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This weak regularity result generalizes the previous works on regularity of non-
weighted Sobolev homeomorphisms [3, 9, 15, 16, 27, 30, 42]. Remark that in the
case n = 2 we have q̃ = q/(q − (n − 1)) = q/(q − 1) = q′ and so in this case the

additional condition w(1−n)q̃ ∈ Aq̃ can be removed.
By using this weak regularity result we obtain the weighted composition duality

property: Let a homeomorphism φ : Ω → Ω̃ have the Luzin N -property and generate
a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w), n− 1 < q ≤ p < ∞,

where wq ∈ Aq and w(1−n)q̃ ∈ Aq̃. Then the inverse mapping φ−1 : Ω̃ → Ω generates
composition operator(

φ−1
)∗

: L1
q̃(Ω, v) → L1

p̃(Ω̃), (n− 1)/q + 1/q̃ = 1, (n− 1)/p+ 1/p̃ = 1,

where v(x) = w(x)1−n such that vq̃ ∈ Aq̃.
Let us remind that in the geometric analysis of PDE composition operators on

Sobolev spaces arise in [21]. On the base of composition operators in [4, 7] was
suggested the approach to Sobolev extension operators and to Sobolev embedding
operators. The necessary and sufficient conditions on mappings generate bounded
composition operators on Sobolev spaces were obtained in [26]. In subsequent works
[5, 36, 37, 38, 39] the geometric theory of composition operators on Sobolev spaces
was founded. The sufficient conditions on mappings generate bounded composition
operators were reproved in [18] by using another technique. By using the theory of
multipliers the composition operators on Sobolev spaces were considered in [22]. The
composition operators on weighted Sobolev spaces with weights defined in preimages
were considered in recent works [31, 32, 35] in connections with Q-homeomorphisms
[20].

Note that by using the geometric theory of composition operators on Sobolev
spaces the problem of estimates of Neumann eigenvalues of elliptic operators in
non-convex domains was solved, see for example, [6, 10, 11].

It is known [33] that a mapping φ : Ω → Ω̃, where Ω, Ω̃ are domains in Rn,

n ≥ 2, generates a bounded composition operator φ∗ : L1
n(Ω̃) → L1

n(Ω) if and only

if φ is a quasiconformal mapping. Let us remind that a mapping φ : Ω → Ω̃ is

called quasiconformal if φ ∈ W 1
n,loc(Ω; Ω̃) and |Dφ(x)|n ≤ Kn|J(x, φ)| for almost all

x ∈ Ω. Because the inverse mapping φ−1 is quasiconformal also [29] it follows(
φ−1

)∗
: L1

n(Ω) → L1
n(Ω̃).

In the general case of Sobolev spaces L1
p(Ω̃) and L1

q(Ω), n− 1 < q ≤ p < ∞, the

corresponding result was proved in [26]. It was proved that if a mapping φ : Ω → Ω̃

generates a bounded composition operator φ∗ : L1
p(Ω̃) → L1

q(Ω) then the inverse

mapping φ−1 generates a bounded composition operator
(
φ−1

)∗
: L1

q̃(Ω) → L1
p̃(Ω̃),

q̃ = q/(q−n+1), p̃ = p/(p−n+1). In the present work we generalize this composition
duality property in the case of weighted Sobolev spaces defined in domains of Rn.
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2. Regularity of weighted Sobolev homeomorphisms

2.1. Weighted Sobolev spaces. Let E be a measurable subset of Rn, n ≥ 2, and
w : Rn → [0,+∞) be a locally integrable nonnegative function, i.e., a weight. The
weighted Lebesgue space Lp(E,w) is defined as a Banach space of locally integrable
functions f : E → R endowed with the following norm:

∥f | Lp(E,w)∥ =

(∫
E

|f(x)|pw(x)p dx
) 1

p

, 1 ≤ p < ∞,

∥f | L∞(E,w)∥ = ess sup
E

|f(x)|w(x), p = ∞.

Let Ω be an open subset of Rn, n ≥ 2. The weighted Sobolev space W 1
p (Ω, w), 1 ≤

p ≤ ∞, [14] is defined as a normed space of locally integrable weakly differentiable
functions f : Ω → R endowed with the following norm:

∥f | W 1
p (Ω, w)∥ = ∥f | Lp(Ω, w)∥+ ∥∇f | Lp(Ω, w)∥.

The seminormed weighted Sobolev space L1
p(Ω, w), 1 ≤ p ≤ ∞, is defined as a space

of locally integrable weakly differentiable functions f : Ω → R endowed with the
following seminorm:

∥f | L1
p(Ω, w)∥ = ∥∇f | Lp(Ω, w)∥.

In the non-weighted case w = 1 we have the classical seminormed Sobolev space
L1
p(Ω). The weighted Sobolev spaceW 1

p,loc(Ω, w) is defined as follows: f ∈ W 1
p,loc(Ω, w)

if and only if f ∈ W 1
p (U,w) for every open and bounded set U ⊂ Ω such that U ⊂ Ω.

Note that smooth functions are dense in L1
p(Ω), 1 ≤ p < ∞ (see, for example,

[2, 23]). If p = ∞, we can only assert that for an arbitrary function f ∈ L1
∞(Ω)

there exists a sequence of smooth functions {fk} which converges locally uniformly
to f and ∥fk | L1

∞(Ω)∥ → ∥f | L1
∞(Ω)∥ (see, for example, [2]).

Without additional restrictions the weighted Sobolev spaces W 1
p (Ω, w) are not

necessarily Banach spaces (see, for example, [19]). However, if the weight w :
Rn → [0,+∞) is such that the function wp satisfy the Muckenhoupt Ap-condition
(wp ∈ Ap), 1 < p < ∞:

sup
B⊂Rn

 1

|B|

∫
B

wp

 1
p
 1

|B|

∫
B

w−p′

 1
p′

< +∞,
1

p
+

1

p′
= 1,

then W 1
p (Ω, w) is a Banach space and smooth functions of the class W 1

p (Ω, w) are

dense in W 1
p (Ω, w) (see, [8, 14]). In the rest of the paper, let W 1

p (Ω, w) (L
1
p(Ω, w))

be Sobolev spaces with wp ∈ Ap.

Remark 2.1. By the definition it follows that wp ∈ Ap if and only if w−p′ ∈ Ap′ ,
1/p+ 1/p′ = 1.

