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0 r

−1ω(r) dr < ∞. The hypotheses and conclusions of [14] are most easily stated
if we fix y = 0 and let U = Bε = {x ∈ Rn : |x| < ε} for ε sufficiently small. By an
affine change of coordinates, we may arrange aij(0) = δij , so we may assume

(1.4) sup
|x|=r

|aij(x)− δij | ≤ ω(r) for 0 < r < ε.

It was found in [14] that the existence of a solution of

(1.5) −Lo(x, ∂x)F (x) = δ(x) in Bε,

for ε sufficiently small depends on the behavior of the integral

(1.6) Io(r) =
1

|Sn−1|

∫
r<|z|<ε

(
tr(Az)− n

⟨Azz, z⟩
|z|2

)
dz

|z|n

as r → 0; here Ax denotes the matrix (aij) and ⟨Azz, z⟩ = aij(z)zizj . If Io(0) =
limr→0 I

o(r) exists and is finite, then we showed there is a solution of (1.5). However,
if Io(r) → −∞ as r → 0, then we found a solution F (x) of

(1.7) Lo(x, ∂x)F (x) = 0 in Bε,

which has a singularity at x = 0, but F (x) = o(|x|2−n) as |x| → 0 and F (x) is not
a solution of (1.5); this violates the “extended maximum principle” of [6].

In the present paper, we generalize the results of [14] by including the 1st-order
term bk∂k, which is called a drift term: cf. [3], [1]. If the bk are bounded in U , they
will not effect the existence of the fundamental solution, so we will allow the drift
to be singular at x = 0, but satisfy the condition:

(1.8) sup
|x|=r

|x| |bk(x)| ≤ c ω(r) for 0 < r < ε.

(Here and throughout this paper, c denotes a generic constant.) We again construct
an unbounded solution Z(x) of

(1.9) L(x, ∂x)Z(x) = 0 for x ∈ Bε\{0},
and then check to see whether Z has the appropriate singular behavior as |x| → 0
so that, in a distributional sense,

(1.10) −L(x, ∂x)Z(x) = C0 δ(x) for some constant C0.

If so, then setting F (x) := C−1
0 Z(x) defines a solution of

(1.11) −L(x, ∂x)F (x) = δ(x) for x ∈ Bε.

To determine whether this can be done, the quantity (1.6) is generalized to

(1.12) I(r) =
1

|Sn−1|

∫
r<|z|<ε

(
tr(Az)− n

⟨Azz, z⟩
|z|2

+ ⟨Bz, z⟩
)
dz

|z|n
,

where Bz denotes the vector with components bk(z) and ⟨Bz, z⟩ = bk(z) zk. In
general, I(r) may have a singularity at r = 0, but it is weaker than logarithmic: for
any λ > 0 there exists cλ > 0 such that

(1.13) |I(r)| ≤ λ | log r|+ cλ for 0 < r < ε.

Before stating the main results of this paper, we need some notation and an
additional assumption. For an open set U , 1 < p < ∞, and integer m = 0, 1, 2, let
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Wm,p
ℓoc (U) denote the Sobolev space of functions whose derivatives up to order m

are locally Lp-integrable in U . The Lp-mean of w ∈ Lp
ℓoc(R

n\{0}) on the annulus
Ar := {x : r < |x| < 2r} is defined by

(1.14a) Mp(w, r) :=

(
⧸
∫

Ar

|w(x)|p dx
)1/p

.

Similarly, we define

(1.14b) M1,p(w, r) = rMp(Dw, r) +Mp(w, r) for w ∈W 1,p
ℓoc (R

n\{0}),

(1.14c) M2,p(w, r) = r2Mp(D
2w, r) +M1,p(w, r) for w ∈W 2,p

ℓoc (R
n\{0}).

For p = ∞ we can analogously define M∞(w, r), M1,∞(w, r) and M2,∞(w, r). The
Lp-mean over annuli centered at y ̸= 0 will be denoted by Mp(w, r; y) and similarly
for M1,p(w, r; y) and M2,p(w, r; y). We also define

(1.15) σ(r) =

∫ r

0
ω2(ρ)

dρ

ρ
,

which satisfies σ(r) → 0 as r → 0 because of (1.3). Finally, as a modulus of
continuity we want ω(r) to be nondecreasing for 0 < r < 1, but we also assume for
some κ ∈ (0, 1) that

(1.16) ω(r) r−1+κ is nonincreasing on 0 < r < 1.

This is natural since we are interested in moduli of continuity that vanish slower
than r as r → 0.

Our first result generalizes Theorem 1 in [14], which only applied to Lo(x, ∂x).

Theorem 1.1. For n ≥ 3 and p ∈ (1,∞), assume aij = aji satisfy (1.4) while the
bk satisfy (1.8). Then for ε > 0 sufficiently small, there is a solution of (1.9) in the
form

(1.17a) Z(x) =

∫ ε

|x|
s1−n eI(s) ds (1 + ζ(|x|)) + v(x) for |x| < ε,

where I(r) is given by (1.12), ζ(r) satisfies

(1.17b) M2,p(ζ, r) ≤ c max(ω(r), σ(r)),

and v(x) satisfies

(1.17c) M2,p(v, r) ≤ c r2−n eI(r) ω(r).

Moreover, for any u ∈ W 2,p
ℓoc (Bε\{0}) that is a strong solution of L(x, ∂x)u = 0 in

Bε\{0} subject to the growth condition

(1.18) M2,p(u, r) ≤ c r1−n+ε0 where ε0 > 0,

there exist constants c0, c1 (depending on u) such that

(1.19) u(x) = c0 Z(x) + c1 + w(x),

where M2,p(w, r) ≤ c r1−ε1 for any ε1 > 0.
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We will prove this result in Section 2, but let us here observe that I(r) satisfies
|I ′(r)| ≤ c r−1 ω(r), so we may integrate by parts and take p > n to conclude

(1.20) Z(x) =
|x|2−n eI(|x|)

n− 2
(1 + ξ(x)) ,

where M1,∞(ξ, r) ≤ c max(ω(r), σ(r)). This shows that I(r) controls how closely Z
adheres to the fundamental solution of the Laplacian.

Our second result generalizes Theorem 2 in [14] and shows that the existence and
finiteness of the limit I(0) = limr→0 I(r) determines whether Z solves (1.10) for
some constant C0.

Theorem 1.2. Under the assumptions of Theorem 1.1 and ε > 0 sufficiently small:

(i) If I(0) = limr→0 I(r) exists and is finite, then we can solve (1.10) in Bε

with C0 = |Sn−1| eI(0).
(ii) If I(r) → −∞ as r → 0, then solving (1.10) in Bε yields C0 = 0, and so Z

solves −L(x, ∂x)Z(x) = 0 in Bε, despite its singularity at x = 0.

We will prove this result in Section 3, but let us observe that in case (i) we have
found a solution of (1.11) of the form

(1.21) F (x) =
|x|2−n

(n− 2)|Sn−1|
(1 + o(1)) as |x| → 0,

so the comparison with the fundamental solution of the Laplacian is even more
explicit. On the other hand, if I(r) → +∞ as r → 0, then the singular solution
Z(x) grows more rapidly as |x| → 0 than the fundamental solution for the Laplacian,
and we are not able to solve (1.10).

Let us consider a simple example to illustrate the effect of the drift term on the
fundamental solution.

Example 1. Let aij = δij so that our operator (1.1) becomes

(1.22) L(x, ∂x) = ∆+ bk(x)∂x,

and the quantity I(r) in (1.12) reduces to

(1.23) I(r) =
1

|Sn−1|

∫
r<|x|<ε

⟨Bz, z⟩
|z|n

dz.

If ω(r) satisfies the Dini condition, then from condition (1.8) we easily conclude that
I(0) exists and is finite; but this finite limit may exist without the Dini condition:
e.g. we could take bk(x) = xk sin(|x|−1)ω(|x|)/|x|2. In any case, provided I(0) is
finite, we have a solution F (x) of (1.10) that is comparable to the fundamental
solution of the Laplacian.

