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domains and mixed boundary conditions with very weak compatibility conditions
as established for example in [10].

The intention of this paper is essentially twofold: Firstly, we prove that if the
domain dom(Aq + 1) of the functional-analytic realization A + 1 of the elliptic

differential operator in (1.1) in a negative Sobolev space W−1,q
D (Ω) embeds into

a space of Hölder-continuous functions, then so does the domain dom((Aq + 1)σ)

of a fractional power of A + 1 when σ > 1
2 + d

2q . (We will introduce all objects

properly in the main text below.) It is well known that q > d is the expected
condition in this context. This is done under the quite general assumption that
N admits bi-Lipschitzian boundary charts and D is Ahlfors regular; the coefficient
function µ is not supposed to be more than measurable, bounded and elliptic.
(See Assumption 2.1 below.) The main motivation for this result are semilinear
parabolic problems, since it is well known that since the semigroup associated to
Aq + 1 will be analytic, the domain dom((Aq + 1)σ) will be a natural phase space,
see e.g. [23, Ch. 6.3]. We will come back to this below in a bit more detail.

Secondly, we consider a framework where the assumption of the first part is in
fact satisfied; that is, we show that dom(Aq+1) indeed embeds into a Hölder space.
This framework will essentially encapsulate the geometric assumptions from the
first part, together with a classical assumption preventing outward cusps for D,
and an intriguing metric/measure-theoretic condition for the interface of D and N ,
the Dirichlet- and Neumann boundary parts, which will ultimately allow to show
that also at this interface, we can transform the problem under consideration to
one which satisfies the foregoing classical assumption. (See Assumption 4.1 below.)
To this end, we revisit [10] where the associated result was already established by
means of Morrey-Campanato spaces and De Giorgi estimates for all spatial dimen-
sions d including uniformity in the data, see [10, Thm. 6.8]. These instruments
are both quite natural and powerful, but also rather involved. However, for spatial
dimensions d up to 4 one can avoid this machinery and rely on the classical results
on Hölder continuity for solutions of the pure Dirichlet problem by Ladyzhenskaya
and Stampacchia by much simpler technical means. We carry out this simplified
approach here. It is a drawback of this method that we cannot reproduce the unifor-
mity of the Hölder estimates with respect to the given geometry class. Nevertheless,
for many purposes this is not needed, like for example for the results in the first
part of this paper.

Motivation. It was already mentioned above that one of the main motivations to
consider Hölder regularity for dom(Aq + 1) and associated domains of fractional
powers comes from semilinear parabolic equations. Indeed, consider the following
abstract one, posed in some Banach space X:

(1.2) u′(t) +Au(t) + u(t) = F (t, u(t)), u(0) = u0,

where A+ 1 is the realization of an elliptic operator such as the one in (1.1) in X.
The way to treat such a problem by means of analytic semigroups is well established
by now under weak assumptions on F , which require that the coordinate mappings
t 7→ F (t, v) for fixed v and v 7→ F (t, v) for fixed t are reasonably well behaved,
cf. [23, Ch. 6.3], the latter usually referring to Lipschitz continuity on bounded sets
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of the domain of a fractional power of A+ 1. A particular interesting and relevant
case is that of Nemytskii operators induced by scalar functions; these for example
occur naturally in the form of polynomials in reaction-diffusion problems. For this
general framework, the choice of the Banach space X is crucial. In fact, in the most
prominent case X = L2(Ω) and space dimensions up to 3, one can show that not
only the domain of the elliptic operator A + 1 in L2(Ω) embeds into L∞(Ω), but
already the domain of a fractional power does so. This is established in an even more
general geometric context than the present one, but only for a symmetric coefficient
matrix µ, in [11]; for the general case, see also [22, Ch. 6.1] and Corollary 3.4 below.
Since bounded functions are, essentially, ignorant of growth induced by a Nemytskii
operator, such an embedding allows to consider very rough nonlinearities F induced
by Nemytskii operators.

However, this strong property comes at a price, namely that a realization of
A+1 in L2(Ω) implicitly restricts the considered problem to a strong interpretation
with homogeneous Neumann boundary conditions. But this setup is in general
insufficient for more sophisticated problems arising in real world applications. This
already concerns nonhomogeneous Neumann boundary data. But also, consider for
example a (two-dimensional) surface S in the (closure of the) domain Ω ⊂ R3 and
let H2|S be the induced two-dimensional surface measure. Let φ be a scalar and
locally Lipschitz function and let Φ be the associated Nemytskii operator. Suppose
that F in (1.2) is given by v 7→ Φ(v)H2|S . Such a term would correspond to a
nonlinear modulation for a jump-type condition for the solution u(t) along S in a
strong problem formulation, and, indeed, such conditions appear for example in the
analysis of the semiconductor equations if surface charge densities, concentrated on
S, are involved, see [7, 21] for a recent analytical treatment; see also [25, 26] for
more physical background. (In this particular example, there are also nonlinear
modulations on the boundary.)

Clearly, in such a setup, it is not sufficient to have dom((A+1)σ) ↪→ L∞(Ω) only,
since this will in general not be enough to interpret, much less control, Φ(v) on the
lower-dimensional surface S in dependence of v ∈ dom((A+1)σ). Alternatively, one
could try to rely on trace operators to have a good control on v ∈ Lr(S;H2) and
then Φ(v) for r large enough in dependence on the growth conditions of φ. But this
in turn would require to pass through a Sobolev space W s,p

D (Ω) with s > 1/p and
justifying such a setup might be quite hard if one goes away from (s, p) = (1, 2),
whereas the latter is rather limited, at least for d = 3.

From our point of view, it is thus preferable to rely on Hölder continuity for the
domain of a fractional power of A+ 1. Then elements from such a domain are well
defined on any subset of Ω and, as mentioned above, there are even compactness
properties to exploit. It turns out that the negative Sobolev space W−1,q

D (Ω), which

is the (anti-) dual ofW 1,q′

D (Ω), with q > d, provides the adequate functional-analytic
framework X to obtain this Hölder continuity for the domain of a fractional power
of the X-realization of A+1, and then treat problems such as (1.2) with inhomoge-
neous data on lower-dimensional surfaces in Ω, be that ∂Ω or S. Indeed, negative
Sobolev spaces are capable of representing distributional objects such as induced
by inhomogenenous data on lower-dimensional surfaces, and as already mentioned
above, it is well known that q > d is the natural threshold for which one can obtain
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bounded or even continuous functions as elements of the domain of the associated
realization Aq + 1, that is, for solutions u to the abstract problem (Aq + 1)u = f

with f ∈W−1,q
D (Ω).

Context. As explained above, Hölder regularity for elliptic problems such as (1.1)
is a classical and ubiquitous subject in the regularity theory for partial differential
equations. We locate our work between [10] with essentially the same, extremely
general geometric setup but a much more sophisticated and involved machinery
to achieve the desired result with uniformity of constants in the data in any space
dimension, and [17], where the less general framework of Gröger regularity is used for
dimensions up to d = 4. The technique of the present work, in terms of localization
of an elliptic problem (1.1) and associated transformation to regular sets plus a
possible reflection argument, is similar to the one employed in [17], but deviates
from there along the different assumptions on D. We note also that while there
is no uniformity statement in [17], there is the recent preprint [8] in which the
authors there trace the constants in [17] to obtain a uniform result, which is then
even transferred to solutions of parabolic problems. In all mentioned works, the
coefficient function is also only assumed to be measurable, bounded and elliptic, as
in the present one.