We consider the Sobolev spaces as Banach spaces of equivalence classes of func-
tions up to a set of a weighted p-capacity zero [14, 17, 23]. Recall the definition of
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the weighted p-capacity [14, 17, 23]. Suppose Ω is an open set in Rn and F ⊂ Ω is
a compact set. The (p, w)-capacity of F with respect to Ω is defined by

capp,w(F ; Ω) = inf{∥∇f |Lp(Ω, w)∥p},

where the infimum is taken over all functions f ∈ C0(Ω) ∩ L1
p(Ω) such that f ≥ 1

on F . If U ⊂ Ω is an open set, we define

capp,w(U ; Ω) = sup
F

{capp,w(F ; Ω) : F ⊂ U, F is compact}.

In the case of an arbitrary set E ⊂ Ω we define the inner (p, w)-capacity

cap
p,w

(E; Ω) = sup
F

{capp,w(F ; Ω) : F ⊂ E ⊂ Ω, F is compact},

and the outer (p, w)-capacity

capp,w(E; Ω) = inf
E
{capp,w(U ; Ω) : E ⊂ U ⊂ Ω, U is open}.

If cap
p,w

(E; Ω) = capp,w(E; Ω) then the value

capp.w(E; Ω) = cap
p,w

(E; Ω) = capp,w(E; Ω)

is called the (p, w)-capacity measure of the set E ⊂ Ω [14, 17].

Remark 2.2. If capp.w(E; Ω) = 0, then the weighted measure w(E) :=
∫
E w dx = 0

and hence the Lebesgue measure |E| = 0 [14].

Let us note that a function f ∈ W 1
p (Ω, w) can be redefined in a set of measure

zero so that it is quasicontinuous, i.e. its restriction to the complement of a set
of arbitrary small (p, w)-capacity is continuous. Moreover, the quasicontinuous
representative possesses quasi-everywhere Lebesgue points with respect to either
Lebesgue measure or the weighted measure w [17].

2.2. Weighted Sobolev homeomorphisms. Let Ω and Ω̃ be domains (open and

connected sets) in the Euclidean space Rn. Then a homeomorphism φ : Ω → Ω̃ be-

longs to the weighted Sobolev space W 1
p (Ω, w; Ω̃) if its coordinate functions belong

to the weighted Sobolev space W 1
p (Ω, w). In this case φ ∈ W 1

1,loc(Ω; Ω̃) (Sobolev

homeomorphism) and so its formal Jacobi matrix Dφ(x) and its determinant (Ja-
cobian) J(x, φ) are well defined at almost all points x ∈ Ω. The norm |Dφ(x)| of
the matrix Dφ(x) is the norm of the corresponding linear operator.

Let us remind the change of variable formula in the Lebesgue integral [12]. Let

φ : Ω → Ω̃ be a Sobolev homeomorphism of the class W 1
1,loc(Ω; Ω̃). Then there

exists a measurable set S ⊂ Ω, |S| = 0 such that the mapping φ : Ω \ S → Rn has
the Luzin N -property and the change of variable formula

(2.1)

∫
E

f ◦ φ(x)|J(x, φ)| dx =

∫
Ẽ\φ(S)

f(y) dy

holds for every measurable set E ⊂ Ω, Ẽ = φ(E) ⊂ Ω̃, and every non-negative

measurable function f : Ω̃ → R. The mapping φ : Ω → Ω̃ possesses the Luzin
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N -property if an image of any set of measure zero has measure zero. Lipschitz
mappings possess the Luzin N -property (see, for example, [23, 34]).

In the following theorem we give a characterization of weighted Sobolev homeo-
morphisms in the terms of compositions with Lipschitz functions.

Theorem 2.3. Let φ : Ω → Ω̃ be a homeomorphism between two domains Ω, Ω̃ ⊂
Rn. Then φ generates a bounded composition operator

φ∗ : L1
∞(Ω̃) → L1

q(Ω, w), 1 < q < ∞,

if and only if φ belongs to the weighed Sobolev space L1
q(Ω, w; Ω̃).

Proof. Necessity. Suppose the homeomorphism φ generates a bounded composition
operator

φ∗ : L1
∞(Ω̃) → L1

q(Ω, w), 1 < q < ∞.

Then there exists a constant Kq(Ω) < ∞ such that the inequality

(2.2) ∥f ◦ φ | L1
q(Ω, w)∥ ≤ Kq(Ω)∥f | L1

∞(Ω̃)∥

holds for any function f ∈ L1
∞(Ω̃).

Now, substituting in inequality (2.2) the test coordinate functions fi(y) = yi ∈
L1
∞(Ω̃), i = 1, . . . , n, we obtain

∥φ∗
i | L1

q(Ω, w)∥ = ∥yi ◦ φ | L1
q(Ω, w)∥ ≤ Kq(Ω)∥yi | L1

∞(Ω̃)∥ = Kq(Ω), i = 1, ..., n,

because ∥yi | L1
∞(Ω̃)∥ = 1, i = 1, ..., n. Hence we see that φ belongs to L1

q(Ω, w; Ω̃).

Sufficiency. Since φ belongs to the weighed Sobolev space L1
q(Ω, w; Ω̃) we denote

byKq(Ω) := ∥φ | L1
q(Ω, w; Ω̃)∥. Let f ∈ L1

∞(Ω̃)∩C∞(Ω̃) be a smooth function of the

class L1
∞(Ω̃). Then because φ ∈ L1

q(Ω, w; Ω̃) the composition f ◦ φ ∈ W 1
1,loc(Ω, Ω̃)

and we have

(2.3) ∥φ∗(f) | L1
q(Ω, w)∥ =

∫
Ω

|∇(f ◦ φ(x))|qwq(x)dx

 1
q

≤

∫
Ω

|Dφ(x)|q|∇f |q(φ(x))wq(x)dx

 1
q

≤ sup
x∈Ω

|∇f |(φ(x))

∫
Ω

|Dφ(x)|qwq(x)dx

 1
q

= sup
y∈Ω̃

|∇f(y)|

∫
Ω

|Dφ(x)|qwq(x)dx

 1
q

= Kq(Ω) · ∥f | L1
∞(Ω̃)∥.