In [3], Cranston and Zhao consider operators of the form L = 1
2∆ + b · ∇ with

vector field b. Assuming U is a bounded Lipschitz domain and b(x) satisfies the
conditions

(1.24a) lim
r→0

sup
x∈U

∫
|x−y|<r

|b(y)|2

|x− y|n−2
dy=0= lim

r→0
sup
x∈U

∫
|x−y|<r

|b(y)|
|x− y|n−1

dy,
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they conclude that the Green’s function G(x, y) for L in U exists and is comparable
to the Green’s function G0(x, y) for L0 =

1
2∆, i.e.

(1.24b) c−1G0(x, y) ≤ G(x, y) ≤ cG0(x, y) for x, y ∈ U, x ̸= y.

If U contains the origin, then setting F (x) := G(x, 0) defines a solution of (1.11), so
let us compare our hypotheses and conclusions with those of [3]. If b has a singularity
at x = 0 of the form |b(x)| = |x|−1 ω(|x|), the conditions in (1.24a) require∫ r

0

ω2(ρ)

ρ
dρ <∞ and

∫ r

0

ω(ρ)

ρ
dρ <∞.

The first of these is the square-Dini condition (1.3) that we have required, while
the second is the Dini condition that we have not required: to conclude that the
fundamental solution exists at x = 0, we only require the function I(r) given in
(1.23) to have a finite limit I(0) = limr→0 I(r). Moreover, (1.20) is a sharper
estimate than (1.24b).

In Example 1, the drift term plays the role of a perturbation which, if not too
large, does not affect the existence of the fundamental solution. We now consider
an example where singular drift can convert an operator Lo that does not have a
fundamental solution to one for which a fundamental solution exists!

Example 2. Consider Lo = aij∂i∂j with coefficients

(1.25) aij(x) = δij + g(r)
xixj
|x|2

,

where |g(r)| ≤ ω(r) with ω satisfying (1.3). Coefficients of the form (1.25) were first
considered by Gilbarg & Serrin [6], and have proven useful in both nondivergence
and divergence form equations (cf. [14], [15],[16]). We can use (1.6) to calculate

(1.26) Io(r) = (1− n)

∫ 1

r
g(ρ)

dρ

ρ
.

Note that Io(0)=limr→0 I
o(r) exists and is finite when ω satisfies the Dini condition,

but this finite limit may exist without Dini continuity: e.g. g(r) = sin(r−1)ω(r).
Now let us assume g(r) > 0 and ω does not satisfy the Dini condition. Then

Io(r) → −∞ as r → 0, so the fundamental solution for Lo does not exist at y = 0.
However, if we add the first-order coefficients

(1.27) bk(x) = (n− 1)
xk
|x|2

[g(|x|) + g2(|x|)]

to obtain L as in (1.1), then we can use (1.12) to calculate

(1.28) I(r) = (n− 1)

∫ 1

r

g2(ρ)

ρ
dρ.

Since g2(r) ≤ ω2(r) and ω satisfies (1.3), we see that I(r) has a finite limit as r → 0,
and so we can solve (1.10) to conclude the fundamental solution exists at y = 0.

As previously stated, we will prove Theorem 1 in Section 2 and Theorem 2 in
Section 3; but in those sections we will also state and prove Corollaries 1 and 2
respectively, which show how the formulas for the singular solution Z change when
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y ̸= 0 and aij(y) ̸= δij . To formulate these results, we need to generalize (1.4): for
a given y ∈ U , choose ε so that 0 < ε < dist(y, ∂U) and assume

(1.29) sup
|x−y|=r

∥Ax −Ay∥ ≤ ω(r) for 0 < r < ε.

We continue to assume the bk are only singular at x = 0 and satisfy (1.8). We also
generalize the function I(r) in (1.12) as

(1.30a) Iy(r) =
1

|Sn−1|

∫
r<|z−y|<ε

H(z, y)
dz

|z − y|n
,

where the integrand H(z, y) is

(1.30b)
tr(AzA

−1
y )−n⟨AzA

−1/2
y (z − y),A

−1/2
y (z − y)⟩

|z − y|2

+ ⟨BzA
−1/2
y , (z − y)⟩,

with A−1
y denoting the inverse matrix. If y = 0 and A0 = I, then (1.30) coincides

with (1.12); if y ̸= 0 and we also stipulate 0 < ε < |y|, then Bz is bounded on
|z−y| < ε, so the last term in (1.30b) will not play a role in whether the limit Iy(0)
exists and is finite. Now we state the main result of this paper.

Theorem 1.3. Suppose L(x, ∂x) as in (1.1) is an elliptic operator in a bounded
open set U ⊂ Rn, n ≥ 3, where the coefficients aij = aji are continuous functions
with modulus of continuity ω(r) satisfying (1.3). Suppose U contains the origin and
the bk satisfy (1.8) but otherwise are bounded in U . For each y ∈ U assume that
the limit Iy(0) = limr→0 Iy(r) exists and is finite. Then L(x, ∂x) has a fundamental
solution F (x, y) in U and it has the asymptotic behavior

(1.31) F (x, y) =
⟨A−1

y (x− y), (x− y)⟩
2−n
2

(n− 2)|Sn−1|
√
detAy

(1 + o(1))) as x→ y.

This is proved in Section 3. Note that the leading asymptotic in (1.31) is familiar as
the “Levi function” that occurs in the classical case (cf. [20]). As a consequence of
Theorem 3, we see that the singular drift may affect the existence of the fundamental
solution but does not play a role in its asymptotic behavior as x→ y.

Many of the arguments in this paper also appear in [14], but we have repeated
them here for the convenience of the reader. From a more general perspective, the
asymptotic analysis used here is related to that developed in [12].

While our paper focusses on the asymptotic behavior of the singularity of the
fundamental solution, many papers in the literature study conditions under which
the fundamental solution, or the Green’s function on Rn or a bounded domain Ω, is
uniformly equivalent to that of the Laplacian or other constant coefficient operator.
This equivalence requires more than continuity of the coefficients; cf. [2]. When the
coefficients are Hölder continuous, see [9], [10], and [21].

Finally, let us compare our results (in [14] and this paper) with recent work
estimating the singularity of the Green’s function for Lo(x, ∂x) = aij(x)∂i∂j when
the coefficients aij satisfy the Dini mean oscillation (DMO) condition: cf. [8], [11],
[5]. If U is a bounded C1,1-domain and the aij = aji are continuous functions on
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U , then it is well-known that the Green’s function G(x, y) exists. If the aij satisfy
the DMO condition in U , then [5] shows that, for any x0 ∈ U , the following limit
holds:

(1.32) lim
x→x0

|x− x0|2−n|G(x, x0)−Gx0(x, x0)| = 0,

whereGx0 denotes that Green’s function for the constant coefficient operator Lo(x0, ∂x)
in U . Since the Green’s function is a particular fundamental solution and since
(1.32) is equivalent to (1.31), it is natural to compare the hypotheses of the two
results. As shown in [4], there are coefficients that are DMO but do not satisfy our
square-Dini condition (1.3). On the other hand, there are coefficients of the form
(1.25) which satisfy (1.3) but are not DMO. In fact, as shown in [16], with

(1.33) g(r) = sin(| log r|) | log r|−γ ,

the coefficients in (1.25) are DMO only for γ > 1, but they satisfy (1.3) for γ > 1/2
and the limit I(0) exists and is finite for all γ > 0. This example with 1/2 < δ ≤ 1
shows that the results of [5] do not cover our results for Lo(x, ∂x), let alone the
operator (1.1) with singular drift.