Overview. We set the stage with notation and the introduction of function spaces
and differential operators with some associated properties in Section 2. Section 3
then deals with the first main result, Theorem 3.1: if the domain of the W−1,q

D (Ω)-
realization of A + 1 embeds into a Hölder space, then so does the domain of a
fractional power. The proof is based on ultracontractivity of the semigroups asso-
ciated to the Lp(Ω)-realization of A+ 1, which we transfer to the negative Sobolev
scale via the Kato square root property. Section 4 then deals with showing that
the premise of the foregoing part is in fact satisfied in a wide geometric setting in
Theorem 4.2. For this result, the proof is somewhat extensive. We thus prepare it
with a series of preliminary results on the techniques of localization, transformation
and reflection in Section 4.1 before proceeding to the actual meat of the proof in
Section 4.2.

2. Preliminaries

We first clarify some basic notation. The spatial dimension will be d > 1. For
x = (x1, . . . , xd) ∈ Rd and r > 0 we denote the open ball around x with radius r
by Br(x). The d-dimensional Lebesgue measure in Rd will be written as λd and
ωd = λd(B1(0)) means the volume of the unit ball. Given a normed vector space
V , we denote by V ∗ the Banach space of antilinear continuous functionals on V .
Finally, we use the convention of a generic constant c that may vary from occurence
to occurence but never depends on the free variables in the actual context. All other
notation will be standard.

2.1. Function spaces. Let Λ be a nonempty, bounded open subset of Rd and let
F ⊆ ∂Λ be a closed subset of its boundary. Then, for q ∈ [1,∞], the first-order
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Sobolev space W 1,q(Λ) is given by the set of Lq(Λ) functions with weak first-order
derivatives in Lq(Λ). We set

C∞
F (Λ) :=

{
u|Λ : u ∈ C∞

c (Rd) with supp(u) ∩ F = ∅
}

and we use this space to define the first-order Sobolev space with mixed bound-
ary conditions W 1,q

F (Λ) as the closure of C∞
F (Λ) in W 1,q(Λ). Furthermore, by

W−1,q
F (Λ) := W 1,q′

F (Λ)∗ we denote the space of continuous antilinear functionals

on W 1,q′

F (Λ), where (here and in all what follows) 1/q + 1/q′ = 1. Finally, as

commonly used we write W 1,q
0 (Λ) for W 1,q

∂Λ (Λ) and W
−1,q(Λ) for W−1,q

∂Λ (Λ).
For α ∈ (0, 1), let Cα(Λ) denote the usual spaces of bounded and α-Hölder

continuous functions on Λ with their norm given by the sum of the supremum norm
and the Hölder seminorm. Of course, every function in Cα(Λ) admits a unique
α-Hölder continuous extension to Λ, so we will not discriminate between a Hölder-
function on Λ and Λ.

2.2. Geometric setup. We next introduce some geometric assumptions on the
spatial domain Ω. Throughout the article, Ω denotes a given nonempty bounded
open subset of Rd and D ⊆ ∂Ω is a closed portion of its boundary, the desig-
nated Dirichlet boundary part. We do not exclude that Hd−1(D) = 0, the (d− 1)-
dimensional Hausdorff measure. The Neumann boundary part shall be denoted by
N := ∂Ω \D.

Assumption 2.1. We consider the following geometric assumptions for Ω and D:

(a) For all x ∈ N , there is an open neighbourhood Vx and a bi-Lipschitz mapping
φx from a neighbourhood of Vx into Rd such that φx(Vx) = (−1, 1)d, φx(Ω∩
Vx) = {x ∈ (−1, 1)d : xd < 0}, φx(∂Ω ∩ Vx) = {x ∈ (−1, 1)d : xd = 0} and
φx(x) = 0.

(b) D is a (d−1)-set, i.e., there are constants c1, c2 > 0 such that for all r ∈ (0, 1]
and all x ∈ D there holds

c1r
d−1 ≤ Hd−1

(
Br(x) ∩D

)
≤ c2r

d−1

where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure.

Remark 2.2. In Assumption 2.1 (a), for x ∈ N = ∂Ω\D one may assume without
loss of generality that the local Neumann boundary part around x is transformed to
the full midplate of the cube, that is, φx(N ∩ Vx) = {x ∈ (−1, 1)d : xd = 0}. In fact,
since N is a (relatively) open subset of ∂Ω, the image φx(N ∩ Vx) is a (relatively)
open subset of {x ∈ (−1, 1)d : xd = 0} that contains 0. Thus, one may shrink Vx to
a suitable set φ−1

x ((−ε, ε)d) and afterwards rescale φx to 1
εφx.

Already the geometric setup of Assumption 2.1 (a) allows to construct a contin-
uous linear extension operator for first-order Sobolev spaces with mixed boundary
conditions. Indeed, the following result can be found in [4, Thm. 1.2 and Prop. 3.4]:

Proposition 2.3. Suppose that Ω and D meet Assumption 2.1 (a). Then there

exists a continuous extension operator from W 1,1
D (Ω) to W 1,1(Rd) that restricts to

a continuous operator from W 1,p
D (Ω) to W 1,p(Rd) for all p ∈ [1,∞).
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Remark 2.4. Proposition 2.3 allows to establish the usual Sobolev embeddings,
that is,W 1,q

D (Ω) ↪→ Lp(Ω) for 1
p ≥ 1

q−
1
d if q < d andW 1,q

D (Ω) ↪→ Cα(Ω) for α ≤ 1− d
q

if q > d, in a straightforward manner, including compactness for the strict cases.

In particular, for d > 2 the form domain V =W 1,2
D (Ω) is embedded into L

2d
d−2 (Ω),

and in the case d = 2 it embeds into Lp(Ω) for every p <∞.

2.3. Elliptic operators. We define elliptic operators via the form t on V :=
W 1,2

D (Ω) given by

t(u, v) :=

∫
Ω
µ∇u · ∇v, u, v ∈ V.

Here, µ is a real, measurable, bounded and uniformly elliptic coefficient function
in the sense that there exists some κell > 0 such that (µ(x)ξ, ξ)Rd ≥ κell|ξ|2 for
all ξ ∈ Rd and almost all x ∈ Ω. Clearly, the form t induces a natural operator
A : V → V ∗. For q > 2, let Aq be the part of A = A2 in W−1,q

D (Ω) ⊂ V ∗. By
the Lax-Milgram lemma, A+λ is a topological isomorphism between V and V ∗ for
every λ with Reλ > 0.

On the other hand, t also induces an operator A on L2(Ω) by

domA :=
{
u ∈ V : there is f ∈ L2(Ω): t(u, v) = (f, v)L2(Ω) for all v ∈ V

}
Au := f, for u ∈ domA.

Since t is L2(Ω)-elliptic, it is nowadays classical (e.g. [22, Thms. 1.54, 4.2 and 4.9])
that −A is the generator of a contractive analytic C0-semigroup (e−At) on L2(Ω)
which is both sub-Markovian and substochastic, that is, positivity preserving and
L∞(Ω)- and L1(Ω)-contractive, from which we obtain the semigroup on every Lp(Ω)
for p ∈ [1,∞] by interpolation.

These semigroups are contractive for all p ∈ [1,∞], they are strongly contin-
uous for p ∈ [1,∞), and they are analytic for p ∈ (1,∞), see [22, Prop. 3.12,
p.56/57&96]. We denote the respective (negative) generators on Lp(Ω) by Ap.
Note that σ(Ap) ∩ [Re z < 0] = ∅ for every p ∈ [1,∞) by the Hille-Yosida theorem,
and that the operators admit a bounded H∞ functional calculus ([6, Cor. 3.9]) for
p > 1; in particular, their fractional powers are well defined. Moreover, for p > 2,
the operators Ap are the part of A = A2 in Lp(Ω).