Now let f ∈ L1
∞(Ω̃) be an arbitrary function. Then we consider a sequence of

smooth functions fk ∈ L1
∞(Ω̃) such that

lim
k→∞

∥fk | L1
∞(Ω̃)∥ = ∥f | L1

∞(Ω̃)∥

and {fk} converges locally uniformly to f in Ω̃ [2].
Denote by gk = fk ◦ φ, k = 1, 2, . . .. Then by the inequality (2.3) the sequence

{φ∗(fk)} converges locally uniformly to φ∗(f) in Ω and is a bounded sequence in
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L1
q(Ω, w). Since the Sobolev space L1

q(Ω, w), 1 < q < ∞, is reflexive (see, for

example, [14, 41]) then there exists a subsequence {fkm} ∈ L1
q(Ω, w) which weakly

converging to f ∈ L1
q(Ω, w) and moreover

∥φ∗(f) | L1
q(Ω, w)∥ ≤ lim inf

m→∞
∥φ∗(fkm) | L1

q(Ω, w)∥.

Passing to limit as m → ∞ in the inequality

∥φ∗(fkm) | L1
q(Ω, w)∥ ≤ Kq(Ω)∥fkm | L1

∞(Ω̃)∥,

we have

∥φ∗(f) | L1
q(Ω, w)∥ ≤ Kq(Ω)∥f | L1

∞(Ω̃)∥

for any function f ∈ L1
∞(Ω̃). The proof is complete.

□

2.3. Regularity of weighted Sobolev homeomorphisms. On the base of The-
orem 2.3 we prove the weak differentiability of mappings, which are inverse to
weighted Sobolev homeomorphisms. This result generalizes a corresponding regu-
larity results of non-weighted Sobolev homeomorphisms [9]. Recall that a Sobolev

homeomorphism φ : Ω → Ω̃ of the class W 1
1,loc(Ω; Ω̃) has finite distortion [34] if

Dφ = 0 a.e. on the set Z = {x ∈ Ω : |J(x, φ)| = 0}.

Theorem 2.4. Let a homeomorphism φ : Ω → Ω̃ between two domains Ω, Ω̃ ⊂ Rn

belong to the weighted Sobolev space L1
q(Ω, w; Ω̃), n− 1 < q < ∞, w(x)(1−n)q̃ ∈ Aq̃,

q̃ = q/(q − n + 1), possess the Luzin N-property and have finite distortion. Then

the inverse mapping φ−1 : Ω̃ → Ω belongs to the Sobolev space W 1
1,loc(Ω̃; Ω) and

generates a bounded composition operator(
φ−1

)∗
: L1

q̃(Ω, v) → L1
1(Ω̃),

where the weight v(x) = w(x)1−n such that vq̃ ∈ Aq̃.

Proof. Let a function f ∈ L1
∞(Ω̃), then by Theorem 2.3 the composition f◦φ belongs

to the Sobolev space L1
q(Ω, w). Because the mapping φ has finite distortion, we can

define adjDφ(x)w(x) = 0 for almost all x ∈ Z = {x ∈ Ω : J(x, φ) = 0}. Then

|J(x, φ)||∇f(φ(x))| ≤ |∇f ◦ φ(x)|| adjDφ(x)| for almost all x ∈ Ω,

since

min
|h|=1

|Dφ(x) · h| = 1

max
|h|=1

|(Dφ(x))−1 · h|

and

(Dφ(x))−1 =
adjDφ(x)

J(x, φ)
, J(x, φ) ̸= 0.
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Hence by using the change of variables formula and Luzin N -property we obtain

∥f | L1
1(Ω̃)∥ =

∫
Ω̃

|∇f(y)| dy =

∫
Ω

|∇f(φ(x))||J(x, φ)| dx

≤
∫
Ω

|∇f ◦ φ(x)|| adjDφ(x)| dx ≤
∫
Ω

|∇f ◦ φ(x)||Dφ(x)|n−1 dx

=

∫
Ω

|∇f ◦ φ(x)|w(x)1−n|Dφ(x)|n−1w(x)n−1 dx.

Now by using the Hölder inequality with exponents q̃ = q
q−(n−1) and q

n−1 we have

∥f | L1
1(Ω̃)∥ ≤

∫
Ω

|∇f ◦ φ(x)|q̃w(x)(1−n)q̃dx

 1
q̃
∫

Ω

|Dφ(x)|qw(x)qdx

 1
q

= ∥φ | L1
q(Ω, w; Ω̃)∥ · ∥φ∗f | L1

q̃(Ω, v)∥,

where by the assumption v(x)q̃ = w(x)(1−n)q̃ ∈ Aq̃.
Thus, we have the lower estimate of the norm of the composition operator

∥f | L1
1(Ω̃)∥ ≤ ∥φ | L1

q(Ω, w; Ω̃)∥ · ∥φ∗f | L1
q̃(Ω, v)∥,

where functions g(x) = φ∗(f) belong to L1
q(Ω, w). Therefore, we can conclude that

the inverse operator

(φ−1)∗ : L1
q̃(Ω, v) ∩ L1

q(Ω, w) → L1
1(Ω̃)

is a bounded operator.
Now we fix a cut-off function η ∈ C∞

0 (B(0, 2)) which equals 1 on B(0, 1). Sub-
stituting in the inequality

∥(φ−1)∗g | L1
1(Ω̃)∥ ≤ K∥g | L1

q̃(Ω, v)∥

the test functions

gi = (x− x0)iη(
x− x0

r
), i = 1, . . . , n,

where x0 ∈ Ω, r < dist(x0, ∂Ω) and (x−x0)i means the ith coordinate of the vector

x − x0, we obtain that the inverse mapping φ−1 : Ω̃ → Ω belongs to the Sobolev

space W 1
1,loc(Ω̃; Ω).

The mapping φ−1 : Ω̃ → Ω of the class W 1
1,loc(Ω̃; Ω) generates a bounded compo-

sition operator (
φ−1

)∗
: L1

q̃(Ω, v) → L1
1(Ω̃)

if φ−1 is a mappings of finite distortion and [8, 28]∫
Ω̃

(
|Dφ−1(y)|q̃

|J(y, φ−1)|v(φ−1(y))q̃

) 1
q̃−1

dy < ∞.
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Since φ has the Luzin N -property then |J(y, φ−1)|v(φ−1(y))q̃ > 0 for almost all

y ∈ Ω̃ and so φ−1 is a mapping of finite distortion. Now by using the change of
variable formula (2.1) and the Hadamard type inequality [26]

