lhipr o)
where the lip"” seminorm is defined in (1.26), and
(2.11) 0(z) = dist(x, 0Q).
This establishes the following result.
Proposition 2.1. Let Q C R" be a bounded open set, and take r € (0,1]. Then

(2.12) W : Lip"(0Q) — C(Q)n H(Q),
provided
(2.13) /5($)T1 dzr < 0.
Q

REMARK. A condition equivalent to (2.13) is

! dt

. 7‘71 R

(2.14) /0 m({x €N:4(x) < t})t . <0,
i.e.,

(2.15) m({x €0 d(a) < t}) < BT, /01 Bi’f) dt < oo,
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where m denotes Lebesgue measure on R™. See §3 for a further discussion of this
condition.

We are now ready for a definition.
Definition. Given that the bounded open set 2 C R” satisfies (2.13), we define
u € Lip"(0Q)" by

(2.16) (f, u?) = /diva(a:) dx,
Q
for R"-valued f € Lip"(09).

Constructing the partition of unity {®;} and the extension map W involves
choices. The following important result implies, among other things, that u# is
independent of such choices.

Proposition 2.2. Assume the bounded open set @ C R™ satisfies (2.13), and take
f € Lip"(09). Then, for R™-valued G,

(2.17) GeCO)NH"(Q), G|,,=f= /didex = (f, u).
Q

Proof. Considering H = G — W/, it suffices to prove the following. d

Lemma 2.3. Let Q C R™ be a bounded, open set. Given R"-valued H € C(Q2) N
HYY(Q), we have

(2.18) H|yg :0:>/didex:0.
Q

Proof. Define Hy, = p o H, as in (1.16)—(1.17). Then (cf. [7], Lemmas 7.6-7.7)
Hj; — H uniformly on Q, Hy € Hé’l(ﬂ),

(2.19) VH(z) — VH(z) ae.,and |VH(z)| <|VH(z)],
SO

(2.20) Hy, — H in HYY(Q).

Hence

(2.21) /dide:c = klggo /div Hydx = 0.

Q Q

We next record the following useful property of W.
Proposition 2.4. If Q C R"™ is a bounded open set, and 0 <r <1,
(2.22) W : Lip" (0Q) — Lip"(Q).
Proof. Take f € Lip(0f2), v = Wf. We already have v € C(Q). Also (2.6) gives

(2.23) lv(xz) — f(2)| < Clx —z|", for z€Q, z€0Q,
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and (2.10) gives
(2.24) |Vo(z)| < Cé(z)", zeq,
with §(x) = dist(z, 02). With these results in hand, take

(2.25) z,y €Q, h=|z—yl.
We consider two cases:
(a) d(z)> 2h,
(b) 0(z)< 2h.

In case (a), the line segment ¢(t) =ty + (1 — ¢)z from x to y has the property that
d(€(t)) > h for each t € [0,1], so

(2.26) lv(z) —v(y)] < Ch-h""' = Ch", in case (a).
In case (b), one also has §(y) < 3h. Pick

(2.27) To,y0 € 0, |x — 20| =6(2), |y — vo| = 5(y).
Then
[v(z) —v(y)| < [v(z) = f(zo)| + [f(zo) = f(yo)| + | f(yo) — v(y)]
(2:28) < Ch", in case (b).
This yields (2.22). O

There is the following related result. Let K C R™ be compact. Say K C Bg(0),
and consider 2 = Br(0) \ K. The analysis behind Proposition 2.4, plus a cut-off
near 0Br(0) yields a continuous map

(2.29) W : Lip"(K) — Lip"(R"), W, = .
Consequently, in the setting of Proposition 2.4, we have
(2.30) W : Lip" (9Q) — Lip" (R"), Wf|g = WF.

Note that the case r = 1 of (2.29) was invoked in the proof of Corollary 1.2, which
we can rephrase as

(2.31) (f,u#)y=Wfn), n=Vxa, VfeLip(d9).