2. Construction of the singular solution Z

In this section, we will not only prove Theorem 1, but we will state and prove
Corollary 1, which shows how the formulas change when we no longer assume y = 0
and aij(y) = δij . Instead of constructing Z(x) in a small ball, we replace the
condition that ω(r) satisfies (1.3) with

(2.1) σ(1) =

∫ 1

0
ω2(ρ)

dρ

ρ
< µ2

where µ > 0 is sufficiently small, and then show existence in the unit ball B1. In
fact, with κ ∈ (0, 1) as in (1.16), this also implies

(2.2) ω(r) < cκ µ for 0 < r ≤ 1,

since

µ2 >

∫ r

0
ω2(ρ)

dρ

ρ
≥ ω2(r)r−2+2κ

∫ r

0
ρ1−2κdρ =

ω2(r)

2(1− κ)
.

Moreover, it will be useful to consider L on all of Rn, so we assume

(2.3) aij(x) = δij and bk(x) = 0 for |x| > 1,

and construct a solution of LZ = 0 on Rn\{0}.

Proof of Theorem 1. As in [14], we use spherical means: for a function f(x) we
denote its mean value over the sphere |x| = r by f(r):

f(r) = ⧸
∫

Sn−1

f(rθ) dθ,

where Sn−1 is the unit sphere, the slashed integral denotes mean value, r = |x|,
θ = x/|x| ∈ Sn−1, and dθ denotes standard surface measure on Sn−1. Let us write

(2.4a) Z(x) = h(|x|) + v(x), where h(r) := Z(r),
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so that

(2.4b) v(r) = 0.

If we take the spherical mean of the equation L(h+ v) = 0, we obtain

(2.5a) α(r)h′′ +

[
αn(r)− α(r) + β(r)

r

]
h′ + L v(r) = 0,

where

(2.5b) α(r) := ⧸
∫

Sn−1

aij(rθ)θiθj dθ, αn(r) := ⧸
∫

Sn−1

aii(rθ) dθ,

and

(2.5c) β(r) := r⧸
∫

Sn−1

bk(rθ)θk dθ.

In terms of these, instead of (1.12) we can write

(2.6) I(r) =

∫ 1

r
(αn(s)− nα(s) + β(s))

ds

s
.

Using (1.4), we see that

(2.7a) α(r) = 1 +O(ω(r)) and αn(r) = n+O(ω(r)) as r → 0,

and using (1.8) we see that

(2.7b) |β(r)| ≤ ω(r).

Hence the integrand in (2.6) is bounded by c ω(s) s−1. Since ω(r) need not satisfy
the Dini condition, we do not know whether I(r) has a finite limit as r → 0; this is,
of course, the significance of Theorem 2.

Turning to the L v(r) term, if we write aij∂i∂jv = ãij∂i∂jv + ∆v where ãij :=

(aij − δij) and use ∆v = ∆v = 0, we see that

Lv(r) = ãij∂i∂jv(r) + bk∂kv(r).

Notice that |Lv(r)| ≤ c ω(r) (|D2v|+r−1|Dv|) for 0 < r < 1 and Lv(r) = 0 for r > 1.
Since α(r) → 1 as r → 0 and α(r) = 1 for r > 1, we may assume α(r) ≥ δ > 0 for
0 < r <∞. Hence we may divide (2.5a) by α(r) and replace h′ by g to obtain

(2.8a) g′ +

[
n− 1 +R(r)

r

]
g = B[v](r),

where

(2.8b) R(r) =
αn(r) + β(r)

α(r)
− n

satisfies |R(r)| ≤ c ω(r) as r → 0 and R(r) = 0 for r > 1, and B[v](r) satisfies

(2.8c) |B[v](r)| ≤ c ω(r)
(
|D2v(r)|+ r−1|Dv(r)|

)
for 0 < r < 1

and B[v](r) = 0 for r > 1. Moreover, the monotonicity of ω(r) and (1.16) imply

(2.8d) sup
r<ρ<2r

ω(ρ) ≤ c ω(r),
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so we consequently obtain

(2.8e) r2Mp(B[v], r) ≤ c ω(r)M2,p(v, r).

Solving (2.8a) involves the integrating factor rn−1E−(r), where we introduce

(2.9) E±(r) = exp

[
±
∫ ∞

r
R(s)

ds

s

]
= exp

[
±
∫ 1

r
R(s)

ds

s

]
=

1

E∓(r)
.

Notice that E−(r)E+(ρ) = exp(
∫ r
ρ R(s) s

−1 ds) so by (2.2) we have

(2.10a)
(ρ
r

)cκ µ
≤ exp

(
±
∫ r

ρ
R(s)

ds

s

)
≤
(
r

ρ

)cκ µ

for 0 < ρ < r ≤ 1.

In particular, we have

(2.10b) c1E±(r) ≤ E±(ρ) ≤ c2E±(r) for r < ρ < 2r,

and for any f ∈ Lp
ℓoc(R

n\{0}) and ν ∈ R we have

(2.10c) Mp(|x|νE±(|x|) f(x), r) ≤ c rνE±(r)Mp(f, r).

While E+(r) is used to solve (2.8a), we observe that it is equivalent to eI(r). In fact,

(2.11a) E+(r) = AeI(r)(1 + τ(r))

where |R(s)(1− α(s))| ≤ c ω2(s) implies

(2.11b) A = exp

[∫ 1

0
R(s)(1− α(s))s−1 ds

]
is finite and positive,

and

(2.11c) τ(r) = exp

[
−
∫ r

0
R(s)[1− α(s)]

ds

s

]
− 1 satisfies |τ(r)| ≤ c σ(r).

Hence, for some constants c1, c2 we have

(2.12) c1E+(r) ≤ eI(r) ≤ c2E+(r).

We consider (2.8a) as an ODE that depends on v ∈ Y , where Y is the Banach

space of functions v ∈W 2,p
ℓoc (R

n\{0}) for which

(2.13) ∥v∥Y := sup
0<r<1

M2,p(v, r) r
n−2

ω(r) eI(r)
+ sup

r>1

M2,p(v, r) r
n−1

µ
<∞.

If we let ϕ(r)= rn−1E−(r)g(r), then (2.8a) implies ϕ′(r)= rn−1E−(r)B[v](r). This
can be integrated to find

(2.14) ϕ(r) = ϕ(0) +

∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ,

where ϕ(0) is an arbitrary constant. Of course, for (2.14) to be valid we need to
know that rn−1E−(r)B[v](r) is integrable at r = 0. In fact, we will show below
that for v ∈ Y we have

(2.15)

∫ r

0
ρn−1E−(ρ) |B[v](ρ)| dρ ≤ c µ2 for all r > 0,
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where c may be taken uniformly for all v ∈ Y with ∥v∥Y ≤ 1. Hence (2.14) is valid
and we conclude

(2.16a) g(r) = h′(r) = r1−nE+(r)

[
ϕ(0) +

∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ

]
and

(2.16b)
h′′(r) =

1− n−R(r)

rn
E+(r)

[
ϕ(0) +

∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ

]
+B[v](r).

To verify (2.15), observe that v ∈ Y implies M2,p(v, r)≤c ω(r) r2−nE+(r), so we
can use (2.8c), (2.8d), (2.10b), and Hölder’s inequality to conclude∫ 2r

r
ρn−1E−(ρ)|B[v](ρ)|dρ ≤ cE−(r)ω(r)

∫ 2r

r
ρn−1(|D2v(ρ)|+ρ−1|Dv(ρ)|)dρ

≤ cE−(r)ω(r)

∫
r<|x|<2r

(|D2v(x)|+ |x|−1|Dv(x)|)dx

≤ cE−(r)ω(r) r
n−2M2,p(v, r) ≤ c ω2(r).

Now if we write∫ r

0
ρn−1E−(ρ) |B[v](ρ)| dρ =

∞∑
j=0

∫ r/2j

r/2j+1

ρn−1E−(ρ) |B[v](ρ)| dρ,

then we obtain

(2.17)

∫ r

0
ρn−1E−(ρ) |B[v](ρ)| dρ ≤ c

∞∑
j=0

ω2
( r

2j+1

)
≤ c

∫ r

0
ω2(ρ)

dρ

ρ
= c σ(r) < cµ2.