|Dφ−1(y)| ≤ |Dφ(x)|n−1

|J(x, φ)|

which holds for almost all points y = φ(x) ∈ Ω̃, we obtain∫
Ω̃

(
|Dφ−1(y)|q̃

|J(y, φ−1)|v(φ−1(y))q̃

) 1
q̃−1

dy

≤
∫
Ω̃

(
|Dφ(φ−1(y))|(n−1)q̃

|J(φ−1(y), φ)|q̃
1

|J(y, φ−1)|v(φ−1(y))q̃

) 1
q̃−1

dy

=

∫
Ω̃

|Dφ(φ−1(y))|q|J(y, φ−1)| dy
v(φ−1(y))

q
n−1

≤
∫
Ω

|Dφ(x)|qw(x)qdx < +∞,

since φ belongs to the weighted Sobolev space L1
q(Ω, w; Ω̃), 1 < q < ∞. Therefore

we can conclude that φ−1 generates a bounded composition operator from L1
q̃(Ω, v)

to L1
1(Ω̃), where v = w1−n and (n− 1)/q + 1/q̃ = 1. □

The conditions wq ∈ Aq and w(1−n)q̃ ∈ Aq̃ are hold, for example, in the case of
power weights w = |x|α. Let us reformulate Theorem 2.4 for power weights.

Theorem 2.5. Let a homeomorphism φ : Ω → Ω̃ between two domains Ω, Ω̃ ⊂ Rn

belong to the weighted Sobolev space L1
q(Ω, |x|α; Ω̃), where −n/q < α < n/q′ for

n − 1 < q < ∞, possess the Luzin N-property and have finite distortion. Then

the inverse mapping φ−1 : Ω̃ → Ω belongs to the Sobolev space W 1
1,loc(Ω̃; Ω) and

generates a bounded composition operator(
φ−1

)∗
: L1

q̃(Ω, |x|
α(1−n)) → L1

1(Ω̃), |x|q̃α(1−n) ∈ Aq̃,

where q̃ = q/(q − n+ 1).

Proof. By Theorem 2.4 it is sufficient to prove that wq = |x|αq ∈ Aq and w(1−n)q̃ =

|x|α(1−n)q̃ ∈ Aq̃. It is known that |x|β ∈ Aq if and only if −n < β < n(q− 1). Hence
wq = |x|αq ∈ Aq if and only if

−n < αq < n(q − 1),

and w(1−n)q̃ = |x|α(1−n)q̃ ∈ Aq̃ only if

−n < α(1− n)q̃ < n(q̃ − 1).

So we obtain

−n

q
< α < n

q − 1

q
and − n

q
=

n(1− q̃)

q̃(n− 1)
< α <

n

q̃(n− 1)
.
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Since

n
q − 1

q
=

n

q̃(n− 1)
=

n

q̃
if n = 2, n

q − 1

q
>

n

q̃(n− 1)
if n ≥ 3,

then power weights w = |x|α are such that wq ∈ Aq and w(1−n)q̃ ∈ Aq̃ if and only if

−n

q
< α <

n

q̃(n− 1)
.

□

In the case of the two-dimensional Euclidean space R2 we have q̃ = q′ = q/(q−1)

and wq ∈ Aq if and only if w−q′ ∈ Aq′ . Hence in this case we can reformulate
Theorem 2.4 as follows:

Theorem 2.6. Let a homeomorphism φ : Ω → Ω̃ between two domains Ω, Ω̃ ⊂ R2

belong to the weighted Sobolev space L1
q(Ω, w; Ω̃), 1 < q < ∞, possess the Luzin N-

property and have finite distortion. Then the inverse mapping φ−1 : Ω̃ → Ω belongs

to the Sobolev space W 1
1,loc(Ω̃; Ω) and generates a bounded composition operator(

φ−1
)∗

: L1
q′(Ω, v) → L1

1(Ω̃),

where the weight v(x) = w(x)−1 such that vq
′ ∈ Aq′.

3. Composition operators on weighted Sobolev spaces

3.1. Composition operators and weighted quasiconformal mappings. Let

Ω and Ω̃ be domains in the Euclidean space Rn, n ≥ 2. Then a homeomorphism

φ : Ω → Ω̃ is called w-weighted (p, q)-quasiconformal, 1 < q ≤ p < ∞, if φ belongs

to the Sobolev space W 1
1,loc(Ω; Ω̃), has finite distortion,

Kp,q(φ; Ω) =

∫
Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) q
p−q

dx


p−q
pq

< ∞, if 1 < q < p < ∞,

and

Kp,p(φ; Ω) = ess sup
x∈Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) 1
p

< ∞, if 1 < q = p < ∞.

In the case p = q such mappings are called as w-weighted p-quasiconformal map-
pings.

Let Ω and Ω̃ be domains in Rn. Then a homeomorphism φ : Ω → Ω̃ induces a
bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w), 1 < q ≤ p ≤ ∞,

by the composition rule φ∗(f) = f ◦ φ, if the composition φ∗(f) ∈ L1
q(Ω) is defined

quasi-everywhere in Ω and there exists a constant Kp,q(φ; Ω) < ∞ such that

∥φ∗(f) | L1
q(Ω, w)∥ ≤ Kp,q(φ; Ω)∥f | L1

p(Ω̃)∥

for any function f ∈ L1
p(Ω̃).
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The mappings generate bounded composition operators on weighted Sobolev
spaces were considered in [28] in terms of the inverse distortion function. In the
present work we give the characterization of the weighed composition operators in
terms of the weighted p-distortion functions.

Recall the notion of a weighted variational (p, w)-capacity [14]. Let Ω ⊂ Rn be
a domain, then a condenser in Ω is the pair (F0, F1) of connected closed relatively
to Ω sets F0, F1 ⊂ Ω. A continuous function u ∈ L1

p(Ω, w) is called an admissible
function for the condenser (F0, F1), if the set Fi ∩Ω is contained in some connected
component of the set Int{x|u(x) = i}, i = 0, 1. We call (p, w)-capacity of the
condenser (F0, F1) relatively to domain Ω the value

capp,w(F0, F1; Ω) = inf ∥u|L1
p(Ω, w)∥p,

where the greatest lower bound is taken over all admissible for the condenser
(F0, F1) ⊂ Ω functions. If w = 1 we obtain the variational p-capacity capp(F0, F1; Ω).

Lemma 3.1. Let a homeomorphism φ : Ω → Ω̃, where Ω, Ω̃ are domains in Rn,
generate a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w), 1 < q ≤ p < ∞.

Then for every condenser (F0, F1) ⊂ Ω the inequality

cap1/qq,w(φ
−1(F0), φ

−1(F1); Ω) ≤ Kp,q(φ; Ω) cap
1/p
p (F0, F1; Ω̃)

holds.