Here is another useful consequence of (2.29).
Proposition 2.5. Given K C R™ compact, s € (0,1), and f € Lip®(K), there exist
fr satisfying
(2.32) fr € Lip(K), {fx} bounded in Lip*(K), fr — f in Lip" -norm, Vr < s.
Proof. Apply a standard mollifier argument to v = VNVf , obtaining v;, € Lip(R")
having properties analogous to those stated in (2.32), and set fi = vi|x. O

The following result ties in p# as defined in (2.16) with its debut in Corollary
1.2.
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Proposition 2.6. Take r € (0,1) and assume Q C R™ is a bounded open set
satisfying the condition (2.13). Take

(2.33) f € Lip®(09), s>

Then there exist fr, € Lip(0f2) satisfying (2.32), with K = 0. For any such
sequence,

(2.34) (f, u) (fi, 7).

While Proposition 2.6 is a conveniently established consequence of Propositions
2.1-2.5, it is useful to sharpen it. We start with a sharpening of the estimate

(2.35) IWf a9y < CllfllLipro9)

implicit in (2.12). To get it, we complement (2.10) with the observations that
v = WS satisfies

(2.36) o(@)] < Cllfllco@ay,  [Vo(@)] < Co(@) | flloon),
with the C%-norm and c’-seminorm given by (1.34). Hence, for all € € (0, 1],

Vol = [ Ve@ldos [ Vo@)]ds
(2.37) {o(z)<e} {6(z)>e}

C
< Cw(E)Ifhipr o) + ;HfHCO(aQy

where, for Q satisfying (2.13),
(2.38) w(e) = / 5(2)" L da.

{zeQ:d(z)<e}

= lim
k—o0

Note that
(2.39) w(e) — 0, as € —0.
These estimates yield the following useful complement to Proposition 2.1.

Proposition 2.7. Assume Q satisfies (2.13). Take

(2.40) f, fr € Lip"(09),

satisfying

(2.41) [ frllLiproo) < A <oo,  |Ifk = fllcoaa) — 0.
Then

(2.42) Wh — WF, in H"(Q)-norm.

This leads to the following sharpening of Proposition 2.6.

Proposition 2.8. Take r € (0,1) and assume 2 C R™ is a bounded open set
satisfying (2.13). Take f € Lip"(0R). Then there exist fi, € Lip(0f2) satisfying
(2.41). For any such sequence,

(2.43) (fo i) = Jim (fie, ).

Here is a variant of Proposition 2.2, which can also be compared with (1.13).
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Proposition 2.9. Assume the bounded open set Q C R™ satisfies (2.13). Then
F e Lip"(R"), divF € L'(R"), f=F|,q,

(2.44) — /dide:c = (f,u™).
Q

Proof. A mollifier argument involving Fj = ¢ * F as in (1.7) yields Fj, € C*°(R"),
F, — F in C°(R"), F}, bounded in Lip”(R"),

(2.45) div Fj, = ¢, % div F — div F in L*(R™).
We have
(2.46) fi = Filoo — f in C°(0Q), fi bounded in Lip"(99),
hence
(247) [ v Bds = (o) = (1),

Q
the first identity by Corollary 1.2. Meanwhile,
(2.48) /div Fpdx — /div Fdx,

Q Q

and we have (2.44). O

REMARK. The only role of the Lip" hypothesis on F in (2.44) is to guarantee (2.46).
Thus we could weaken this hypothesis to

(2.49) F € Lip"(O), for some open O D 012,

and still obtain the conclusion in (2.44). Even more generally, we could simply
hypothesize (2.46).

We complement the construction of u# with one of u°, as follows. Let Q C R™
be a bounded open set, and take Q_ = R™\ Q. Assume Q) C Bpg, an open ball of
radius R < oco. Apply the Whitney construction described above, with € replaced
by €2_, to obtain a continuous extension map Lip” (9Q) — Lip"(Q_)NC>(Q_), and
follow this with multiplication by a function K € C§°(R™), satisfying K =1 on a

neighborhood of Q, K = 0 outside Bg, to get

(2.50) W : Lip"(092) — Lip"(2-) N C*®(Q-), Vre (0,1].
Now assume
(2.51) / §(x)*tdr < oo.

Br\Q

As shown in §3, there are cases where (2.13) and (2.51) hold for different ranges of
r and s. For the sake of argument, assume

(2.52) r<s.
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Parallel to Proposition 2.1, if (2.51) holds, then

(2.53) W : Lip®(0Q) — Lip*(Q_) n HYH(Q_).
This leads to the following

Definition. Given that Q C Bg and that Bg \ Q satisfies (2.51), we define u’ €
Lip*(09Q)" by

(2.54) (f, puby = —/divad:c,

Q_

for R™-valued f on 0f).