This confirms (2.15) with c uniform for ∥v∥Y ≤ 1.
We also have a PDE for v that depends upon h. From LZ − LZ = 0 we find:

(2.18)
−∆v = ãij∂i∂jh− ãij∂i∂jh+ ãij∂i∂jv − ãij∂i∂jv

+ bk∂kh− bk∂kh++bk∂kv − bk∂kv.

For a given v ∈ Y , we solve (2.8a) for h and use (2.16a) and (2.16b) to write

bk∂kh = r−nE+(r)

[
ϕ(0) +

∫ r

0
ρn−1E−(ρ)B[v](ρ)dρ

]
ψ1

and

ãij∂i∂jh = r−nE+(r)

[
ϕ(0) +

∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ

]
ψ2 +B[v] ãijθiθj ,

where

(2.19) ψ1(rθ) = r bk(rθ)θk and ψ2(rθ) = ãii(rθ)− (n+R(r))ãij(rθ)θiθj

also satisfiy |ψi(rθ)| ≤ c ω(r) for i = 1, 2. Plugging this into (2.18), we obtain
an equation of the form −∆v = F [v]. We want to apply K, convolution by the
fundamental solution of the Laplacian, to solve this, but there could be a problem:
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F [v] may not be integrable at x = 0. However, from (2.18) we see that F [v] = 0
and multiplying F [v](x) by |x| makes it integrable, so we can use Proposition A.1
in Appendix A.

Applying K to both sides of (2.18), we obtain an equation for v alone:

(2.20) v + S1v + S2v = ϕ(0)w,

where

w(x) = Ky→x

(
|y|−nE+(|y|)

[
ψ(y)− ψ(|y|)

])
S1v=−Ky→x

(
|y|−nE+(|y|)

∫ |y|

0
ρn−1E−(ρ)B[v](ρ)dρ

[
ψ(y)− ψ(|y|)

])
S2v = −Ky→x

(
B[v](|y|)

[
ãijθiθj − ãijθiθj

]
+ ãijθiθj − ãijθiθj

)
,

and we have let ψ := ψ1 + ψ2. To find v ∈ Y satisfying (2.20) we need to show
w ∈ Y and Si : Y → Y has small operator norm for i = 1, 2.

To show w ∈ Y , we must estimate M2,p(w, r) for 0 < r < 1 and for r > 1. We

apply Proposition 1 in Appendix A to f(x) = |x|−nE+(|x|)(ψ(x) − ψ(|x|), which
vanishes for |x| > 1, to conclude for 0 < r < 1 we have

(2.21) M2,p(w, r)≤c
(
r1−n

∫ r

0
E+(ρ)ω(ρ) dρ+r

∫ 1

r
E+(ρ)ω(ρ)ρ

−n dρ

)
.

We can use (2.10a) and the monotonicity of ω(r) to estimate

(2.22a)

∫ r

0
E+(ρ)ω(ρ) dρ ≤ E+(r)ω(r) r

cµ

∫ r

0
ρ−cµdρ = c r E+(r)ω(r)

and similarly

(2.22b)

∫ 1

r
E+(ρ)ω(ρ) ρ

−n dρ ≤ c r1−nE+(r)ω(r).

Using these in (2.21), we obtain M2,p(w, r) r
n−2 ≤ c ω(r)E+(r) for 0 < r < 1,

and we can invoke (2.12) to replace E+(r) by eI(r) as required in the norm for Y .
Meanwhile, for r > 1 we use (2.2) and E+(ρ) ≤ ρ−c µ for 0 < ρ < 1 to conclude

M2,p(w, r) ≤ c r1−n

∫ 1

0
E+(ρ)ω(ρ) dρ ≤ c µ r1−n.

Hence M2,p(w, r) r
n−1 ≤ c µ for r > 1. These estimates confirm that w ∈ Y .

Next let us show that S1 : Y → Y with small operator norm. We assume
∥v∥Y ≤ 1 and we want to estimate M2,p(S1v, r) separately for 0 < r < 1 and r > 1.
Using (2.15) we see that the function

f1(y) = |y|−nE+(|y|)
∫ |y|

0
ρn−1E−(ρ)B[v](ρ) dρ

(
ψ(y)− ψ(|y|)

)
satisfies Mp(f1, r) ≤ c µ2E+(r)ω(r) r

−n for 0 < r < 1 and Mp(f1, r) = 0 for r > 1.
Since S1v = −Kf1, we can apply Proposition A.1 in Appendix 1 to obtain

M2,p(S1v, r) ≤ c µ2
(
r1−n

∫ r

0
E+(ρ)ω(ρ) dρ+ r

∫ 1

r
E+(ρ)ω(ρ)ρ

−n dρ

)
.
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Using (2.22a) and (2.22b), we conclude M2,p(S1v, r) r
n−2 ≤ c µ2 ω(r)E+(r) for 0 <

r < 1. On the other hand, for r > 1, Proposition 1 in Appendix 1 implies

M2,p(S1v, r) ≤ c µ2 r1−n

∫ 1

0
E+(ρ)ω(ρ) dρ ≤ c µ3 r1−n,

so M2,p(S1v, r) r
n−1 ≤ c µ3 for r > 1. Combining these estimates, we see that

S1 : Y → Y has small operator norm.
Finally, we show that S2 : Y → Y with small operator norm. Again we assume

∥v∥Y ≤ 1 and estimate M2,p(S2v, r) separately for 0 < r < 1 and r > 1. Notice
that the function

f2 = B[v] (ãijθiθj − ãijθiθj)

satisfies

Mp(f2, r) ≤ ω(r)Mp(B[v], r) ≤ c ω3(r)E+(r) r
−n for 0 < r < 1,

where c is independent of v, and Mp(f2, r) = 0 for r > 1. Similarly, the function

f3 = ãij∂i∂jv − ãij∂i∂jv

satisfies

Mp(f3, r) ≤ ω(r)Mp(D
2v, r) ≤ ω2(r)E+(r)r

−n for 0 < r < 1,

and Mp(f3, r) = 0 for r > 1. For 0 < r < 1, we apply Proposition 1 in Appendix 1
to S2v = −K(f2 + f3) to conclude

M2,p(S2v, r) ≤ c

(
r1−n

∫ r

0
ω2(ρ)E+(ρ) dρ+ r

∫ 1

r
ω2(ρ)E+(ρ) ρ

−n dρ

)
.

Using (2.2), (2.22a), and (2.22b), we conclude thatM2,p(S2v, r) r
n−2 ≤ c µω(r)E+(r)

for 0 < r < 1. Meanwhile, for r > 1, we use (2.2) and (2.10a) to estimate

M2,p(S2v, r) ≤ c r1−n

∫ 1

0
ω2(ρ)E+(ρ) dρ ≤ c µ2 r1−n

∫ 1

0
ρ−c µ dρ ≤ c µ2 r1−n.

Consequently, M2,p(S2v, r) r
n−1/µ ≤ c µ. These estimates show that S2 : Y → Y

has small operator norm.
Since S1+S2 has small operator norm on Y , we conclude that (2.20) has a unique

solution v ∈ Y , depending on the choice of the constant c∗ = ϕ(0). But once c∗ and
v are known, we find g(r) from (2.16a) and integrate to find h(r):

(2.23) h(r) =

∫ ∞

r
s1−nE+(s)

[
c∗ +

∫ s

0
ρn−1E−(ρ)B[v](ρ) dρ

]
ds+ c2

where c2 is an arbitrary constant. To show that the solution Z(x) = h(|x|) + v(x)

is of the form (1.17), we choose c∗ to enable us to replace E+(s) by e
I(s); recalling

(2.11a) we see that we should take c∗ = A−1 and write h(r) = h0(r) + h1(r) + c
where

(2.24a) h0(r) =

∫ 1

r
s1−n eI(s) ds
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and (recalling (2.11c))

(2.24b)

h1(r) =

∫ 1

r
s1−neI(s)τ(s) ds+∫ 1

r
s1−nE+(s)

∫ s

0
ρn−1E−(ρ)B[v](ρ) dρ ds.