Proof. Let u be an admissible function for the condenser (F0, F1) ⊂ Ω̃, then u◦φ be
an admissible function for the condenser (φ−1(F0), φ

−1(F1)) ⊂ Ω. Since φ generates
a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w)

then, by the definition of the capacity, we have

cap1/qq,w(φ
−1(F0), φ

−1(F1); Ω) ≤ ∥φ∗(u)|L1
q(Ω, w)∥ ≤ Kp,q(φ; Ω)∥u |L1

p(Ω̃)∥.
Since u is an arbitrary admissible function, we obtain

cap1/qq,w(φ
−1(F0), φ

−1(F1); Ω) ≤ Kp,q(φ; Ω) cap
1/p
p (F0, F1; Ω̃).

□
By Lemma 3.1 it follows that an preimage of a set of p-capacity zero has (q, w)-

capacity zero. Note, that if capq,w(E; Ω) = 0, E ̸= ∅, then the Hausdorff dimension
of E does not exceed n− 1 [17].

Now we give characterizations of composition operators on weighted Sobolev
spaces in terms of w-weighted (p, q)-quasiconformal mappings.

Theorem 3.2. Let Ω and Ω̃ be domains in the Euclidean space Rn. Then a home-

omorphism φ : Ω → Ω̃ generates, by the composition rule φ∗(f) = f ◦ φ, a bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

p(Ω, w), 1 < p < ∞,

if and only if φ is a w-weighted p-quasiconformal mapping.
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Proof. Necessity. Fix a cut function η ∈ C∞
0 (Rn), which is equal to one on the ball

B(0, 1) and is equal to zero outside of the ball B(0, 2). Consider the test functions

fj(y) = (yj − yj0)η

(
y − y0

r

)
, j = 1, ..., n,

where yj denotes the j-th coordinate. Then

|∇(fj(y))| =
∣∣∣∣(∇(yj − yj0))η

(
y − y0

r

)
+ (yj − yj0)∇

(
η

(
y − y0

r

))∣∣∣∣
= η

(
y − y0

r

)
+

yj − yj0
r

(∇η)

(
y − y0

r

)
≤ 1 + (∇η)

(
y − y0

r

)
≤ C.

Substituting in the inequality

∥φ∗(f) | L1
p(Ω, w)∥ ≤ Kp,p(φ; Ω)∥f | L1

p(Ω̃)∥
the test functions

fj(y) = (yj − yj0)η

(
y − y0

r

)
, j = 1, ..., n,

we obtain that

(3.1)

( ∫
φ−1(B(y0,r))

|Dφ(x)|pw(x)p dx
) 1

/
p

≤ CKp,p(φ; Ω)(r
n)1/p,

where C is a constant which depends on n and p only. Hence the homeomorphism φ
belongs to the weighed Sobolev spaceW 1

p,loc(Ω, w) and as a consequence toW 1
1 loc(Ω).

Now we prove that φ : Ω → Ω̃ is a mapping of finite distortion. Let Z = {x ∈
Ω : J(x, φ) = 0}. We prove ∫

Z

|Dφ(x)|pw(x)p dx = 0.

Rewrite this integral as a sum of two integrals:∫
Z

|Dφ(x)|pw(x)p dx =

∫
Z\S

|Dφ(x)|pw(x)p dx+

∫
Z∩S

|Dφ(x)|pw(x)p dx,

where S is the set from the change of variables formula (2.1) on which the homeo-
morphism φ has no the Luzin N -property.

Because |S| = 0 then ∫
Z∩S

|Dφ(x)|pw(x)p dx = 0.

Now we show that ∫
Z\S

|Dφ(x)|pw(x)p dx = 0.

By the change of variable formula we have |φ(Z \S)| = 0. Fix an arbitrary number
ε > 0. Then there exists a family of balls {B(yi, ri)} which covering the set φ(Z \S)



294 V. PCHELINTSEV AND A. UKHLOV

such that the multiplicity of the covering B(yi, 2ri) is finite and
∑
i
|Bi| < ε. Then

by inequality (3.1) we obtain

∫
Z\S

|Dφ(x)|pw(x)p dx ≤
∞∑
i=1

∫
φ−1(B(yi,ri))

|Dφ(x)|pw(x)p dx ≤ CpKp
p,p(φ; Ω)

∞∑
i=1

|Bi|.

Since ε is an arbitrary number then
∫

Z\S
|Dφ|pw(x)p dx = 0. Hence, Dφ = 0 a. e.

on Z \ S and as a consequence Dφ = 0 a.e. on Z and φ is the mapping of finite
distortion.

Now we apply to the left side of the inequality (3.1) the change of variable formula
(2.1). Denote by B := B(y0, r):

( ∫
φ−1(B)

|Dφ(x)|pw(x)p dx
) 1

p

=

( ∫
φ−1(B)\S

|Dφ(x)|pw(x)p dx
) 1

p

=

( ∫
φ−1(B)\(S∪Z)

|Dφ(x)|pw(x)p dx
) 1

p

=

( ∫
φ−1(B)\(S∪Z)

|Dφ(x)|pw(x)p

|J(x, φ)|
|J(x, φ)| dx

) 1
p

=

( ∫
B(y0,r)\φ(S)

|Dφ(φ−1(y))|pw(φ−1(y))p

|J(φ−1(y), φ)|
dy

) 1
p

≤ CKp,p(φ; Ω)|B|
1
p .

Hence

(
1

|B|

∫
B(y0,r)\φ(S)

|Dφ(φ−1(y))|pw(φ−1(y))p

|J(φ−1(y), φ)|
dy

) 1
p

≤ CKp,p(φ; Ω).

By using the Lebesgue theorem on differentiability of the integral by measure
(see, for example, [24, 38]) we obtain

(
|Dφ(φ−1(y))|pw(φ−1(y))p

|J(φ−1(y), φ)|

) 1
p

≤ CKp,p(φ; Ω) for almost all y ∈ Ω̃ \ φ(S).