Parallel to Proposition 2.2, we have

(2.55) / div Wi (z) dz = / div F dz,

for such f as in (2.54), whenever F € C(Q_) N H%'(Q_) has compact support and
Flopa_ = f. Note that QU QU Q_ = R™ and this is a disjoint union. Hence
xa + xo_ = 1 a.e. on R” provided m(992) = 0, so

(2.56) m(8Q) = 0= (f,u") = (f.u"),

for all f € Lip(0%2).
There is also an analogue of (2.37) for [VW[|| 1 p,\q)- Furthermore, we have
an analogue of Proposition 2.8, yielding, for f € Lip*(0f2),

(2.57) (fou?) = lim (fi, "),

— 00

whenever fi € Lip(0Q), | fellLipsa0) < A < oo, and || fx — fllcoan) — 0. This leads
to the validity of (2.56) whenever f € Lip*(0f2), given (2.13), (2.51), and (2.52).
Also, By Proposition 2.8, in the setting of (2.50)—(2.56), u# is the unique linear
extension of u from Lip®(99) to Lip”" (99) satisfying

C
(2.58) [(f, ) < Cwo(@) Fllipr o) + Z 1 leo o).

for all € € (0,1], f € Lip"(09), where w(e) is given by (2.38).
We record a Gauss-Green formula involving 2_, though it does not use the results
of (2.50)~(2.58).

Proposition 2.10. Let Q C R™ be a bounded open set. Assume Q satisfies (2.13)
and

(2.59) m(9€) = 0.
Set Q_ =R"\ Q, and assume
(2.60) F e Lip"(R"), divF e L*(R"), suppF compact,
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and set f = Floq. Then

(2.61) /diVFdZE = —(f, ).
Q_
Proof. We have
OZ/dide:E:/didea:—l—/dide:E

R Q Q_

(2.62)
:<f,u#>+/didex.
Q_

3. THE GEOMETRIC CONDITION ON {2

As derived in (2.13), the geometric hypothesis on the bounded open set 2 C R"™
used for the results of §2, related to applying u” to Lip”(92), is

(3.1) §(z)" " < oo,
/
where §(x) = dist(x, 0Q), or equivalently
1
(3.2) Mq(t) < Bttt /0 5gt)dt < 00,
where
(3.3) Mo(t) = m({x €0 () < t}) — m(O,).

Note that Mq(t) < Maq(t), defined by

(3.4) Mg (t) = m({w € R" : dist(z,90) < t}) = m(Oy).

For each t > 0, the set O, contains 9 and also points in R™\ 2, while O, is disjoint
from these sets. The infimum of all d > 0 such that

(3.5) m(O;) < Cat™™ %, Vit e (0,1],

is called the box dimension of 92 (B-dim(952)). We see that

1 —
B-dim(0Q) <n—-1+r = / Maq ()t dt < 00
(3.6) ) ¢

= (3.2).

The terminology “box dimension” arises as follows. Given ¢t > 0, tile R™ by n-
dimensional cubes (boxes) Qa¢, of edge t, the edges being parallel to the coordinate
axes. We define the box-counting function of the compact set 0f2 as

(3.7) Nsq(t) = number of boxes Qq+ that intersect 0€.
There exists C' = C}, < oo such that
(3.8) m(O;) < CNaa ()",  Naa(t)t" < m(Ocy).
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Hence B-dim(0€2) is the infimum of all d > 0 such that
(3.9) Noa(t) < Cqt™4, Vit e (0,1].

Basic material on the box dimension can be found in [5]. We mention that B-dim(9€)
is greater than or equal to the Hausdorff dimension of 92, which in turn is > n —1
when  C R” is a (nonempty) bounded open set.

The estimates in (3.8) also give

dt
(3.10) / ./\/laQ )t 1 / Naqa(t)t"™ Ir 22
The hypothesis that this be finite, i.e., that
(3.11) / Naq(t)t"™ 1+Td— 00,

constitutes the hypothesis in [11] that 02 be d-summable, with d =n —1+r. The
analysis above shows that (3.11) holds if and only if we have (3.1) plus two other
conditions, namely

(3.12) m(9Q2) =0
and
(3.13) /5(aj)rl dx < 00,

where Q_ = Bg \ Q, Bg being some open ball that contains Q. This quantifies the
extent to which the condition (3.11) is stronger than (3.1).

