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QUALITATIVE QUESTIONS TO MIXED LOCAL-NONLOCAL

ELLIPTIC OPERATORS

PRIYANK OZA AND JAGMOHAN TYAGI

Abstract. We establish a Lyapunov-type inequality for a class of mixed local-
nonlocal operator. We employ solution representation formula for the associated
boundary value problem. Furthermore, as an application of the Lyapunov-type
inequality, we show a positive lower bound for the generalized principal eigenvalue
of the operator.

1. Introduction

We consider a class of mixed local-nonlocal equations:{
α∆u− β(−∆)su+ cu = 0 on D,

with (α, β)-Dirichlet condition,
(1.1)

where α, β ≥ 0 are constants, D ⊂ RN is a bounded Lipschitz domain satisfying
the uniform exterior sphere condition, c ∈ C(D) is bounded and 0 < s < 1. Here,
(α, β)-Dirichlet condition is given as follows:{

u = 0 in ∂D, if β = 0

u = 0 in RN \D, if β ̸= 0.

Very recently, the elliptic equations involving mixed local and non-local operators
have gained much attention, see [4, 5] and the references therein. There also have
been substantial developments on the regularity questions to mixed operators, see,
for instance [11, 15, 22, 23] and the references therein. Recently, A. Biswas and M.
Modasiya [6] obtained the Faber-Krahn inequality for mixed local-nonlocal oper-
ators. They established the solution representation formula for Dirichlet problem
concerning mixed operators and then using it, they established the Faber-Krahn
inequality.

Let us recall that Lyapunov inequality plays an important role in the analysis
of differential equations. It has several applications such as in stability analysis,
eigenvalue bounds and many others. It is very instrumental to get certain estimates
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on the first eigenvalue of the associated eigenvalue problem. A. M. Lyapunov [21]
established a necessary condition for the problem:{

w′′ + c(x)w = 0 in (a, b),

w(a) = w(b) = 0,

to have a non-trivial solution, which is

b∫
a

|c|dx > 4

b− a
,

see [8, 21]. Later, by replacing c with c+, A. Wintner [28] proved that 4 is the
optimal constant. There are significant improvements and generalizations to the
classical Lyapunov inequality. This inequality has also been generalized to equations
pertaining to quasilinear terms, see, for instance, [13, 16, 24]. We also mention the
works [14, 17, 18, 26] and the references therein, which are devoted to the Lyapunov-
type inequality for fractional equations. We point out that apart from the above
works, there are other interesting works in this direction for partial differential
equations (PDEs) as well, see, for instance, A. Cañada [10]. A Lyapunov-type
inequality has also been established for p-Laplace equation [12], a class of singular
elliptic PDEs [20] and for Pucci’s extremal equation with gradient nonlinearity [27].
Lyapunov-type inequalities have a good number of applications, see, for instance,
[1, 7, 9, 16, 25].

Let us recall the notion of generalized principal eigenvalue for α∆ − β(−∆)s in
D in the sense of Berestycki et al. [3]:

λ∗=sup

{
λ : ∃u∈C(D), u>0 and bounded in RN , α∆u− β(−∆)su+λu≤ 0 in D

}
.

For the details, we refer to [6].
Motivated by the above results, we are interested to establish a Lyapunov-type

inequality for mixed local-nonlocal equations. We leverage the solution represen-
tation formula established in [6] to discuss the inequality. Now, to formulate our
result, let us consider the problem (1.1). Let us define a set

C :=

{
c ∈ C(D) \ {0} s.t. (1.1) has nontrivial solutions

}
.

Theorem 1.1. Let α, β > 0 in (1.1). Let D ⊂ RN be a bounded Lipschitz domain
satisfying a uniform exterior condition. Let c ∈ C. Set

M = inf
C
sup
D
c+,

where c+ denotes the positive part of the function c. Then M = λ∗, where λ∗ is the
generalized principal eigenvalue of α∆− β(−∆)s in D.

Below, we state our main result on Lyapunov-type inequality for (1.1). This also
establishes a positive lower bound for the generalized principal eigenvalue of the
operator.



MIXED LOCAL AND NONLOCAL ELLIPTIC OPERATORS 275

Theorem 1.2 (Lyapunov-type inequality). Let α, β > 0 in (1.1). Let D be a
bounded Lipschitz domain in RN satisfying a uniform exterior sphere condition.
Let λ∗ be the generalized principal eigenvalue of α∆− β(−∆)s in D. Then

λ∗ =M ≥ 1

C(N, d)
,

where C(N, d) is a universal positive constant depending only on dimension N and
the diameter d of D, which increases monotonically with d.

We mention that after the proof of this theorem, in Remark 3.1, we give a lower
bound on sup

D
|c| for any c ∈ C, in terms of the first exit time of Xt from B, where Xt

is the process associated with L (see, below Definition 2.3) and B is a ball containing
D.