Integrating by parts and using |I ′(s)| ≤ c s−1ω(s) we can show∣∣∣∣h0(r)− r2−n

n− 2
eI(r)

∣∣∣∣ ≤ c r2−n eI(r) ω(r).

Using |τ(s)| ≤ c σ(s) and (2.17), we can also estimate

|h1(r)| ≤ c r2−n eI(r)max(ω(r), σ(r)) for 0 < r < 1.

If we define

(2.25) ζ(r) =
h1(r)

h0(r)
for 0 < r < 1,

then we can easily estimate |ζ(r)|, |rζ ′(r)| ≤ c max(ω(r), σ(r)). To estimate ζ ′′, let
us write h0ζ

′′ = h′′1 − h′′0ζ − 2h′0ζ
′ where

(2.26a) h′′0(r) = (n− 1)r−neI(r) − r1−neI(r)I ′(r)

and

(2.26b)

h′′1(r) = r−neI(r)[(n− 1)τ(r)− rI ′(r)τ(r)− rτ ′(r)]+

r−nE+(r)(n− 1 +R(r))

∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ−B[v](r).

We can estimate h′′0 and h′0 pointwise, but h′′1 needs to be estimated in Mp. How-
ever, using (2.8e) and v ∈ Y , we may conclude Mp(r

2ζ ′′, r) ≤ c max(ω(r), σ(r)).
Combining with the estimates of the lower-order derivatives, we have shown (1.17b).
Since (1.17c) follows from v ∈ Y , we have proved the first part of Theorem 1.

Let us now turn to the second part of Theorem 1. If u ∈ W 2,p
ℓoc (B1\{0}) satisfies

Lu = 0 in B1\{0} and M2,p(u, r) ≤ c r1−n+ε0 for some ε0 > 0, then we want to
show u is of the form (1.19). We will use properties of the bounded linear map

(2.27) L :W 2,p
δ0,δ1

(Rn
o ) → Lp

δ0+2,δ1+2(R
n
o ),

where Rn
o =Rn\{0} and W 2,p

δ0,δ1
(Rn

o ), L
p
δ0+2,δ1+2(R

n
o ) are the weighted Sobolev spaces

that are defined in Appendix B. Since we are interested in the behavior of functions
at the origin, we fix δ1 ∈ (−n/p,−2 + n/p′) and allow δ0 to vary. Note that (2.27)
is a perturbation of (B.4), and the norm of the difference L − ∆ depends on the
magnitude of

sup
|x|<1

(|aij(x)− δij |+ |x| |bk(x)|) .

Thus, provided we take µ in (2.1) sufficiently small, we can arrange that (2.27) and
(B.4) are not only Fredholm for exactly the same values of δ0 and δ1, but the nullity
and deficiency of the two maps agree. Hence, with δ1 satisfying (B.5), we find

(i) (2.27) is an isomorphism for δ0 ∈ (−n/p,−2 + n/p′);
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(ii) (2.27) is surjective with nullity 1 for δ0 ∈ (−2 + n/p′,−1 + n/p′);
(iii) (2.27) is injective with deficiency 1 for δ0 ∈ (−n/p− 1,−n/p).
Introduce a cutoff function χ ∈ C∞

0 (B1) with χ = 1 on B1/2, then M2,p(χu, r) ≤
c r1−n+ε0 implies χu ∈ W 2,p

δ0
(B1) provided δ0 > −1 − ε0 + n/p′. Let us choose

δ+0 ∈ (−1−ε0+n/p′,−1+n/p′) and let f = L(χu). Since f = 0 for |x| < 1/2 and for
|x| > 1, we have f ∈ Lp

δ0+2,δ1+2(R
n
o ) for all δ0 so let us choose δ0 ∈ (−n/p,−2+n/p′).

By (i) we can find v = L−1f ∈ W 2,p
δ0,δ1

(Rn
o ). Then χu − v ∈ W 2,p

δ+0 ,δ1
(Rn

o ) satisfies

L(χu − v) = 0. By (ii), L : W 2,p

δ+0 ,δ1
(Rn

o ) → Lp

δ+0 +2,δ1+2
(Rn

o ) has nullity 1. Since

LZ = 0, the nullspace must be spanned by Z and so χu − v = c0 Z for some
constant c0.

It only remains to show that v = c1+w whereM2,p(w, r) ≤ c r1−ε1 for any ε1 > 0.
Let us pick δ−0 ∈ (−1− n/p,−n/p) so that by (iii), the map

(2.28) L :W 2,p

δ−0 ,δ1
(Rn

o ) → Lp

δ−0 +2,δ1+2
(Rn

o ),

is injective with deficiency 1. Let ζ be a linear functional on Lp

δ−0 +2,δ1+2
(Rn

o ) that

vanishes on the image of (2.28). Note that Lχ = 0 for |x| < 1/2 and for |x| > 1,

so Lχ ∈ Lp

δ−0 +2,δ1+2
(Rn

o ). But χ ̸∈W 2,p

δ−0 ,δ1
(Rn

o ) since δ
−
0 < −n/p, so Lχ is not in the

image of (2.28), and hence ζ[L(χ)] ̸= 0. This enables us to find c1 so that

ζ[L(χv)] = c1ζ[Lχ].

But this means ζ[L(χv−c1χ)] = 0, i.e. L(χv−c1χ) is in the image of (2.28), so Lw =

L(χv − c1χ) for some w ∈W 2,p

δ−0 ,δ1
(Rn

o ) ⊂W 2,p
δ0,δ1

(Rn
o ). Since δ0 ∈ (−n/p,−2 + n/p′),

by the isomorphism (i) we have w = χv−c1χ. In other words, for |x| < 1/2 we have

v = c1+w, where w ∈W 2,p

δ−0 ,δ1
(Rn

o ). For any ε1 ∈ (0, 1) we can let δ−0 = ε1− 1−n/p
and conclude M2,p(w, r) ≤ c r1−ε1 , as stated in Theorem 1. This completes the
proof. □

Now let us combine Theorem 1 with a change of variables to treat a general
y ∈ Rn and we do not assume aij(y) = δij . We let Bε(y) = {x : |x − y| < ε} and
want to construct a singular solution of

(2.29) L(x, ∂x)Zy(x) = 0 for x ∈ Bε(y)\{y},

provided ε is sufficiently small. Since Ay is symmetric and positive definite, we can

define the symmetric matrix A
−1/2
y . This enables us to define the function Iy(r) as

in (1.30).

Corollary 2.1. For n ≥ 3, p ∈ (1,∞), and fixed y ∈ U , assume that Ay is
positive definite and the coefficients aij satisfy (1.29). If y = 0, we assume (1.8)
but otherwise the bk are bounded on U . Then, for ε sufficiently small, there exists
a solution Zy of (2.29) in the form

(2.30a) Zy(x) = hy(|A−1/2
y (x− y)|) + v(x),
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where

(2.30b) hy(r) =

∫ ε

r
s1−n eIy(s) ds (1 + ζy(r))

with Iy(r) given by (1.30) and ζy satisfying

(2.30c) M2,p(ζy, r) ≤ c max(ω(r), σ(r)),

and v satisfying

(2.30d) M2,p(v, r; y) ≤ c r2−n eIy(r) ω(r).

Moreover, for any u ∈ W 2,p
ℓoc (Bε(y)\{y}) that is a strong solution of the equation

L(x, ∂x)u = 0 in Bε(y)\{y} and subject to the growth condition

M2,p(u, r; y) ≤ c r1−n+ε0 where ε0 > 0,

there exist constants c0, c1 such that

u(x) = c0 Zy(x) + c1 + w(x),

where M2,p(w, r; y) ≤ c r1−ε1 for any ε1 > 0.