All the properties mentioned so far do not require any regularity assumption on
Ω. Under the geometric assumptions from Assumption 2.1, however, we can say
a bit more about the operators Aq. Indeed, with Assumption 2.1 (a), we have
σ(Aq) ∩ [Re z < 0] = ∅ for q ≥ 2 due to Sobolev embeddings via Proposition 2.3
and the restriction of the space dimension d ≤ 4. Moreover, several of the good
properties of Aq can be transferred to Aq by means of the square root in this setting,
which we do next.

Proposition 2.5. Let q ∈ [2,∞) and adopt Assumption 2.1. Then the following
hold true.

(a) The inverse square root operator (Aq+1)−1/2 provides a topological isomor-

phism between W−1,q
D (Ω) and Lq(Ω).

(b) The negative of the operator Aq generates an analytic semigroup onW−1,q
D (Ω).
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(c) For s ∈ [0, 12), we have dom
(
(Aq + 1)1/2+s

)
= dom

(
(Aq + 1)s

)
.

Proof. In [5, Thm. 1.1] it is proved that A + 1 has the Kato square root property
in the present geometric setting. (And even beyond that.) Using this fundamental
property, the claim (a) is one of the main results in [2], see Theorem 5.1 there.
Further, since (Aq + 1)−1 and (Aq + 1)−1 coincide on Lq(Ω), so do the inverse
square roots, and we have the similarity

(Aq + λ)−1 = (Aq + 1)1/2(Aq + λ)−1(Aq + 1)−1/2.

Hence, we can transfer the generator property for an analytic semigroup from −Aq

to −Aq by means of resolvent estimates, see the characterization in [12, Thm. II.4.6].
(Note that we do not claim the semigroups generated by −Aq to be contractive.)
This implies (b). Finally, the fractional powers of Aq are well defined since the
bounded H∞ calculus also transfers from Aq to Aq by means of the square root ([2,
Thm. 11.5]). Then, (c) follows immediately from (a) since

dom
(
(Aq + 1)1/2+s

)
=

(
Aq + 1

)−1/2−s
W−1,q

D (Ω)

=
(
Aq + 1

)−s
Lq(Ω)

=
(
Aq + 1

)−s
Lq(Ω) = dom

(
(Aq + 1)s

)
. □

3. Embeddings for domains of fractional powers of Aq + 1

In this section we show that if the domain of Aq +1 embeds into a Hölder space,
so do suitable fractional powers of this operator. We remark on the domain of Aq

after the proof of Theorem 3.1. The question of when the domain of Aq+1 actually
embeds into a Hölder space will be considered in Section 4.

Theorem 3.1. Let Assumption 2.1 be satisfied and let q > d. Suppose that
dom(Aq+1) ↪→ Cα(Ω) for some α > 0. Let κ ∈ (0, α) and σ ∈

(
1
2+

d
2q+

κ
α(

1
2−

d
2q ), 1

)
.

Then we have(
W−1,q

D (Ω), dom(Aq + 1)
)
σ,1

↪→ Cκ(Ω) and dom
(
(Aq + 1)σ

)
↪→ Cκ(Ω).

Before we start with the proof, a short remark:

Remark 3.2. Via Proposition 2.5, we also obtain from Theorem 3.1 that

dom((Aq + 1)ς) ↪→ Cκ(Ω)

for ς ∈
(

d
2q +

κ
α(

1
2 −

d
2q ),

1
2

)
. This is interesting because there is a natural connection

between embeddings of the domain of a fractional power of Aq + 1 into a Hölder
space and the Hölder continuity of the heat kernel associated to the semigroup
generated by the negative of Aq + 1. We refer to [22, Ch. 6.2] and leave the details
to the interested reader.

Our proof of Theorem 3.1 is based on ultracontractivity of semigroups generated
by −Aq. We use ultracontractivity to derive a precise regularizing property for
inverse fractional powers of Aq+1 and then in turn transfer this to the Aq operator
by means of Proposition 2.3.
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The semigroups (e−Apt) are said to be ultracontractive if there exists a constant
c > 0 and some γ > 0 such that

(3.1)
∥∥e−Apt

∥∥
Lp(Ω)→L∞(Ω)

≤ ct
− γ

2p for all t ∈ (0, 1], p ∈ [1,∞).

In fact, if γ > 2, then this property is equivalent to V ↪→ L
2γ
γ−2 (Ω); we refer

to [1, Ch. 7.3]. We concentrate on this case, since under the geometric assumptions
of Assumption 2.1 (a), Proposition 2.3 provides a Sobolev extension operator from
which the foregoing Sobolev embedding for V with γ = d if d > 2 and any γ > 2 if
d = 2 follows immediately as noted in Remark 2.4. This is already the proof of the
next proposition:

Proposition 3.3 (Ultracontractivity). Adopt Assumption 2.1 (a). Then the semi-
groups (e−Apt) are ultracontractive, that is, there exists c > 0 such that (3.1) holds
true for γ = d if d > 2 and γ > 2 arbitrary if d = 2.

We infer the following regularizing property for the inverse fractional powers of
Ap + 1 for p > d/2 :

Corollary 3.4. Adopt Assumption 2.1 (a) and let p > d/2. Then, for every τ ∈
( d
2p , 1], we find (Ap+1)−τ ∈ L(Lp(Ω) → L∞(Ω)). In particular, dom((Ap+1)τ ) ↪→
L∞(Ω).

Proof. Consider the well-known Balakrishnan formula

(Ap + 1)−τ =
1

Γ(τ)

∫ ∞

0
tτ−1e−Apte−t dt.

We split the integral
∫∞
0 =

∫ 1
0 +

∫∞
1 . From Proposition 3.3 and the growth bound (3.1)

for (e−Apt), one observes immediately that the condition τ > d
2p is sufficient to have

the
∫ 1
0 integral converge in L(Lp(Ω) → L∞(Ω)). (For d = 2, squeeze γ

2p between d
2p

and τ by picking γ close enough to d = 2.) For the
∫∞
1 integral, we note that for

t > 1, we have tτ−1 ≤ 1 and moreover, due to both ultra- and ’regular’ contractivity
of the semigroup generated by −Ap,∥∥e−Apt

∥∥
Lp(Ω)→L∞(Ω)

≤
∥∥e−Ap

∥∥
Lp(Ω)→L∞(Ω)

∥∥e−Ap(t−1)
∥∥
Lp(Ω)→Lp(Ω)

≤ c

with the constant c as in (3.1). Thus the
∫∞
1 integral also converges in L(Lp(Ω) →

L∞(Ω)) and the claim follows. □
As a last auxiliary result of potentially independent interest, we note the following

remarkably simple embedding which holds true for any bounded open set without
further assumptions on its geometry:

Lemma 3.5. Let α > 0. Then (L∞(Ω), Cα(Ω))θ,1 ↪→ Cαθ(Ω) for any θ ∈ (0, 1).

Proof. Let u ∈ Cα(Ω) and estimate

sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|αθ

≤ sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|1−θ sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|θ

|x− y|αθ

≤
(
2‖u‖L∞(Ω))

1−θ‖u‖θCα(Ω).
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Together with an obvious estimate for supx∈Ω |u(x)| one gets, for every u ∈ Cα(Ω),

‖u‖Cαθ(Ω) ≤ 3‖u‖1−θ
L∞(Ω)‖u‖

θ
Cα(Ω).