Because on the set Ω \ S the homeomorphism φ has the Luzin N -property, finally
we have

ess sup
x∈Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) 1
p

≤ CKp,p(φ; Ω) < ∞.
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Sufficiency. Let f ∈ L1
p(Ω̃) be a smooth function. Then the composition f ◦ φ

belongs to the class W 1
1,loc(Ω) and the chain rule holds [43]. So, we have

∥φ∗(f)|L1
p(Ω.w)∥ =

(∫
Ω

|∇(f ◦ φ(x))|pw(x)p dx
) 1

p

≤
(∫

Ω

(|∇f(φ(x))|pw(x)p|Dφ(x)|p dx
) 1

p

=

( ∫
Ω\Z

|∇f(φ(x))|pw(x)p|J(x, φ)| |Dφ(x)|p

|J(x, φ)|
dx

) 1
p

.

Hence

∥φ∗(f)|L1
p(Ω, w)∥ =

(∫
Ω

|∇(f ◦ φ(x))|pw(x)p dx
) 1

p

≤ ess sup
x∈Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) 1
p
( ∫
Ω\Z

|∇f(φ(x))|p|J(x, φ)| dx
) 1

p

= Kp,p(φ; Ω)

( ∫
Ω\(Z∪S)

|∇f(φ(x))|p|J(x, φ)| dx
) 1

p

= Kp,p(φ; Ω)

( ∫
Ω̃\φ(S)

|∇f(y)|p dy
) 1

p

≤ Kp,p(φ; Ω)

(∫
Ω̃

|∇f(y)|p dy
) 1

p

.

Therefore we proved the required inequality

∥φ∗(f) | L1
p(Ω, w)∥ ≤ Kp,p(φ; Ω)∥f | L1

p(Ω̃)∥

for every smooth function f ∈ L1
p(Ω̃).

To extend the estimate onto all functions f ∈ L1
p(Ω̃), 1 < p < ∞, consider a

sequence of smooth functions fk ∈ L1
p(Ω̃), k = 1, 2, ..., such that fk → f in L1

p(Ω̃)

and fk → f p-quasi-everywhere in Ω̃ as k → ∞. Since the preimage φ−1(E) of

the set E ⊂ Ω̃ of a p-capacity zero has the (p, w)-capacity zero, we have φ∗(fk) →
φ∗(f) (p, w)-quasi-everywhere in Ω as k → ∞. Hence extension by continuity of

the operator φ∗ L1
p(Ω̃) ∩ C∞(Ω̃) to L1

p(Ω̃) coincides with the composition operator
φ∗(f) = f ◦ φ.

□
In the case 1 < q < p < ∞ the critical role have introduced in [26] set functions

associated with composition operators. Recall that a nonnegative mapping Φ de-
fined on open subsets of Ω is a monotone countably additive set function [24, 38]
if
1) Φ(U1) ≤ Φ(U2) if U1 ⊂ U2 ⊂ Ω;
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2) for any collection Ui ⊂ U ⊂ Ω, i = 1, 2, ..., of mutually disjoint open sets

∞∑
i=1

Φ(Ui) = Φ

( ∞⋃
i=1

Ui

)
.

The following lemma gives properties of monotone countably additive set func-
tions defined on open subsets of Ω ⊂ Rn [24, 38].

Lemma 3.3. Let Φ be a monotone countably additive set function defined on open
subsets of the domain Ω ⊂ Rn. Then
(a) at almost all points x ∈ Ω there exists a finite derivative

lim
r→0

Φ(B(x, r))

|B(x, r)|
= Φ′(x);

(b) Φ′(x) is a measurable function;
(c) for every open set U ⊂ Ω the inequality∫

U

Φ′(x) dx ≤ Φ(U).

Now we formulate the fundamental property of the composition operators of
weighted Sobolev spaces [28].

Theorem 3.4. Let the mapping φ : Ω → Ω̃ generate a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w), 1 < q < p < ∞.

Then

Φ(Ã) = sup
f∈L1

p(Ω̃∩C0(Ã)

(
∥φ∗ | L1

q(Ω, w)∥
∥f | L1

p(Ã)∥

) pq
p−q

,

be a bounded monotone countably additive function defined by on open bounded

subsets Ã ⊂ Ω̃.

Theorem 3.5. Let Ω and Ω̃ be domains in the Euclidean space Rn. Then a home-

omorphism φ : Ω → Ω̃ generates, by the composition rule φ∗(f) = f ◦ φ, a bounded
composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w), 1 < q < p < ∞,

if and only if φ is a w-weighted (p, q)-quasiconformal mapping.

Proof. Necessity. By Theorem 3.4 the inequality

(3.2) ∥φ∗f |L1
q(Ω, w)∥ ≤ Φ(Ã)

p−q
pq ∥f |L1

p(Ω̃)∥, 1 < q < p < ∞,

holds for any function f ∈ L1
p(Ω̃) ∩ C0(Ã).

Fix a cut function η ∈ C∞
0 (Rn), which is equal to one on the ball B(0, 1) and

is equal to zero outside of the ball B(0, 2). Substituting in the inequality (3.2) the
test functions

fj(y) = (yj − yj0)η

(
y − y0

r

)
, j = 1, ..., n,
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we see that

(3.3)

( ∫
φ−1(B(y0,r))

|Dφ(x)|qw(x)q dx
)1/q

≤ CΦ(B(y0, 2r))
p−q
pq (rn)1/p.

where C is a constant which depends on n and p only. Hence the homeomorphism φ
belongs to the weighed Sobolev spaceW 1

q,loc(Ω, w) and as a consequence toW 1
1 loc(Ω).

Now we prove that φ is a mapping of finite distortion. Let Z = {x ∈ Ω : J(x, φ) =
0}. We prove ∫

Z

|Dφ(x)|qw(x)q dx = 0.

Rewrite this integral as sum of two integrals:∫
Z

|Dφ(x)|qw(x)q dx =

∫
Z\S

|Dφ(x)|qw(x)q dx+

∫
Z∩S

|Dφ(x)|qw(x)q dx,

where S is the set from the change of variables formula (2.1) on which the homeo-
morphism φ has no the Luzin N -property.

Because |S| = 0 then ∫
Z∩S

|Dφ(x)|qw(x)q dx = 0.

Now we prove that ∫
Z\S

|Dφ(x)|qw(x)q dx = 0.

By the change of variable formula (2.1) we have that |φ(Z \ S)| = 0. Fix ε > 0.
Then there exists a family of balls {B(yi, ri)} generates a covering of the set φ(Z\S)
such that the multiplicity of the covering B(yi, 2ri) is finite and

∑
i
|Bi| < ε. Then

by inequality (3.3) we obtain∫
Z\S

|Dφ(x)|qw(x)q dx ≤
∞∑
i=1

∫
φ−1(B(yi,ri))

|Dφ(x)|qw(x)q dx

≤ C
∞∑
i=1

Φ(B(yi, 2ri))
p−q
p (rni )

q/p

≤ C

∞∑
i=1

Φ(B(yi, 2ri))
p−q
p (

∞∑
i=1

rni )
q/p.