If we use integration by parts, we can write the solution of Corollary 1 as

(2.31) Zy(x) =
⟨A−1

y (x− y), (x− y)⟩
2−n
2

(n− 2)
eIy(

√
⟨A−1

y (x−y),(x−y)⟩)(1 + ξy(x))

where M1,∞(ξy, r; y) ≤ c max(ω(r), σ(r)) for 0 < r < ε. This generalizes (1.20).

Proof of Corollary 1. First we consider y = 0. Since A0 is positive definite, we

can define a symmetric matrix by J = A
−1/2
0 , so JA0 J = I. If we introduce a

change of variables by x̃ = Jx and new coefficients ãij(x̃) and b̃k(x̃) by

Ãx̃ = JAxJ and B̃x̃ = Bx J,

then Ã0 = I and

L(x, ∂x) = aij
∂2

∂xi∂xj
+ bk

∂

∂xk
= ãij

∂2

∂x̃i∂x̃j
+ b̃k

∂

∂x̃k
= L̃(x̃, ∂x̃).

Hence we may apply Theorem 1 in the variables x̃ to conclude the existence of a

solution Z̃ of L̃(x̃, ∂x̃)Z̃(x̃) = 0 for 0 < |x̃| < ε in the form Z̃(x̃) + h̃(|x̃|) + ṽ(x̃)
where

h̃(r) =

∫ ε

r
s1−n eĨ(s) ds (1 + ζ(r))

with M2,p(ζ, r) ≤ c max(ω(r), σ(r)), M2,p(ṽ, r) ≤ c r2−n eĨ(r) ω(r), and

Ĩ(r) =
1

|Sn−1|

∫
r<|x̃|<ε

(
tr(Ãz)− n

⟨Ãzz, z⟩
|z|2

+ ⟨B̃z, z⟩

)
dz

|z|n
.

In terms of the original variables, we see that Z(x) = h̃(|Jx|) + ṽ(Jx) satisfies
L(x, ∂x)Z = 0 for 0 < |Jx| < ε, hence for 0 < |x| < ε1 with ε1 sufficiently small.

Finally, if y is a general point in U , then we use the change of variables x̃ = J(x−y)
with J = A

−1/2
y and let Ãx̃ = (ãij(x̃)) = JAxJ. Since x̃ = 0 corresponds to x = y,



266 V. G. MAZ’YA AND R. MCOWEN

we have ãij(0) = δij , so we can apply Theorem 1 to L̃(x̃, ∂x̃) = L(x, ∂x) to obtain

the solution h̃(|x̃|) + ṽ(x̃). We obtain the solution of (2.29) as

Zy(x) = h̃(|J(x− y)|) + ṽ(J(x− y)),

where h̃(r) involves the above Ĩ(r). To transform Ĩ(r) to the original variables,

replace Ãz̃ by Az and every occurence of z̃ by x − y; we find Ĩ is of the desired
form (1.30). Moreover, since ṽ satisfies M2,p(ṽ, r) ≤ c r2−neI(r)ω(r), we find that

v(x) = ṽ(J(x− y)) satisfies M2,p(v, r; y) ≤ c r2−n eI(r)ω(r), as desired. □

3. Finding the constant Cy so that −LZ(x) = Cyδ(x− y)

In this section we first prove Theorem 2, then state and prove Corollary 2, which
shows how the formulas change when we no longer assume y = 0 and aij(y) = δij .
As in the proof of Theorem 1, we shall assume (2.1) holds for µ sufficiently small
and work in B1 instead of Bε. So we want to determine when the singular solution
Z(x) of Theorem 1 satisfies

(3.1) −L(x, ∂x)Z(x) = C0 δ(x) in U = B1,

for some constant C0. This was done for L0 in [14], and many of the arguments
here are the same, so we shall be brief; for more details, consult [14].

From Theorem 1, we obtain estimates on ∂Z and ∂2Z which show that L(x, ∂x)Z(x)
can be regularized at x = 0 as a distribution F0 on Cλ

0 (U), the Hölder continuous
functions with compact support in U . So if we can define L(x, ∂x)Z(x) as a distri-
bution F , then it must be supported at x = 0 and only involve δ(x), not derivatives
of δ(x), i.e. satisfy (3.1) for some constant C0.

The difficulty in defining L(x, ∂x)Z(x) as a distribution comes from the lack of
regularity of the coefficients, especially aij . In particular, there is no difficulty in
defining 2nd-order distributional derivatives of Z by

⟨∂i∂jZ, ϕ⟩ = −
∫
U
∂jZ(x) ∂iϕ(x) dx for ϕ ∈ C1

0 (U),

since the integral on the right converges. So let us try to define the distribution LZ
by

(3.2) ⟨LZ, ϕ⟩=
∫
U
((aij − δij)∂i∂jZϕ− ∂iZ ∂iϕ+ bk∂kZ ϕ) dx for ϕ ∈ C1

0 (U).

This is an improper integral due to the singularities in ∂i∂jZ and bk∂kZ at x = 0,
but if the integral converges then we conclude (3.1) holds and we can compute C0

from

(3.3) −C0 = lim
ε→0

∫
U
((aij − δij) ∂i∂jZ ϕε − ∂iZ ∂iϕε + bk∂kZ ϕε) dx,

where ϕε(|x|) = χ(|x|/ε) with χ(r) being a smooth cutoff function that is 1 for
0 < r < 1/4 and vanishes for r > 1/2. (We may assume ϕ(x) = ϕ(|x|) since we can
write ϕ(x) = ϕ0(|x|) + ϕ1(x) where |ϕ1(x)| + |x| |∇ϕ1(x)| ≤ c |x| for |x| < 1, which
shows that ⟨LZ, ϕ1⟩ is well-defined as an integral and contributes nothing to C0.)

Proof of Theorem 2. Recall from the proof of Theorem 1 the decomposition
Z(x) = h(|x|) + v(x) in (2.4a). We first show that v makes no contribution to
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determining the value of C0. Since v ∈ Y , we have M2,p(v, r) ≤ c r2−n ω(r) eI(r).
But I(r) is bounded above in both cases (i) and (ii), so we have

(3.4) M2,p(v, r) ≤ c r2−n ω(r) for 0 < r < 1.

Then, as ε→ 0, we have1∣∣∣∣∣
∫
|x|<ε

(aij − δij) ∂i∂jv ϕε dx

∣∣∣∣∣ ≤ c

∫ ε

0
ω2(r)

dr

r
= c σ(ε) → 0

∣∣∣∣∣
∫
|x|<ε

∂iv ∂iϕε dx

∣∣∣∣∣ ≤ c ε−1

∫ ε

0
ω(r) dr ≤ c ω(ε) → 0

and ∣∣∣∣∣
∫
|x|<ε

bk ∂kv ϕε dx

∣∣∣∣∣ ≤ c

∫ ε

0
ω2(r)

dr

r
= c σ(ε) → 0.

So v makes no contribution to C0.
Now we consider h(r). In fact, from (2.23) we can write h(r) = h0(r)+h1(r)+ c,

where c is an arbitrary constant and

(3.5)

h0(r) = c∗

∫ 1

r
s1−nE+(s) ds,

h1(r) =

∫ 1

r
s1−nE+(s)

∫ s

0
ρn−1E−(ρ)B[v](ρ) dρ ds,

with E+ defined in (2.9) and c∗ chosen as in the proof of Theorem 1 so that

c∗E+(0) = eI(0). (Note that this decomposition of h(r) is slightly different from
(2.24).) Let us show that h1 and c do not contribute to C0. We compute

∂ih1 = −xi r−nE+(r)

∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ,

∂i∂jh1 = −r−nE+(r)
(
δij − (n+R(r))

xixj
r2

)∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ

−xixj
r2

B[v](r),

and hence∫
|x|<ε

[(aij − δij)∂i∂jh1ϕε + bk∂kh1ϕε − ∂ih1∂iϕε] dx

=

∫ ε

0

[
−R(r)

r
E+(r)χ

(r
ε

)
+ E+

d

dr
χ
(r
ε

)]∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ dr

−
∫ ε

0
(α(r)− 1)rn−1B[v](r)χ

(r
ε

)
dr

+ ε−1

∫ ε

0
E+(r)

∫ r

0
ρn−1E−(ρ)B[v](ρ) dρχ

(r
ε

)
dr.