Thus, referring to [24, Lem. 1.10.1], Cαθ(Ω) is of class J(θ) with respect to L∞(Ω)
and Cα(Ω) from which we obtain the desired embedding. □
Proof of Theorem 3.1. Set θ := κ/α ∈ (0, 1) and σ ∈

(
1
2 + d

2q + θ(12 − d
2q ), 1

)
as in

the theorem. A short computation shows that we can write σ = (1− θ)(12 + τ) + θ

with some τ ∈ ( d
2q ,

1
2). Thus, the reiteration theorem ([24, Thm. 1.10.2]) implies

that(
W−1,q

D (Ω), dom(Aq + 1)
)
σ,1

=
((
W−1,q

D (Ω), dom(Aq + 1)
)

1
2
+τ,1

, dom(Aq + 1)
)
θ,1
.

We show that the first space on the right embeds continuously into L∞(Ω). Indeed,
by interpolation for fractional power domains of so-called positive operators as in [24,
Thm. 1.15.2], we have(

W−1,q
D (Ω), dom(Aq + 1)

)
1
2
+τ,1

↪→ dom((Aq + 1)1/2+τ ).

But for τ ∈ ( d
2q ,

1
2), by combining Proposition 2.5 (c)—this is the point where we

need Assumption 2.1 (b)—and Corollary 3.4, we find

dom
(
(Aq + 1)1/2+τ

)
= dom

(
(Aq + 1)τ

)
↪→ L∞(Ω).

By assumption, the restriction of the foregoing embedding to dom(Aq+1) is precisely
dom(Aq + 1) ↪→ Cα(Ω). Interpolating these and using Lemma 3.5, we find(

W−1,q
D (Ω), dom(Aq + 1)

)
σ,1

↪→
(
L∞(Ω), Cα(Ω)

)
θ,1

↪→ Cαθ(Ω)

and this was the claim, since αθ = κ.
Now the embedding for dom((Aq+1)σ) itself follows easily by squeezing s between

1
2+

d
2q+

κ
α(

1
2−

d
2q ) and σ and using the previous part via [24, Thms. 1.3.3 and 1.15.2]:

dom((Aq + 1)σ) ↪→
(
W−1,q

D (Ω), dom(Aq + 1)
)
σ,∞

↪→
(
W−1,q

D (Ω), dom(Aq + 1)
)
s,1
↪→ Cκ(Ω). □

The domain of Aq. In the above proof, we have worked only with Aq + 1 to
have an invertible operator at hand which is much more convenient. The Banach
spaces dom(Aq) and dom(Aq +1), each with the respective graph norm, are always
equivalent as Banach spaces, so Theorem 3.1 is also valid when substituting Aq for
Aq+1. On the other hand, it is often also interesting to consider the operators with
the respective ’reduced’ graph norm, that is, ‖(Aq+1)·‖

W−1,q
D (Ω)

and ‖Aq ·‖W−1,q
D (Ω)

.

(For example, the main result in the upcoming Section 4 involves this norm in a
natural way.) These ’reduced’ graph norms are equivalent to the full graph norms
if the operator in question admits a continuous linear inverse. This is the case for
Aq + 1, but Aq might be non-injective; it is injective if A is.

By the Lax-Milgram lemma, the operator A in turn is injective whenever we
have a Poincaré inequality for V at hand. For the latter it is enough to establish
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that nonzero constant functions do not belong to V . Within our geometric setup of
Assumption 2.1, this is already guaranteed by either D ∩ N 6= ∅, so the Dirichlet-
and Neumann boundary parts share a common interface, or by D containing at
least one (relatively) inner point. See for instance [9, Lemma 7.3]. (In fact, in the
former case it is already enough to have Lipschitz charts for all points in the relative
boundary ∂D within ∂Ω at hand; cf. [6, Sect. 6].)

In this sense, the statement for Aq +1 in Theorem 3.1 can be immediately trans-
ferred to Aq also for the ’reduced’ graph norm whenever the geometry assumptions
admit a Poincaré inequality for V .

4. Hölder properties for dom(Aq + 1)

In the main result of Section 3 the embedding of dom(Aq + 1) into some Hölder
space was a given. We now turn to the question when such an embedding is true. A
very general answer was given in [10, Theorem 1.1], where the result in Theorem 4.2
below was proved for all space dimensions d. This proof is extremely involved, the
natural instruments being Morrey-Campanato spaces and De Giorgi estimates.

However, for dimensions up to 4 one can avoid this machinery and base the argu-
ments only on the classical Ladyshenskaya result on Hölder continuity for solutions
of the pure Dirichlet problem, see Proposition 4.4 below, and some more elemen-
tary yet intricate technical means. This is what we will carry out here. The present
approach also allows to obtain a uniform result with respect to the L∞(Ω)-bound
and ellipticity constant κell of the coefficient function µ.

In order to formulate our main result of this section, we introduce two more
geometric conditions; the first one relies on the rather classical notion with a twist
of saying that an open subset Λ of Rd is of class (Aγ) (at Υ ⊆ ∂Λ) with a constant
γ > 0, if

λd
(
Br(x) \ Λ

)
≥ γλd

(
Br(x)

)
for all x ∈ Υ, r ∈ (0, 1].

Of course, necessarily γ < 1. This condition prevents inwards cusps of Λ at Υ.
If Υ = ∂Λ, we just refer to Λ being of class (Aγ). The second condition, rather
intriguing, concerns the interface between the Dirichlet boundary part D and the
Neumann boundary part N = ∂Ω \D in the boundary of Ω:

Assumption 4.1. We consider the following further geometric assumptions for Ω
and D:

(a) There is some γ ∈ (0, 1) such that Ω is of class (Aγ) at D.
(b) Using the notation of Assumption 2.1 (a), there are two constants c0 ∈ (0, 1)

and c1 > 0 such that for any point x ∈ E := D ∩ N , every y ∈ Rd−1 such
that (y, 0) ∈ φx(E ∩ Vx) and every s ∈ (0, 1] it holds

λd−1

({
z ∈ Bs(y) : dist

(
z, φx(N ∩ Vx)

)
> c0s

})
≥ c1s

d−1.

Here and in the sequel, Br(y) denotes the open ball of radius r in Rd−1

with its center at y ∈ Rd−1, and in the distance function we tacitly consider
φx(N ∩ Vx) ⊂ [zd = 0] as a subset of Rd−1 in the obvious manner.

We can now formulate the main theorem of this section.
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Theorem 4.2. Suppose that Ω and D satisfy Assumption 2.1 (a) and Assump-
tion 4.1, and let q > d with d ∈ {2, 3, 4}. If d = 4, suppose also that Assump-

tion 2.1 (b) is satisfied. Then there is an α > 0 such that for every f ∈ W−1,q
D (Ω)

the equation

(4.1) (Aq + 1)v = f

has a unique solution v ∈ W 1,2
D (Ω) that belongs to the Hölder space Cα(Ω). More-

over, the mapping W−1,q
D (Ω) 3 f 7→ v ∈ Cα(Ω) is continuous and its norm is

uniform with respect to the L∞(Ω)-bound and ellipticity constant κell of µ.

Let us mention that in [10], Assumption 2.1 (b) is not needed at all for the proof
of the Hölder continuity ([10, Thm. 6.8]). Here, it is required for a technical step in
the localization of (4.1) in space dimension d = 4.

Remark 4.3. We comment on Theorem 4.2.

(a) Assumption 2.1 (a) (Lipschitz charts at N) implies that Ω is also of class
(Aγ) at N . This follows from the fact that bi-Lipschitz mappings preserve
the Lebesgue measure up to a constant, see [13, Thm. 2.5 and Thm. 2.8],
and compactness of N . Together with Assumption 4.1 (a), Ω is thus of class
(Aγ).

(b) It is well known that, in general, the condition q > d is already necessary
for the boundedness of the solution, see [19, Ch. I.2].