Here is an example of a bounded open set @ C R? for which (3.1) applies but
(3.11) does not, produced as a modification of the planar domain illustrated in
Figure 5.1 in Chapter 5 of [16]. The shaded region 2 winds like a tail infinitely
often about an oval 3, which is its inner boundary. (The goal there was to discuss
whether a point zy € ¥ is a regular point for the Dirichlet problem on €2.) As the
tail of 2 winds about X, it gets progressively thinner. One can construct this set €2
so that the tail thins exponentially fast, so that, for ¢t < 1/2,

(3.14) Mq(t) < Ct log %

hence (3.1) and (3.2) hold for all » > 0. Now modify this construction, simply
by taking ¥ to be a Koch snowflake (of Hausdorff dimension and box dimension
dx = (log4)/(log3), cf. [5], §9.2.) One can still arrange that (3.14) hold. But since
00 D X, (3.11) fails, for r < dg — 1.

In this example, R? \ 92 has three connected components, 2, o, and €, where
Q7 is the unbounded component and g is the bounded region for which 9y = X.
We have

(3.15) Vxa =p, Vxo; = Hj, p+po+p1=0.
The distribution pg is more singular than u, as far as its action on the Lip” scale is
concerned.

One can readily produce related examples, replacing the Koch snowflake by fatter
fractals, for example, or moving up in dimension.
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For a variant, one can start with the graph of
1
(3.16) y=sin—, 0<z<m,
x

which, as = N\, 0, snakes toward the vertical line segment {(0,y) : —1 < y < 1}.
Now alter this to a curve that similarly snakes toward an arc of the Koch snowflake,
or some other fractal, such as {(u(y),y) : =1 < y < 1}, where v : [-1,1] - R
is continuous but quite rough. Then thicken up the curve, to a tail of rapidly
decreasing thickness, to obtain 2. One can arrange that such Q satisfy (3.1) for all
r > 0, while Bg \ Q (with R sufficiently large that Q C Bg) satisfies (3.1) only for
r in some interval bounded away from 0. In this example, R? \ 9Q has only two
connected components.

For a third example, let By = B1(0) C R™ be the open unit ball, and let {p; : j €
N} be a dense subset of B;. Take a sequence r; satisfying

(3.17) 7 N\ 0, 1"?71 < 00, 27‘;‘ < 1.
Jj=1 Jj=1

Inductively, pick balls B, (p;) as follows:

(3.18) 0<pj<rj, By (pj) CBi\ | By, (pa)-
k<j

If pj € Uk<;jBy, (pk), skip it. Now form the open set

(3.19) Q= UBpj (p)-

By construction,

Qc By, Q=DB;, and
(3.20) ! '

In this case, we have
(3.21) Mq(t) < Ct, Vte(0,1],

with C = A4,,_1 Zj p?’*l, A, _1 denoting the area of S"~!. By contrast,

(3.22) Mo (t) > m(09) >0, Vte (0,1],

Hence (3.1) holds for all » > 0, but (3.11) fails for all » € (0, 1), since (3.12) fails.
On the other hand, here

(3.23) Q_=Bgr\ B

also satisfies an estimate like (3.21), and (3.13) holds for all » > 0. Actually, in this
case both Q and €)_ are finite-perimeter domains. We have

(3.24) 0.0=|J 0B, (p;), 0.0 =09 =0ByUOIB.
Jj=21



352 MICHAEL TAYLOR

4. VARIATION OF u = Vxq WITH 2

Here we study the dependence of the distribution = Vg on €2, with particular
attention to when, and in what topology, we might have

(4.1) pj — p,  for p;=Vxq,.

For this it is useful to keep track of how estimates on u depend on 2. We begin
with the following observations.