In the best of our knowledge, we are not aware of any results on Lyapunov type
inequality for mixed operators.

Remark 1.3. When β = 0 in (1.1), Cañada et al. [10] established a Lyapunov-type
inequality for (1.1). We refer to Remark 5 and Theorem 2.1 therein for the details.

The organization of this note is as follows. In Section 2, we list the basic defini-
tions and several auxiliary results, which are pivotal tools in our paper. Section 3
is devoted to the proofs of our main results.

2. Preliminaries

First, we define the notion of viscosity solution for (1.1).

Definition 2.1 ([2]). Let u : RN −→ R be an upper semicontinuous (USC) function
in D. Then u is called a viscosity subsolution of (1.1) if for any x ∈ D and C2

function φ : Bρ(x) −→ R, for some Bρ(x) ⋐ D such that φ(x) = u(x), φ(y) > u(y)

for y ∈ Bρ(x) \ {x}, we have

α∆v(x)− β(−∆)sv(x) + c(x)v(x) ≥ f(x),

where

v :=

{
φ in Bρ(x),

u in RN \Bρ(x).

Moreover, we say that u satisfies α∆u − β(−∆)su + cu ≥ f in D in the viscosity
sense.

Definition 2.2 ([2]). Let u : RN −→ R be a lower semicontinuous (LSC) function
in D. Then u is called a viscosity supersolution of (1.1) if for any x ∈ D and C2

function ψ : Bρ(x) −→ R, for some Bρ(x) ⋐ D such that ψ(x) = u(x), ψ(y) < u(y)

for y ∈ Bρ(x) \ {x}, we have

α∆w(x)− β(−∆)sw(x) + c(x)w(x) ≤ f(x),

where

w :=

{
ψ in Bρ(x),

u in RN \Bρ(x).
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Moreover, we say that u satisfies α∆u − β(−∆)su + cu ≤ f in D in the viscosity
sense.

Definition 2.3. A continuous function u is said to be a viscosity solution to (1.1)
if it is a subsolution as well as a supersolution of (1.1).

Let (Ω,F ,P) be a complete probability space. Let X,B and Y be processes
defined on (Ω,F ,P) given as X = B+Y, where Y is a pure jump Lévy process and
B is an N -dimensional Brownian motion, independent of Y, which runs twice as
fast as standard Brownian motion. Here, X is a strong Markov process such that
the generator of semigroup associated with X is given by

L = α∆− β(−∆)s, for 0 < s < 1, and α, β > 0.

In next theorem, let us mention the existence of a solution to mixed local-nonlocal
equation and its representation formula, which is crucial to prove our results.

Theorem 2.4 (Theorem 1.1 [6]). Let D ⊂ RN be a bounded Lipschitz domain. Let
f ∈ C(D), and g ∈ C(RN \ D) be bounded. Then there exists a unique bounded
viscosity solution u ∈ C(RN ) to the problem:{

∆u− (−∆)su = −f in D,

u = g in RN \D.

Moreover, u is given by

u(x) = Ex

[∫ τD

0
f(Xt)dt

]
+ Ex [g(XτD)] , x ∈ D.

Here τD is the first exit time of X from D, i.e.,

τD = inf{t > 0 : Xt /∈ D},
and E denotes the expectation with respect to the measure P.

Lemma 2.5 (Lemma 2.2 [6]). Let D ⊂ RN be a bounded domain. Let f ∈ Lp(D),
for p > N

2 . Let u : RN −→ R be a bounded function such that

u(x) ≤ Ex

[
u(XτD)

]
+ Ex

[∫ τD

0
f(Xt)dt

]
, x ∈ D.

Then there exists a positive constant C = C(p,N, d) such that

sup
D
u ≤ sup

RN\D
u+ + C∥f∥p,D,

where d denotes the diameter of D.

Next, we mention a maximum principle for narrow domains, which we use in the
proof of Theorem 1.1.

Theorem 2.6 (Corollary 2.1 [6]). Let c ∈ C(D). Let u be a bounded continuous
viscosity subsolution to{

∆u− (−∆)su+ cu = 0 in D,

u ≤ 0 in RN \D.
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Then there exists a constant ε = ε(d, ∥c∥∞, diam(D)) such that if |D| < ε then
u ≤ 0 in RN .

3. Proofs of our main results

Proof of Theorem 1.1. We first observe that λ∗ ∈ C. Let Ψ be the corresponding
principal eigenfunction, i.e., Ψ ∈ C(RN ), bounded and positive in D, which satisfies{

α∆Ψ− β(−∆)sΨ+ λ∗Ψ = 0 in D,

Ψ = 0 in RN \D.

Moreover, λ∗ > 0, which can be seen as follows. Assume the contrary, i.e., λ∗ ≤ 0.
It is clear using λ∗ ≤ 0 that Ψ is a viscosity subsolution to{

α∆u− β(−∆)su = 0 in D,

u = 0 in RN \D.