(c) It is easily seen that if f ∈ Lp(Ω) with p > d/2, then also f ∈ W−1,q
D (Ω)

where q = 2p > d with continuous embedding thanks to Remark 2.4. In this
sense, Theorem 4.2 is also a result on Hölder regularity for the operators
Ap + 1 for p > d/2. (Note that so far we had only seen that the Lp(Ω)-
solution to (4.1) is in L∞(Ω) via ultracontractivity as in Corollary 3.4—but
this was already true for a fractional power of Ap+1 and so some opportunity
for improvement for Ap + 1 itself was expected.)

Let us sketch an outline for the proof of Theorem 4.2. We will rely on the clas-
sical techniques of localization, transformation and reflection to tackle (4.1) in the
form of a finite number of similar problems on model sets with a very particular
geometry. For these we will rely on classical Hölder regularity results of Ladyzhen-
skaja or Stampacchia which base on variants of Assumption 4.1 (a). The treatment
of local problems at the pure Dirichlet part D \N will be quite immediate due to
Assumption 4.1 (a), and we will also be able to transfer the Neumann boundary
part N = ∂Ω \D to the pure Dirichlet situation via Assumption 2.1 (a) and reflec-
tion techniques. Of course, the most interesting part will be the interface D ∩ N
with Assumption 4.1 (b). The intriguing idea here is that Assumption 4.1 (b) will
allow to transform the localized problem once more in a particular way such that
the resulting set will in fact be amendable by Assumption 4.1 (a).

4.1. Localization and transformation techniques. In this subsection we recall,
for the reader’s convenience, some technical results on localization and transforma-
tion techniques for (4.1) which are needed later on. For all the following consid-
erations the coefficient function µ is considered as in Section 2; in particular it is
elliptic with constant κell.
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We start by quoting a classical theorem (see [18, Ch. II Appendix B/C]) on the
Hölder continuity for the solution of the Dirichlet problem. The result is formulated
for a generic bounded domain Λ ⊂ Rd since we will use it for several local model
sets in the proof of Theorem 4.2; the definitions of µ and A are to be understood
mutatis mutandis.

Proposition 4.4. Let Λ ⊂ Rd be a bounded domain and let v ∈ W 1,2
0 (Λ) be the

solution of

(4.2) Av = f0 +
d∑

j=1

∂fj
∂xj

,

where f0, f1, . . . , fd ∈ Lq(Λ) with q > d and ∂
∂xj

denotes the distributional derivative.

Then the following holds true.

(a) The function v admits a bound

(4.3) ‖v‖L∞(Λ) ≤ c

d∑
j=0

‖fj‖Lq(Λ).

(b) Suppose that there exists γ ∈ (0, 1) such that Λ is of class (Aγ). Then v
is Hölder-continuous, more precisely: there is an α ∈ (0, 1) independent of
f0, f1, . . . , fd such that

(4.4) sup
x,y∈Br(z)∩Λ

|v(x)− v(y)| ≤ c
d∑

j=0

‖fj‖Lq(Λ) r
α

holds true for all z ∈ Rd and r > 0.

In both estimates (4.3) and (4.4), the respective constant is uniform in the L∞(Λ)-
bound and ellipticity constant of µ.

Remark 4.5. The right hand side of (4.2) is to be understood as the antilinear
form

W 1,q′

0 (Λ) 3 ψ 7→
∫
Λ
f0ψ −

d∑
j=1

fj
∂ψ

∂xj

which clearly belongs to W−1,q(Λ) ↪→ W−1,2(Λ). Thus, the uniqueness of the
solution v follows from the ellipticity of t and the Lax-Milgram lemma.

On the other hand, while every antilinear form in W−1,q(Λ) can be represented
in the foregoing form, this representation is in general non-unique. But it is in fact
well known that W−1,q(Λ) is isometrically isomorphic to the quotient space with
respect to such representations; see [20, Ch. 1.1.14]. Hence, taking the infimum
over all representing families in the estimates (4.3) and (4.4), in the setting of
Proposition 4.4 one obtains the continuity of

A−1
q : W−1,q(Λ) → Cα(Λ).

The norm of this mapping is uniform in the L∞(Λ)-bound and ellipticity constant
of µ.
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The following extrapolation of the Lax-Milgram isomorphism will give us the
small ε in regularity that allows us to treat also the case of dimension four.

Proposition 4.6 ([15, Thm 5.6]). Let Assumptions 2.1 (a) and (b) be satisfied.

Then there is an ε > 0 such that dom(Aq + 1) =W 1,q
D (Ω) for all q ∈ [2, 2 + ε), that

is, the operator

Aq + 1: W 1,q
D (Ω) →W−1,q

D (Ω)

is a topological isomorphism. The norms of (Aq + 1)−1 are uniform with respect to
ε and the L∞(Ω)-bound and ellipticity constant κell of µ.

The plan how we aim to prove Theorem 4.2 was already sketched above. We now
have seen the main tool with which we leverage Hölder-continuity for the localized
and transformed problems in the form of Proposition 4.4. It remains to make sure
that the localization, transformation and possibly reflection techniques are com-
patible with Proposition 4.4; this concerns continuity for the associated mappings
between the function spaces involved and of course in particular the assumption in
the domain in Proposition 4.4 for the actual Hölder estimate.

This we will do in the following series of technical lemmas. We start with three
of them that deal with the localization. Recall the notation N = ∂Ω \ D for the
Neumann boundary part. First, we deal with localized Sobolev functions with
partially vanishing trace.

Lemma 4.7 ([17, Ch. 4.2]). Let U ⊆ Rd be open and set Ω• := Ω ∩ U as well as
D• := ∂Ω• \ (U ∩ N). Fix an arbitrary function η ∈ C∞

c (Rd) with supp(η) ⊆ U .
Then for any q ∈ (1,∞) we have the following assertions:

(a) If v ∈W 1,q
D (Ω), then ηv|Ω• ∈W 1,q

D•
(Ω•).

(b) Denote by E0 the zero extension operator and let f ∈ W−1,q
D (Ω). Then

f 7→ f• with

(4.5) f• : w 7→
〈
f,E0(ηw)

〉
, w ∈W 1,q′

D•
(Ω•)

defines a continuous linear operator W−1,q
D (Ω) →W−1,q

D•
(Ω•).

The next lemma is about the localization of a solution v to the elliptic equation
(A + 1)v = f and the ’localized’ equation. Here and also in the following, we will
need several versions of the divergence-gradient type operators A with different un-
derlying spatial sets, coefficient functions and associated Sobolev spaces respecting
partially vanishing trace conditions. We will use the notation −∇ · η∇ with the co-
efficient function η for these. It will always be clear from the context which precise
incarnation is meant.

Lemma 4.8 ([17, Lem. 4.7]). Let U , η, Ω• and D• be as in the foregoing lemma.

Set µ• := µ|Ω• and consider the operator −∇ · µ•∇ : W 1,2
D•

(Ω•) → W−1,2
D•

(Ω•). Let

f ∈W−1,2
D (Ω) and let v ∈W 1,2

D (Ω) be the solution of (A+1)v = f . Then u := ηv|Ω•

satisfies

(4.6) −∇ · µ•∇u = f• := f• −∇ · vµ•∇η − µ•∇v|Ω• · ∇η|Ω• − ηv|Ω•

in W−1,2
D•

(Ω•) with f• as in (4.5).
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Note that although we do not rule out the case D• = ∅, in fact, in the actual
proof of Theorem 4.2, D• will always be a nontrivial boundary part of Ω•. It is thus
convenient to consider the localized problem without a zero-order term as in (4.6)
which will also tie in with Proposition 4.4 smoothly.