First, in the estimates on a Whitney partition of unity on £ described in (a)—
(b) of §2, the constants M and C' may depend on the dimension n, but they are
otherwise independent of the open set Q2 C R™. (See [17], [15].) Consequently, if
v = WS, the estimate (2.10) on |Vu(x)| involves a constant that is independent
of . The same goes for the estimates in (2.36). Hence we can reformulate the
estimate (2.37) as

C
(4.2) /Vv(w)l dz < Cwra(€)l fllipro) + Zm@floee), Ve 01],
Q

where
(4.3) wrale) = 6(z) " de,
{zeQ:d(z)<e}
and C in (4.2) is independent of Q2. As a corollary, one has
(14) )] < Cana@) lrom + —m(@)flacon.
for f € Lip"(0f2), given that (2.13) holds. Hence, by Proposition 2.9 plus (1.13),

C
(4.5) [(F, )] < Cwra(@)l| Flhipr@ny + —m(Q)1F ] o),
given
(4.6) F e Lip"(R"), divF € LY(R").

Here is one simple comparison of p with p;. Given F satisfying (4.6),

(F,m—(F,uj):/didem—/dideac

9) Q;
(4.7)
= / div FF'dx — / div F dzx.

O\Q; 2;\Q
Hence
(45) (B = Fp)| < [ [divFlda,

QAQ;

where
(4.9) QAQ; = (2\ Q) U (925 \ Q).

This leads to the following convergence result.
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Proposition 4.1. Let 2 and €); be bounded open sets in R". Assume F' satisfies
(4.6). 1f

(4.10) m(QAQ;) — 0,

as j — oo, then (F,pj) — (F, p).

Proof. If (4.10) holds, each subsequence of (j) has a further subsequence on which

xaaq; — 0,m-a.e. Then the dominated convergence theorem applies to the right
side of (4.8). O

If the hypothesis on div F' in (4.6) is strengthened to

(4.11) divF € LP(R"), 1<p< o0,

we get a rate of convergence:

(4.12) (P, 1) = (F, )| < || div Pl pooag,) m(QAQ)) 7

We now aim for a convergence result valid for all F' € Lip"(R"), without an extra
hypothesis on div F, such as given in (4.6). Istead, the domains € and ; will satisfy
an appropriate geometric hypothesis. As a first step in formulating the result, we
extend p from a continuous linear functional on the space of F' satisfying (4.6) to a
linear functional on Lip" (R™), by

(4.13) (F,p) = (Flog, ™),
under the hypothesis that  satisfies (2.13). We also assume ; satisfy (2.13), and

similarly bring in u}% and extend p;. Our geometrical hypothesis on these domains
is that

(414) WT,Q(€)7 wT,Qj (6) < w(€)7 V],
where w(e) satisfies
(4.15) w(e) — 0, as € —0.

We also assume Q,2; C Bg(0), for all j, so m(2),m(Q;) < A,R". In such a case,
we have from (4.4) and its analogue for §2; that

C n
(4.16) [ 1o = )| < 20w ()| F lipr @ny + 2 AnB" | Fllomm),

for all F' € Lip"(R™). Using these estimates, we can establish the following conver-
gence result.

Proposition 4.2. Let ,Q; be open sets in R", all contained in Br(0). Take
r € (0,1). Assume (2.13) holds, uniformly, and more precisely that (4.14) holds,
with w(e) satisfying (4.15). Furthermore, assume the estimate (4.10) on QA
holds. Then, as j — oo,

(4.17) (F,pj) — (F,p), VF eLip"(R").

Proof. We can assume F' is supported in Bsg(0). Apply the standard mollifier
argument to F, obtaining F = ¢ x F € C*°(R"), satisfying

(4.18) [Fkllipr < [[FllLiprs [ Frllco < [ Fllco,  1F = Fllco = 6 — 0.
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By Proposition 4.1, if (4.10) holds, then

(4.19)

lim
Jj—00

Meanwhile, by (4.16), applied to F' — F}, (plus (4.18)),

(4.20)

C
[(F = Pl i = 13)] < 20w(2)|F = Filluipr +2— AuR"|IF = Filloo

< 4Cw(e) | Flluyr + 2§Aanék,

for all j. Thus,

C
(4.21) limsup |(F, p — p5)| < dw(e)||F||Lipr + 2€Aan5k, VEk,

j—o0

and for all € € (0,1]. Taking k — oo, we have

(4.22) limsup [(F, 1 — i) < 4w(@)| Flluyr, Ve € (0,1],
j—ro0
and then taking ¢ — 0 yields (4.17). O
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