Since ε is an arbitrary number then
∫

Z\S
|Dφ(x)|qw(x)q dx = 0. Hence Dφ = 0 a. e.

on Z \ S and φ is the mapping of finite distortion.
Now rewrite inequality (3.3) to the form( ∫

φ−1(B(y0,r))

|Dφ(x)|qw(x)q dx
) p

p−q

≤ C
Φ(B(y0, 2r))

|B(y0, 2r)|
(rn)

p
p−q
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and apply to the left side of this inequality the change of variable formula. Denote
B := B(yo, r):

( ∫
φ−1(B)

|Dφ(x)|qw(x)q dx
) p

p−q

=

( ∫
φ−1(B)\S

|Dφ(x)|qw(x)q dx
) p

p−q

=

( ∫
φ−1(B)\(S∪Z)

|Dφ(x)|qw(x)q dx
) p

p−q

=

( ∫
φ−1(B)\(S∪Z)

|Dφ(x)|qw(x)q

|J(x, φ)|
|J(x, φ)| dx

) p
p−q

=

( ∫
B(y0,r)\φ(S)

|Dφ(φ−1(y))|qw(φ−1(y))q

|J(φ−1(y), φ)|
dy

) p
p−q

≤ C
Φ(B(y0, 2r))

|B(y0, 2r)|
(rn)

p
p−q .

Hence, we obtain the inequality

(
1

rn

∫
B(y0,r)\φ(S)

|Dφ(φ−1(y))|qw(φ−1(y))q

|J(φ−1(y), φ)|
dy

) p
p−q

≤ C
Φ(B(y0, 2r))

|B(y0, 2r)|
.

Using the Lebesgue theorem on differentiability of the integral and properties of
the volume derivative of the countable-additive set functions [24, 38] we obtain

(
|Dφ(φ−1(y))|qw(φ−1(y))q

|J(φ−1(y), φ)|

) p
p−q

≤ CΦ′(y) for almost all y ∈ Ω̃ \ φ(S).

Integrating of the last inequality on an arbitrary open bounded subset Ũ ⊂ Ω̃ we
obtain

∫
Ũ\φ(S)

(
|Dφ(φ−1(y))|qw(φ−1(y))q

|J(φ−1(y), φ)|

) p
p−q

dy ≤ C

∫
Ũ\φ(S)

Φ′(y) dy

≤ C

∫
Ũ

Φ′(y) dy ≤ CΦ(Ũ) ≤ CK
p−q
pq

p,q (φ; Ω).

Since the choice of Ũ ⊂ Ω̃ is arbitrary, we have

∫
Ω̃\φ(S)

(
|Dφ(φ−1(y))|qw(φ−1(y))q

|J(φ−1(y), φ)|

) p
p−q

dy ≤ CK
p−q
pq

p,q (φ; Ω).
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Hence∫
Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) q
p−q

dx =

∫
Ω

(|Dφ(x)|w(x))
pq
p−q

|J(x, φ)|
p

p−q

|J(x, φ)| dx

=

∫
Ω̃\φ(S)

(
|Dφ(φ−1(y))|qw(φ−1(y))q

|J(φ−1(y), φ)|

) p
p−q

dy ≤ CK
p−q
pq

p,q (φ; Ω).

Sufficiency. Let f ∈ L1
p(Ω̃) ∩ C∞(Ω̃), then the composition f ◦ φ belongs to the

class W 1
1,loc(Ω) and the chain rule holds [43]. So, we have

∥φ∗(f)|L1
q(Ω, w)∥ =

(∫
Ω

|∇(f ◦ φ)|qw(x)q dx
) 1

q

≤
(∫

Ω

|∇f(φ(x))|q|Dφ(x)|qw(x)q dx
) 1

q

=

( ∫
Ω\Z

|∇f(φ(x))|q|J(x, φ)|
q
p
|Dφ(x)|qw(x)q

|J(x, φ)|
q
p

dx

) 1
q

.

Using the Hölder inequality we obtain

∥φ∗(f)|L1
q(Ω, w)∥ =

(∫
Ω

|∇(f ◦ φ)|qw(x)q dx
) 1

q

≤
( ∫
Ω\Z

|∇f(φ(x))|p|J(x, φ)| dx
) 1

p

·
( ∫
Ω\Z

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) q
p−q

dx

) p−q
pq

≤
( ∫
Ω\(Z∪S)

|∇f(φ(x))|p|J(x, φ)| dx
) 1

p

·
(∫

Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) q
p−q

dx

) p−q
pq

.

Now the application of the change of variable formula gives the required inequality

∥φ∗(f) | L1
q(Ω, w)∥ ≤ Kp,q(φ; Ω)∥f | L1

p(Ω̃)∥

for every smooth function f ∈ L1
p(Ω̃).

To extend the estimate onto all functions f ∈ L1
p(Ω̃), 1 < q < p < ∞, consider a

sequence of smooth functions fk ∈ L1
p(Ω̃), k = 1, 2, ..., such that fk → f in L1

p(Ω̃)

and fk → f p-quasi-everywhere in Ω̃ as k → ∞. Since the preimage φ−1(S) of the

set S ⊂ Ω̃ of p-capacity zero has the (q, w)-capacity zero, we have φ∗(fk) → φ∗(f)
q-quasi-everywhere in Ω as k → ∞. This observation leads us to the following

conclusion: Extension by continuity of the operator φ∗ L1
p(Ω̃) ∩ C∞(Ω̃) to L1

p(Ω̃)
coincides with the composition operator φ∗(f) = f ◦ φ. □
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3.2. Weighted composition duality theorem. Now we prove the weighted com-
position duality property. It is well known that mappings which are inverse to
quasiconformal mappings are quasiconformal also (see, for example, [29, 34]). The
following theorem refines this property for the case of weighted (p, q)-quasiconformal
mappings.

Theorem 3.6. Let a homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ Rn have the Luzin
N -property and generates a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w), n− 1 < q < p < ∞,

where wq ∈ Aq and w(1−n)q̃ ∈ Aq̃. Then the inverse mapping φ−1 : Ω̃ → Ω generates
a bounded composition operator

(φ−1)∗ : L1
q̃(Ω, v) → L1

p̃(Ω̃), q̃ =
q

q − n+ 1
, p̃ =

p

p− n+ 1
,

where v(x) = w(x)1−n such that vq̃ ∈ Aq̃.