Lemma 4.9. Let Assumption 2.1 (a) be satisfied; if d = 4, let also Assump-
tion 2.1 (b) hold true. Take U , η, Ω• and D• as in Lemma 4.7 and assume that there

is a linear extension operator which acts continuously from W 1,r
D•

(Ω•) into W
1,r(Rd)

for every r ∈ (1,∞). Let further q > d.

Then there exists p > d such that f ∈ W−1,q
D (Ω) implies f• ∈ W−1,p

D•
(Ω•), where

f• is defined as in Lemma 4.8 via (A+1)v = f , and the mapping W−1,q
D (Ω) 3 f 7→

f• ∈W−1,p
D•

(Ω•) is continuous.

Proof. We first recall that the usual Sobolev embeddings hold for Ω—cf. Remark 2.4—
and Ω•. Now, let us consider the terms in the right hand side of (4.6), so the def-

inition of f•, from left to right. We have f• ∈ W−1,q
D•

(Ω•) depending continuously

on f ∈ W−1,q
D (Ω) thanks to Lemma 4.7 (b), so this term is fine without further

ado. For the remaining terms, we distinguish between d = 2, 3 and d = 4, starting
with the former. We note that the proof of the continuity of f 7→ f• is implicitly
contained in the following estimates.

Let first d = 2, 3. Due to the Lax-Milgram lemma and Sobolev embedding, we
have

(4.7) ‖v‖
W 1,2

D (Ω)
≤ c‖f‖

W−1,2
D (Ω)

≤ c‖f‖
W−1,q

D (Ω)

where c only depends on geometry and the ellipticity constant of µ. Concerning
−∇ · vµ•∇η, for any p ∈ [1,∞] we have the estimate

(4.8)
∣∣〈−∇ · vµ•∇η, w〉

∣∣ ≤ ‖v‖Lp(Ω•) ‖µ‖L∞(Ω;Rd×d) ‖∇η‖L∞(Ω•) ‖w‖W 1,p′
D• (Ω•)

In particular, for p = min(q, 6) > d, we find∣∣〈−∇ · vµ•∇η, w〉
∣∣ ≤ c‖f‖

W−1,q
D (Ω)

‖µ‖L∞(Ω;Rd×d) ‖∇η‖L∞(Ω•) ‖w‖W 1,p′
D• (Ω•)

thanks to the Sobolev embedding W 1,2
D (Ω) ↪→ L6(Ω) ↪→ Lp(Ω) and estimate (4.7).

Thus, −∇ · vµ•∇η ∈ W−1,p
D•

(Ω•). The same argument and (4.7) moreover shows

that ηv|Ω• ∈ Lp(Ω•) ↪→W−1,p
D•

(Ω•).

Concerning the term µ•∇v|Ω• · ∇η|Ω• , it is easily observed that if v ∈ W 1,r
D (Ω),

then the term belongs to Lr(Ω) with the estimate

(4.9) ‖µ•∇v|Ω• · ∇η|Ω•‖Lr(Ω) ≤ ‖µ‖L∞(Ω;Rd×d)‖∇η‖L∞(Ω)‖v‖W 1,r
D (Ω)

.

In particular, for r = 2, we obtain via (4.7):

‖µ•∇v|Ω• · ∇η|Ω•‖L2(Ω) ≤ c‖µ‖L∞(Ω;Rd×d)‖∇η‖L∞(Ω)‖f‖W−1,q
D (Ω)

.

Thus, with the same choice for p as before, µ•∇v|Ω• · ∇η|Ω• ∈ W−1,p
D (Ω•) due to

the embedding L2(Ω•) ↪→W−1,p
D•

(Ω•).
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Now let d = 4. Thanks to Proposition 4.6, there is an ε > 0 such that v ∈
W 1,2+ε

D (Ω) with the estimate

(4.10) ‖v‖
W 1,2+ε

D (Ω)
≤ c‖f‖

W−1,2+ε
D (Ω)

≤ c‖f‖
W−1,q

D (Ω)
.

Having this at hand, for the estimate of the term −∇·vµ•∇η we again exploit (4.8),

this time taking p = 4 · 2+ε
2−ε such that precisely W 1,2+ε

D (Ω) ↪→ Lp(Ω). Note that p >

4 = d. Again, it follows analogously, this time via (4.10), that ηv|Ω• ∈ Lp(Ω•) ↪→
W−1,p

D•
(Ω•).

Finally, we estimate again as in (4.9) but pick r = 2 + ε and consider (4.10) to
observe µ•∇v|Ω• · ∇η|Ω• ∈ L2+ε(Ω•) together with the estimate

‖µ•∇v|Ω• · ∇η|Ω•‖L2+ε(Ω) ≤ c‖µ‖L∞(Ω;Rd×d)‖∇η‖L∞(Ω)‖f‖W−1,q
D (Ω)

.

With p = min(q, 42+ϵ
2−ϵ), one has the embedding L2+ε(Ω•) ↪→ W−1,p

D•
(Ω•) and the

claim follows. □

We now consider bi-Lipschitz transformations of the geometric setting.

Proposition 4.10. Let Λ ⊆ Rd be a bounded, open set that is a Lipschitz domain,
i.e., Λ satisfies Assumption 2.1 (a) in every point x ∈ ∂Λ. Let Σ be a closed subset
of its boundary. Assume that φ is a mapping from a neighbourhood of Λ into Rd

that is bi-Lipschitz. Let us denote Λ# := φ(Λ) and Σ# := φ(Σ). Then the following
holds true.

(a) For every p ∈ (1,∞) and every α ∈ (0, 1), the mapping φ induces a linear,
topological isomorphism Φf := f ◦ φ acting between

Φ: W 1,p
Σ#(Λ

#) →W 1,p
Σ (Λ) and Cα(Λ#) → Cα(Λ).

(b) Let ω be an essentially bounded, measurable function on Λ, taking its values
in the set of (d× d)-matrices. Then

Φ∗
[
−∇ · ω∇

]
Φ = −∇ · ω#∇

with

(4.11) ω#(y) :=
(Dφ)

(
φ−1(y)

)
ω
(
φ−1(y)

)
(Dφ)T

(
φ−1(y)

)∣∣ det(Dφ)(φ−1(y)
)∣∣

for almost all y ∈ Λ#. Here, Dφ denotes the Fréchet derivative of φ and
det(Dφ) the corresponding determinant.

(c) If ω is real and uniformly elliptic almost everywhere on Λ, then so is ω# on
Λ#.

Proof. The proof of (a) for the Sobolev spaces is contained in [14, Thm 2.10]; for
the Hölder spaces it is easy to verify. Part (b) is well known, see [16] for an explicit
verification, or [3, Ch. 0.8]. Finally, (c) is implied by (4.11) and the fact that for
a bi-Lipschitz function φ the derivative Dφ and its inverse (Dφ)−1 are essentially
bounded, see [13, Ch. 3.1]. □

It will be very useful that the class (Aγ) as in Assumption 4.1 (a) is preserved
under bi-Lipschitz transformations, precisely:
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Lemma 4.11. Let φ : Rd → Rd be a bi-Lipschitz map and assume that Ω and D
satisfy Assumption 4.1 (a), so Ω is of class (Aγ) at D. Then φ(Ω) is of class (Aγϕ)
at φ(D), that is, there is a constant γϕ > 0 such that for all y ∈ D and all r ∈ (0, 1]:

λd
(
Br(φ(y)) \ φ(Ω)

)
≥ γϕλd

(
Br(φ(y)

)
.