1In the following, integrals involving
∫
|x|<ε

should be interpreted as improper: limη→0

∫
η<|x|<ε

.
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Let us denote these three terms I1(ε), I2(ε), I3(ε) and estimate them separately.
First,

I1(ε)=
∫ ε

0

d

dr

[
E+(r)χ

(r
ε

)∫ r

0
ρn−1E−(ρ)B[v](ρ) dρ

]
dr

−
∫ ε

0
rn−1χ

(r
ε

)
B[v](r) dr

= E+(ε)

∫ ε

0
rn−1E−(r)B[v](r) dr −

∫ ε

0
rn−1B[v](r)χ

(r
ε

)
dr.

But recall from (2.17) that
∫ ε
0 r

n−1E−(r)|B[v](r)| dr ≤ c σ(ε) and I(r) is bounded
implies E±(r) are bounded above and below by positive constants, so |I1(ε)| ≤
c σ(ε) → 0 as ε → 0. This also implies |I2(ε)| → 0 as ε → 0. As for I3(ε), we also
have

|I3(ε)| ≤ c ε−1

∫ ε

0
σ(r) dr ≤ c σ(ε) → 0 as ε→ 0.

We conclude that h1 does not contribute to C0.
Finally, we consider h0. We can calculate ∂i h0 = −c∗ r−nE+(r)xi, and

∂i∂jh0 = −c∗ r−nE+(r)
(
δij − n

xixj
r2

− xixj
r2

R(r)
)
.

It is easy to verify that

(aij − δij)∂i∂jh0 = −c∗ r−nE+(r)
(
aii − n

aijxixj
r2

−
(aijxixj

r2
− 1
)
R(r)

)
.

Notice that∫
|x|<ε

r−nE+(r)
(
aii − n

aijxixj
r2

−
(aijxixj

r2
− 1
)
R(r)

)
ϕε(|x|) dx

= |Sn−1|
∫ ε

0
E+(r)

αn(r)− nα(r)− (α(r)− 1)R(r)

r
χ
(r
ε

)
dr

= |Sn−1|
∫ ε

0
E+(r)

R(r)− β(r)

r
χ
(r
ε

)
dr,

since α(r)R(r) = αn(r) + β(r)− nα(r). Similarly, we can verify∫
|x|<ε

bk∂kh0 ϕε dx = −c∗ |Sn−1|
∫ ε

0
E+(r)

β(r)

r
χ
(r
ε

)
dr,

so

⟨Lh0, ϕε⟩ = c∗ |Sn−1|
∫ ε

0

(
−E+(r)

R(r)

r
χ
(r
ε

)
+ E+(r)

d

dr

[
χ
(r
ε

)])
dr.

Hence

(3.6) −⟨Lh0, ϕε⟩ = −c∗|Sn−1|
∫ ε

0

d

dr

[
E+(r)χ

(r
ε

)]
dr = c∗ |Sn−1|E+(0).

Letting ε→ 0, we conclude Z satisfies (3.1) with C0 = |Sn−1|eI(0). □
Now let us consider a general fixed y ∈ U and try to solve

(3.7) −L(x, ∂x)Zy(x) = Cy δ(x− y) for x ∈ B1(y)
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for some constant Cy. We replace (3.2) with

(3.8) ⟨LZy, ϕ⟩=
∫
U
((aij − aij(y))∂i∂jZyϕ− aij(y) ∂iZy ∂jϕ+ bk∂kZy ϕ) dx.

Corollary 3.1. Suppose the conditions of Corollary 1 hold and Zy is the singular
solution found there with Iy(r) given by (1.30a).

(i) If Iy(0) = limr→0 Iy(r) exists and is finite, then we can solve (3.7) in B1(y)

with Cy = |Sn−1|
√
detAy e

Iy(0).
(ii) If Iy(r) → −∞ as r → 0, then solving (1.10) in B1(y) yields C0 = 0, and

so Z solves −L(x, ∂x)Zy(x) = 0 in B1(y), despite its singularity at x = y.

If Iy(0) exists and is finite, we see from (2.31) that the solution Fy of−L(x, ∂x)Fy(x) =
δ(x− y) in Bε(y) has the asymptotic behavior

(3.9) Fy(x) =
⟨A−1

y (x− y), (x− y)⟩
2−n
2

(n− 2)|Sn−1|
√
detAy

(1 + o(1)) as x→ y.

This generalizes (1.21) and establishes (1.31).

Proof of Corollary 2. We only need to show that

⟨−LZy, ϕ⟩ = |Sn−1| (detAy)
−1/2 eIy(0)ϕ(y)

for some ϕ ∈ C∞
0 (Bεy(y)). Let us recall the change of coordinates used in the proof

of Theorem 1, namely x̃ = J(x− y) where J = A
−1/2
y , and let ϕ̃(x̃) = ϕ(x). Then

−
∫

L(x, ∂x)Zy(x)ϕ(x) dx = −(detAy)
1/2

∫
L̃(x̃, ∂x̃)Z̃0(x̃)ϕ̃(x̃) dx̃.

But Theorem 2 implies −⟨L̃Z̃0, ϕ̃⟩ = |Sn−1| eIy(0)ϕ̃(0). Since ϕ̃(0) = ϕ(y), we obtain
the desired result. □

4. Constructing the fundamental solution

Proof of Theorem 3. For each y ∈ U , denote the ε in Corollary 1 by εy, and use
Corollary 2 to calculate Cy, which is positive since Iy(0) is finite. We conclude that
−L(x, ∂x)Zy(x)/Cy = δ(x− y) for all x, y ∈ U with |x− y| < ε. For fixed y ∈ U , let
ηy(r) be a smooth cutoff function satisfying ηy(r) = 1 for sufficiently small r and
define

(4.1) F (x, y) = ηy(|x− y|)Zy(x)/Cy + v(x, y),

where v(x, y) is to be determined. But if we apply −L(x, ∂x) we obtain

−L(x, ∂x)F (x, y) = δ(x− y) + ψ(x, y)− L(x, ∂x)v(x, y),
where ψ(·, y) ∈ Lp(U) for 1 < p < ∞ and vanishes near y. We may assume that U
has a smooth boundary (else we can embed it in such a bounded domain and extend
the coefficients, see [19]), so we may find v(x, y) by solving the Dirichlet problem
(for fixed y ∈ U):

(4.2)
−L(x, ∂x)v(x, y) = ψ(x, y) for x ∈ U,

v(x, y) = 0 for x ∈ ∂U.
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When bk ∈ L∞(U), it is well-known (cf. Theorem 9.15 in [7]) that (4.2) has a unique

solution v(·, y) ∈ W 2,p(U) ∩W 1,p
0 (U) for 1 < p < ∞; associated with this unique

solvability is the à priori inequality ∥v∥W 2,p(U) ≤ c ∥Lv∥Lp(U) for v ∈ W 2,p(U) ∩
W 1,p

0 (U). But our assumption (1.8) enables us to write L = L1 + L2, where L1

has bounded coefficients in U and L2 = b̃k∂k has coefficients supported in a ball
Bσ. For any ε > 0, we can take σ sufficiently small that supx∈Bσ

|b̃k(x)| ≤ ε |x|−1.