Proof. Since φ generates the composition operator φ∗ : L1
p(Ω̃) → L1

q(Ω, w) then

by Theorem 3.5 the homeomorphism φ ∈ W 1
q,loc(Ω, w; Ω̃), q > n − 1. Hence by

Theorem 2.4 the inverse mapping φ−1 : Ω̃ → Ω belongs to the Sobolev space

W 1
1,loc(Ω̃; Ω). Now we prove that φ−1 generates a bounded composition operator

(φ−1)∗ : L1
q̃(Ω, v) → L1

p̃(Ω̃).

We consider two cases: q < p and q = p.
The case q < p. By [8, 28] it sufficient to prove that φ−1 is a mapping of finite
distortion and ∫

Ω̃

(
|Dφ−1(y)|q̃

|J(y, φ−1)|v(φ−1(y))q̃

) p̃
q̃−p̃

dy < ∞.

Since φ : Ω → Ω̃ has the Luzin N -property, then |J(y, φ−1)|v(φ−1(y))q̃ > 0 for

almost all y ∈ Ω̃ and so φ−1 is a mapping of finite distortion. By Theorem 3.5

Kp,q(φ; Ω) =

∫
Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) q
p−q

dx


p−q
pq

< ∞.

Denote by Z = {x ∈ Ω : |J(x, φ)| = 0}. Then [26]

(3.4) |Dφ−1(y)| ≤ |Dφ(x)|n−1

|J(x, φ)|
,
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for almost all x ∈ Ω \ Z and for almost all y = φ(x) ∈ Ω̃ because by the change of
variables formula |φ(Z)| = 0. Hence, we obtain

∫
Ω̃

(
|Dφ−1(y)|q̃

|J(y, φ−1)|v(φ−1(y))q̃

) p̃
q̃−p̃

dy =

∫
Ω̃\φ(Z)

(
|Dφ−1(y)|q̃

|J(y, φ−1)|v(φ−1(y))q̃

) p̃
q̃−p̃

dy

≤
∫

Ω̃\φ(Z)

((
|Dφ(φ−1(y))|n−1

|J(φ−1(y), φ)|

)q̃
1

|J(y, φ−1)|v(φ−1(y))q̃

) p̃
q̃−p̃

dy

=

∫
Ω̃\φ(Z)

|Dφ(φ−1(y))|
pq
p−q

|J(φ−1(y), φ)|
p

p−q

(
1

v(φ−1(y))

) pq
(n−1)(p−q)

dy

=

∫
Ω\Z

|Dφ(x)|
pq
p−q

|J(x, φ)|
p

p−q

(
1

v(x)

) pq
(n−1)(p−q)

|J(x, φ)|dx

≤
∫
Ω

(
|Dφ(x)|p

|J(x, φ)|v(x)p/(n−1)

) q
p−q

dx.

Putting v(x)−1 = w(x)n−1 we obtain

∫
Ω̃

(
|Dφ−1(y)|q̃

|J(y, φ−1)|v(φ−1(y))q̃

) p̃
q̃−p̃

dy

≤
∫
Ω

(
|Dφ(x)|pw(x)p

|J(x, φ)|

) q
p−q

dx = K
pq
p−q
p,q (φ; Ω) < ∞.

Hence [8, 28] φ−1 : Ω̃ → Ω generates a bounded composition operator

(φ−1)∗ : L1
q̃(Ω, v) → L1

p̃(Ω̃),

where q̃ = q/(q − n+ 1), p̃ = p/(p− n+ 1).
The case p=q. By [8, 28] it sufficient to prove that φ−1 is a mapping of finite
distortion and

ess sup
y∈Ω̃

|Dφ−1(y)|p̃

|J(y, φ−1)|v(φ−1(y))p̃
< ∞.

Since φ : Ω → Ω̃ has the Luzin N -property, then |J(y, φ−1)|v(φ−1(y))p̃ > 0 for

almost all y ∈ Ω̃ and so φ−1 is a mapping of finite distortion. By Theorem 3.2

Kp,p(φ; Ω) = ess sup
x∈Ω

|Dφ(x)|pw(x)p

|J(x, φ)|
< ∞.
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By the change of variable formula (2.1), inequality (3.4) and using the equation
v(x) = w(x)1−n we obtain

ess sup
y∈Ω̃

|Dφ−1(y)|p̃

|J(y, φ−1)|v(φ−1(y))p̃
≤ ess sup

x∈Ω

|Dφ(x)|pw(x)p

|J(x, φ)|
= Kp,p(φ; Ω) < ∞.

So, [8, 28] φ−1 : Ω̃ → Ω generates a bounded composition operator

(φ−1)∗ : L1
p̃(Ω, v) → L1

p̃(Ω̃),

where p̃ = p/(p− n+ 1) and v(x) = w(x)1−n such that vp̃ ∈ Ap̃. □
In the case of power weights w(x) = |x|α we can reformulate Theorem 3.6 as

follows:

Theorem 3.7. Let −n/q < α < n/q̃(n− 1) and let a homeomorphism φ : Ω → Ω̃,

Ω, Ω̃ ⊂ Rn, have the Luzin N -property and generate a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, |x|αq), n− 1 < q < p < ∞.

Then the inverse mapping φ−1 : Ω̃ → Ω generates a bounded composition operator

(φ−1)∗ : L1
q̃(Ω, |x|α(1−n)q̃) → L1

p̃(Ω̃),

where q̃ = q/(q − n+ 1) and p̃ = p/(p− n+ 1).

In the case of the two-dimensional Euclidean space R2 we have q̃ = q′ = q/(q−1)

and wq ∈ Aq if and only if w−q′ ∈ Aq′ . So, Theorem 3.6 takes the form:

Theorem 3.8. Let a homeomorphism φ : Ω → Ω̃ of plane domains Ω, Ω̃ ⊂ R2 have
the Luzin N -property and generate a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω, w), 1 < q ≤ p < ∞.

Then the inverse mapping φ−1 : Ω̃ → Ω generates a bounded composition operator

(φ−1)∗ : L1
q′(Ω, v) → L1

p′(Ω̃), 1/p+ 1/p′ = 1, 1/q + 1/q′ = 1,

where a weight v(x) = w(x)−1 such that vq
′ ∈ Aq′.
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