Proof. For every Lebesgue measurable set B ⊆ Rd one has the estimate λd(B) ≥
1
ℓd
λd(φ

−1(B)), where ` is a Lipschitz constant of φ−1, cf. [13, Thm. 2.5 and Thm. 2.8].
This entails for every y ∈ D and all r ∈ (0, 1] that

λd
(
Br(φ(y)) \ φ(Ω)

)
≥ 1

`d
λd

(
φ−1

(
Br(φ(y)) \ φ(Ω)

))
=

1

`d
λd

(
φ−1

(
Br(φ(y))

)
\ Ω

)
.

But φ−1(Br(φ(y))) contains the ball B r
L
(y), where L ≥ 1 is a Lipschitz constant of

φ. Using this and Assumption 4.1 (a) we may continue to estimate by

≥ 1

`d
λd

(
B r

L
(y) \ Ω

)
≥ γ

`d
λd

(
B r

L
(y)

)
=

γ

`dLd
λd

(
Br(φ(y))

)
and we are done. □

As a final step in this preparatory subsection, we prepare the reflection argument
in the proof of Theorem 4.2. For this we consider the matrix R := diag(1, 1, . . . , 1,−1) ∈
Rd×d and define the bi-Lipschitz map φR(x) = Rx for x ∈ Rd that reflects at the
plane [xd = 0].

Lemma 4.12. Let Λ ⊆ [xd < 0] be open and bounded and define Γ as the (relative)
interior of ∂Λ ∩ [xd = 0] in the plane [xd = 0]. Furthermore, set Σ := ∂Λ \ Γ and

Λ̂ := Λ∪Γ∪φR(Λ), and consider for v ∈W 1,2
Σ (Λ) the reflected function v̂ on Λ̂ with

v̂(y) :=

{
v(y) if y ∈ Λ,

v(Ry) if Ry ∈ Λ.

Then the following holds:

(a) If v ∈W 1,2
Σ (Λ), then v̂ ∈W 1,2

0 (Λ̂).

(b) Consider Φ defined as in Proposition 4.10 for φ = φR. Let f ∈ W−1,2
Σ (Λ)

and set

〈f̂ , ψ〉 := 〈f, ψ|Λ〉+ 〈Φ∗f, ψ|ϕR(Λ)〉, ψ ∈ C∞
c (Λ̂).

Then f 7→ f̂ is continuous from W−1,p
Σ (Λ) to W−1,p

0 (Λ̂) for every p ≥ 2.

(c) Let η : Λ → Rd×d. Define the reflected coefficient function η̂ on Λ̂ by

η̂(y) :=

{
η(y) if y ∈ Λ,

R η(Ry)R if Ry ∈ Λ.

Let v and f as before. Then we have

−∇ · η∇v = f =⇒ −∇ · η̂∇v̂ = f̂ .
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Proof. In order to prove (a), note first that—thanks to the special geometric
constellation—every ψ ∈ C∞

Σ (Λ) can be extended by zero to the whole half space
H− := [xd < 0], resulting in a function in W 1,2(H−). By the density of C∞

Σ (Λ)

in W 1,2
Σ (Λ) it follows that this extending procedure provides an isometry E0 from

W 1,2
Σ (Λ) into W 1,2(H−). Now let v ∈ W 1,2

Σ (Λ). We consider E0v and reflect this

function across the boundary of H− to obtain a function v± ∈ W 1,2(Rd) on all of
Rd that satisfies

‖v±‖W 1,2(Rd) = 2‖E0v‖W 1,2(H−) = 2‖v‖
W 1,2

Σ (Λ)
.

This is easily verified by direct calculations. So, summing up, the mapping

v 7→ E0v 7→ v± 7→ v±|Λ̂ = v̂

is continuous fromW 1,2
Σ (Λ) toW 1,2(Λ̂). It remains to show that indeed v̂ ∈W 1,2

0 (Λ̂).

To this end, let (vk) ⊂ C∞
Σ (Λ) be an approximating sequence for v in W 1,2

Σ (Λ).

Note that it is clear that (vk)±|Λ̂ approximates v̂ in W 1,2(Λ̂) and the supports of

(vk)±|Λ̂ have a positive distance to ∂Λ̂, but the functions are not smooth any more
in general. But this can be rectified by mollifying each (vk)±|Λ̂ with a suitable
regularizing kernel such that the resulting smooth functions’ supports still have a

positive distance to ∂Λ̂, and it is easily shown that these functions still approximate

v̂ in W 1,2(Λ̂), so v̂ ∈W 1,2
0 (Λ̂).

The proof of (b) and (c) is concluded from a straightforward calculation and
application of the definitions of the operators −∇ · µ∇ and −∇ · µ̂∇ together with
Proposition 4.10. □
Remark 4.13. From the proofs of the foregoing framework for localization, trans-
formation and reflection it is easily seen that each step preserves uniform bounds in
the data of an elliptic equation for a fixed geometry, that is, the right-hand side and
the coefficient function. In this sense, whenever a result on elliptic regularity on the
localized, transformed or reflected level yields a uniform estimate on the solution in
the aforementioned data, this uniform estimate carries over to the original situation
immediately. Of course, this is exactly the case for our main tool, Proposition 4.4.

4.2. Proof of Theorem 4.2. We now start the proof of the Hölder continuity
following the program sketched in the preceding subsection, cf. page 179. According
to the hypotheses of Theorem 4.2, from now on we suppose that Ω and D satisfy
the Assumptions 2.1 (a) and, if d = 4, also (b), as well as (always) Assumption 4.1.

In order to start the localisation procedure, we fix some notation. For the Neu-
mann boundary part we use again the shorthand N = ∂Ω \ D. Now, based on
Assumption 2.1 (a), choose for every x ∈ N an associated open neighbourhood Vx
and let {Vx1 , . . . , Vxm} be a finite subcovering of N .

Furthermore, choose a bounded open neighbourhoodW of Ω and put U0 :=W\N .
Then U0 is open and one has

U0 ∩ Ω = Ω and U0 ∩N = ∅.
The system U := {U0, Vx1 , Vx2 , . . . Vxm} forms an open covering of Ω. Moreover,
all sets in U give rise to extension domains; this will come in handy in view of
Lemma 4.9:
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Lemma 4.14. Let U ∈ U and put Ω• := Ω ∩ U and D• := ∂Ω• \ (U ∩ N). Then

for all r ∈ (1,∞) the space W 1,r
D•

(Ω•) admits again the continuation property, i.e.,

there is a continuous extension operator EU : W 1,r
D•

(Ω•) → W 1,r(Rd) which is even
universal in r.

Proof. In the case U = U0 one has D• = ∂Ω• by construction. Thus, W 1,r
D•

(Ω•) =

W 1,r
0 (Ω•) and the trivial extension by zero does the trick even without any condition

on the boundary. If U = Vxj , then Ω• = Ω ∩ Vxj is mapped onto the lower half

cube {x ∈ (−1, 1)d : xd < 0} by the bi-Lipschitz map φxj that is defined on a

neighbourhood of Ω•, cf. Assumption 2.1 (a). The lower half cube is a Lipschitz
domain. Thus, Ω• is also a Lipschitz domain and there is even an extension operator
from W 1,r(Ω•) into W 1,r(Rd) which is also universal in r. See Proposition 2.3
mutatis mutandis for Ω = Ω• and D = ∅. □

Corresponding to the open covering U of Ω we choose a smooth partition of
unity {η0, η1, . . . , ηm} ⊂ C∞

c (Rd) such that supp(η0) ⊆ U0 and supp(ηj) ⊆ Vxj for
j ∈ {1, . . . ,m}.