For 1 < p < n, by Hardy’s inequality we have ∥L2w∥Lp ≤ ε ∥w∥W 2,p for w ∈ W 2,p

with support in Bσ. If we take ε sufficiently small, we can arrange that the à priori
inequality ∥v∥W 2,p(U) ≤ c ∥Lv∥Lp(U) holds for v ∈W 2,p(U)∩W 1,p

0 (U). We conclude

that (4.2) admits a unique solution v(·, y) ∈ W 2,p(U) ∩ W 1,p
0 (U) for 1 < p < n.

Taking p ∈ (n/2, n), we see that v(x, y) is continuous in x ∈ U .
To confirm that F (x, y) satisfies (1.31), we know from (4.1) and (2.31) that

F (x, y) =
⟨A−1

y (x− y), (x− y)⟩
2−n
2

(n− 2)|Sn−1|
√

detAy

eIy(
√

⟨A−1
y (x−y),(x−y)⟩)−Iy(0)(1 + ξy(x))

where M1,∞(ξy, r; y) ≤ c max(ω(r), σ(r)) for 0 < r < ε. Since the exponential term
tends to 1 as |x− y| → 0, we obtain (1.31). □

Appendix A. Lp-mean estimates for convolutions

In [14], we proved Lp-mean estimates for distribution solutions of

(A.1) ∆u = f in Rn\{0},

when f has zero spherical mean, i.e. f(r) = 0. Let K denote convolution by the
fundamental solution Γ of the Laplacian. The following appears as Corollary 1 in
Section 1 of [14].

Proposition A.1. Suppose n ≥ 2, p ∈ (1,∞), and f ∈ Lp
ℓoc(R

n\{0}) satisfies

(A.2) f(r) = 0 and

∫
|x|<1

|x| |f(x)| dx+

∫
|x|>1

|x|1−n|f(x)| dx <∞.

Then u = Kf = Γ ⋆ f is a distribution solution of (A.1) that satisfies

(A.3) M2,p(Kf, r) ≤ c

(
r1−n

∫ r

0
Mp(f, ρ) ρ

n dρ+ r

∫ ∞

r
Mp(f, ρ) dρ

)
.

Appendix B. The Laplacian on weighted Sobolev spaces

Many authors have studied the mapping properties of elliptic operators such as
the Laplacian on weighted Sobolev spaces on Rn and other noncompact manifolds
with conical or cylindrical ends: cf. [13], [17], [18]. We will recall some of these
results for punctured Euclidean space Rn

o := Rn\{0}. Since we are mostly concerned
in this paper with singularities at x = 0, let us first investigate the weighted Lp-
norm on the punctured unit ball Bo := B1\{0}. For δ ∈ R and 1 < p < ∞, define
the Banach space Lp

δ(Bo) by the norm

(B.1) ∥u∥p
Lp
δ(Bo)

:=

∫
|x|<1

|x|δp |u(x)|p dx.
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For example, the constants are in Lp
δ(Bo) if and only if δ > −n/p. To compare

(B.1) with Lp-means, it is easy to see (cf. [14]) that Mp(u, r) ≤ c rε for 0 < r < 1
implies that u ∈ Lp

δ(Bo) provided ε+ δ > −n/p, and conversely u ∈ Lp
δ(Bo) implies

Mp(u, r) ≤ cε r
ε for 0 < r < 1 if ε = −δ − n/p.

Now we introduce the weighted Lp-norm for functions on Rn
o with separate

weights at the origin and at infinity. For δ0, δ1 ∈ R, define

(B.2) ∥u∥p
Lp
δ0,δ1

:=

∫
|x|<1

|x|δ0p|u(x)|p dx+

∫
|x|>1

|x|δ1p|u(x)|p dx.

We then define the weighted Sobolev spaceW 2,p
δo,δ1

(Rn
o ) to be functions u ∈W 2,p

ℓoc (R
n
o )

for which

(B.3) ∥u∥
W 2,p

δo,δ1

=
∑
|α|≤2

∥|x||α|∂αu∥Lp
δ0,δ1

is finite. It is clear that

(B.4) ∆ :W 2,p
δ0,δ1

(Rn
o ) → Lp

δ0+2,δ1+2(R
n
o )

is a bounded linear operator, and (using the analysis of [13], [17], [18], for example)
it can be shown that (B.4) is an isomorphism for −n/p < δ0, δ1 < −2+n/p′, where
p′ = p/(p − 1). (Since n ≥ 3, such δ0, δ1 exist.) Moreover, provided δ0, δ1 do not
take the values −n/p − k or −2 + n/p′ + k where k is a nonnegative integer, then
(B.4) is a Fredholm operator whose nullspace and cokernel are easily described in
terms of harmonic polynomials. Since we are principally interested in the behavior
of functions at the origin, we will fix

(B.5) −n/p < δ1 < −2 + n/p′

and allow δ0 to vary. We only require a small range of values for δ0.

Proposition B.1. Assume 1 < p <∞ and (B.5). Then the map (B.4) is

(a) an isomorphism for −n/p < δ0 < −2 + n/p′;
(b) surjective with nullspace spanned by |x|2−n if −2 + n/p′ < δ0 < −1 + n/p′;
(c) injective with cokernel spanned by 1 if −1− n/p < δ0 < −n/p.
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principles for semi-elliptic operators with singular drift, Math. Res. Lett. 18 (2011), 10001–
10007.

[2] P. Bauman, Equivalence of the Green’s function for diffusion operators in Rn: a counterexam-
ple, Proc. Amer. Math. Soc. 91 (1984), 64–68.

[3] M. Cranston and Z. Zhao, Conditional transformation of drift formula and potential theory
for 1

2
∆+ b(·) · ∇, Comm. Math. Phys. 112 (1987), 613–625.

[4] H. Dong and S. Kim, On C1, C2, and weak type (1,1) estimates for linear elliptic operators,
Comm. Partial Differential Equations 42 (2017), 417–435.

[5] H. Dong, S. Kim and S. Lee, Note on Green’s functions of non-divergence elliptic operators
with continuous coefficients, Proc. Amer. Math. Soc. 151 (2023), 2045–2055..



272 V. G. MAZ’YA AND R. MCOWEN

[6] D. Gilbarg and J. Serrin, On isolated singularities of solutions of second-order elliptic equa-
tions, J. Analyse Math. 4 (1955/56), 309–340.

[7] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed,
Springer-Verlag, New York, 1983.

[8] S. Hwang and S. Kim, Green’s function for second order elliptic equations in non-divergence
form, Potential Anal. 52 (2020), 27–39.

[9] H. Hueber and M. Sieveking, Uniform bounds for quotients of Green functions on C1,1-
domains, Ann. Inst. Fourier 32 (1982), 105–117.

[10] H. Hueber and M. Sieveking, Quotients of Green functions on Rn, Math. Ann. 269 (1984),
263–279.

[11] S. Kim and S. Lee, Estimates for Green’s functions of elliptic equations in non-divergence form
with continuous coefficients,Ann. Appl. Math. 37 (2021), 111–130.

[12] V. A. Kozlov and V. G. Maz’ya, Differential Equations with Operator Coefficients, Springer-
Verlag, New York, 1999.

[13] R. Lockhart and R. McOwen, Elliptic differential operators on noncompact manifolds, Ann.
Sc. Norm. Super. Pisa Cl. Sci. (4) 12 (1985), 409–447.

[14] V.G. Maz’ya and R. McOwen, On the fundamental solution of an elliptic equation in nondi-
vergence form, AMS Translations: special volume dedicated to Nina Uraltseva 229 (2010),
145–172.

[15] V.G. Maz’ya and R. McOwen, Differentiablilty of solutions to second-order elliptic equations
via dynamical systems, J. Differential Equations 250 (2010), 1137–1168.

[16] V.G. Maz’ya and R. McOwen, Gilbarg-Serrin equation and Lipschitz regularity, J. Differential
Equations 312 (2022), 45–64.

[17] V. Maz’ya adn B. Plamenevski, Estimates in Lp and Hölder classes and the Miranda-Agmon
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