On the other hand, comparison principle (Theorem 5.2 [6]) infers that Ψ ≤ 0 in
D. This gives a contradiction. Hence λ∗ > 0, which further yields by the definition
that M ≤ λ∗.
Our aim is to show that M = λ∗. Let if possible, M < λ∗. It implies that λ∗ is not
a lower bound of the set

S :=

{
sup
D
c+ : c ∈ C

}
.

This along with the fact λ∗ ∈ C yields that for some ε > 0, there exists c ∈ C such
that

α∆u− β(−∆)su+ cu = 0 in D,

and c+ ≤ λ∗ − ε. Next, consider the set

D+
u = {u > 0} ∩D.

Now, let us define

t = sup{s : su−Ψ < 0 in K},
where K is some compact subset of D+

u . Now, since Ψ > 0 in D, Ψ = 0 in RN \D
and u ≤ 0 in RN \D+

u , so this yields

tu−Ψ ≤ 0 in K ∪
(
RN \D+

u

)
.

Also, observe that(
α∆− β(−∆)s

)
(tu−Ψ) + λ∗(tu−Ψ)

=
(
tα∆− tβ(−∆)s

)
u−

(
α∆− β(−∆)s

)
Ψ+ λ∗(tu−Ψ)

≥ t
(
α∆− β(−∆)s + c+

)
u−

(
α∆− β(−∆)s + λ∗

)
Ψ+ εtu

≥ 0 in D+
u ,

since λ∗ ≥ c+ + ε. Now, for any ε′ > 0, we can take K large enough such that
|D+

u \K| < ε′, where ε′ = ε′(N, diam(D+
u )). Further, by Theorem 2.6, it yields

tu ≤ Ψ in RN .(3.1)
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Now, we scale Ψ such that Φ := tu−Ψ attains its maximum value at some point x0
of D+

u with Φ(x0) = 0. By the continuity of u and that Ψ > 0 in D, we get that x0
is an interior point of D+

u . Note that we denote this scaled function by Ψ. Further,
we observe that

0 = α∆Φ(x0)− β(−∆)sΦ(x0) + λ∗Φ(x0)(3.2)

≤ −β P.V.

∫
RN

Φ(x0)− Φ(x)

|x0 − x|N+2s
dx

= β P.V.

∫
RN

Φ(x)

|x0 − x|N+2s
dx,

where in the second step, we used the fact that x0 is a point of maxima inside

D+
u \K and Φ(x0) = 0. One may also see pp. 22–23 [19] for the details. Now, (3.1)

together with (3.2) yields

Φ ≡ 0 in RN ,

equivalently,

tu = Ψ in RN .

This gives that

α∆u− β(−∆)su+ λ∗u = 0 in D,

which is not possible. This yields that D+
u = ∅. Similarly, one can see that D−

u :=
{u < 0} ∩ D = ∅. Thus, u must be a trivial solution, which gives a contradiction.
Hence, M = λ∗.

□

Proof of Theorem 1.2. By Theorem 2.4, we have that the viscosity solution of{
α∆u− β(−∆)su = −f in D

u = 0 in RN \D,

is given by

u(x) = Ex

[∫ τD

0
f(Xt)dt

]
, x ∈ D.

Further, by an application of Lemma 2.5, we get that u satisfies the following
estimate:

u(x) ≤ (sup
D
f)Ex[τD]

≤ (sup
D
f)C(N, d), x ∈ D,

for some positive constant C(N, d) depending only on N and d, where d denotes
the diameter of D. Let Ψ be the principal eigenfunction of α∆− β(−∆)s, then we
have

α∆Ψ− β(−∆)sΨ+ λ∗Ψ = 0 in D.
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This further gives

α∆Ψ− β(−∆)sΨ = −λ∗Ψ in D.

Then by Lemma 2.5, we have that Ψ satisfies

sup
D

Ψ ≤ sup
D

(λ∗Ψ)C(N, d)

≤ C(N, d)λ∗sup
D

Ψ.

Now, since Ψ > 0 in D, so we have

1 ≤ C(N, d)λ∗.

In other words,

λ∗ ≥ 1

C(N, d)
.

□
Remark 3.1. In particular, using the arguments of Lemma 3.1 [6], we see that

|u(x)| ≤ sup
D

|c| sup
D

|u|Ex[τB], for x ∈ D and c ∈ C,

where B is a ball that contains D. Next, let y ∈ D be a point, where |u| attains its
maximum in D. This yields

|u(y)| ≤ sup
D

|c||u(y)|Ey[τB],

equivalently,

sup
D

|c| ≥ 1

Ey[τB]
, y ∈ D.

This immediately yields that

λ∗ ≥ 1

Ey[τB]
, for any y ∈ D.
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