Let from now on q > d be fixed, let f ∈ W−1,q
D (Ω), and let v ∈ W 1,2

D (Ω) be the
solution to (4.1), so (A + 1)v = f . We write v =

∑m
j=0 ηjv and aim to show the

Hölder continuity of every function ηjv seperately. The easiest case is j = 0:

Lemma 4.15. There exists an α0 > 0 independent of f such that η0v ∈ Cα0(Ω)
and the estimate

‖η0v‖Cα0 (Ω) ≤ c‖f‖
W−1,q

D (Ω)

holds true. The constant c is uniform with respect to the L∞(Ω)-bound and ellipticity
constant κell of the given coefficient function µ.

Proof. Since N does not intersect U0, the function η0v belongs to W 1,2
0 (Ω), cf.

Lemma 4.7. Moreover, by Lemma 4.8 and Lemma 4.9 there is a p > d, only
depending on q and the geometry, and f0 ∈ W−1,p(Ω) such that the function η0v
satisfies the equation

(4.12) −∇ · µ∇(η0v) = f0.

Recall that as mentioned in Remark 4.3, Ω is of class (Aγ). So we are now in the
setting of a pure, homogeneous Dirichlet problem and can apply Proposition 4.4;
note also Remark 4.5. This yields that the solution η0v of (4.12) is Hölderian of
some degree α0 with the estimate

‖η0v‖Cα0 (Ω) ≤ c‖f0‖W−1,p(Ω).

Finally, combining Lemma 4.14 and Lemma 4.9, we conclude that

‖η0v‖Cα0 (Ω) ≤ c‖f‖
W−1,q

D (Ω)
,

where α0 does not depend on f . For the uniformity claim, see Remark 4.13. □
We turn to the Hölder continuity of the functions ηjv for j ∈ {1, . . . ,m}. For

these, there will be a part of the Neumann boundary N present. To make do
with this, we transform the localized problems via the diffeomorphisms φxj to the
model constellation on the unit cube as in Assumption 2.1 (a), which enables us to
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use a reflection argument to end up in a situation with a pure Dirichlet boundary
condition. Then we can conclude by Proposition 4.4. For this we introduce the
notation Q := (−1, 1)d for the unit cube, Q− := {x ∈ Q : xd < 0} for its lower half
and P := {x ∈ Q : xd = 0} for its midplate.

Due to Lemma 4.8, there is p > d such that each of the functions ηjv, j = 1, . . . ,m
satisfies an equation like

−∇ · µ∇(ηjv) = fj ∈W−1,p
Dj

(Ω ∩ Vxj ),

with Dj = ∂(Ω ∩ Vxj ) \N . Note that the right hand sides fj continuously depend
on f , see Lemma 4.9. According to Proposition 4.10, one may transform these
equations under the bi-Lipschitz diffeomorphisms φxj and pass to the equation

(4.13) −∇ · µ#j ∇wj = gj ∈W−1,p
Σj

(Q−),

where Σj = φxj (Dj) ⊆ ∂Q− is the transformed Dirichlet boundary part, wj ∈
W 1,2

Σj
(Q−) is the transformed version of the function ηjv|Ω∩Vxj

and gj is the trans-

formation of fj . Note that the whole ’lower mantle’ boundary ∂Q− \ P belongs to
Σj , since φxj (N ∩ Vxj ) ⊆ P .

From now on we distinguish whether xj ∈ N or xj ∈ D ∩ N , starting with the
former.

Lemma 4.16. Let j ∈ {1, 2, . . . ,m} with xj ∈ N . Then there is some αj > 0
independent of f such that ηjv ∈ Cαj (Ω) and we have

‖ηjv‖Cαj (Ω) ≤ c‖f‖
W−1,q

D (Ω)
.

The constant c is uniform with respect to the L∞(Ω)-bound and ellipticity constant
κell of the given coefficient function µ.

Proof. Thanks to Remark 2.2 we can assume that Σj = ∂Q− \ P . Thus, exploiting
Lemma 4.12 with Λ = Q− and Γ = P , the symmetrically reflected function ŵj

belongs to the space W 1,2
0 (Q) and obeys an elliptic equation on the cube Q with the

right hand side ĝj ∈ W−1,p(Q). The cube Q is obviously convex and satisfies the
regularity condition in Proposition 4.4 with γ = 1/2. Thus, said Proposition 4.4
applies and gives us Hölder continuity of ŵj of degree, say, αj , with an estimate in
ĝj ∈W−1,p(Q). By Proposition 4.10, Lemma 4.12 and Lemma 4.9 via Lemma 4.14
we then have

‖ηjv‖Cαj (Ω∩Vxj )
≤ c‖wj‖Cαj (Q−) ≤ c‖ŵj‖Cαj (Q)

≤ c‖ĝj‖W−1,p(Q) ≤ c‖gj‖W−1,p
Σj

(Q−)
≤ c‖fj‖W−1,p

Dj
(Ω∩Vxj )

≤ c‖f‖
W−1,q

D (Ω)
.

Since the support of ηj has a positive distance to Ω \ Vxj , the αj-Hölder continuity
and norm estimate is preserved for ηjv on the whole Ω. For the uniformity claim,
see again Remark 4.13. □

It remains to treat the patches with xj ∈ D ∩ N and it is here that Assump-
tion 4.1 (b) comes into play. In order to reformulate this condition in our current
notation, for some set M ⊆ ∂Q−, we denote its relative boundary inside ∂Q− by
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bd∂Q−(M) and inside P by bdP (M). Then Assumption 4.1 (b) reads as follows:
There are two constants c0 ∈ (0, 1) and c1 > 0, such that for all (y, 0) ∈ bdP (Σj)
and all s ∈ (0, 1] we have

(4.14) λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) > c0s

})
≥ c1s

d−1.

Later on it will be convenient to have this condition not only for the points in the
interface bdP (Σj), but for all points of Σj inside P . It is an interesting fact that
this comes for free, once we suppose it on the interface. This will be elaborated in
the next two lemmas.

Lemma 4.17. Condition (4.14) carries over to all points (y, 0) ∈ bd∂Q−(Σj) with
possibly different constants c0, c1 > 0.

Proof. Since ∂Q− \ P ⊆ Σj , we have the inclusion

bd∂Q−(Σj) = bd∂Q−(Σj ∩ P ) ⊆ bdP (Σj) ∪ bd∂Q−(P ).

For (y, 0) ∈ bd∂Q−(P ) we estimate

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) >

s

2

})
≥ λd−1

({
z ∈ Bs(y) : dist(z, P ) >

s

2

})
≥ ωd−1

2d−1
sd−1.

So, (4.14) is true for all points (y, 0) in bdQ−(P ) and it is true for all (y, 0) in
bdP (Σj) by hypotheses, with possibly different constants c0 and c1. In order to
conclude, it suffices to observe the following: If for a point y and a number s > 0
the inequality (4.14) holds, then this remains true if the constants c0, c1 are replaced
by smaller ones. □

The following lemma is already contained in [10] (see Lemma 5.4 there); we repeat
it, including the proof, for the convenience of the reader.

Lemma 4.18. We have for all (y, 0) ∈ Σj ∩ P and all s ∈ (0, 1]

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) > ĉ0s

})
≥ ĉ1s

d−1,

for ĉ0 := min{1
4 ,

c0
2 } and ĉ1 := min{ωd−1

4d−1 ,
c1

2d−1 }, where c0 and c1 are from Lemma 4.17.

Proof. For all (y, 0) ∈ bdP (Σj) the assertion is true by Assumption 4.1 (b) and,
using again the observation made in the end of the proof of Lemma 4.17, it suffices
to treat the case where (y, 0) is a relatively inner point of Σj in P . Since P \ Σj is
compact, we then have

ε := dist(y, P \ Σj) = dist(y, P \ Σj) > 0.

We distinguish three cases:
First case, 0 < s ≤ ε/2: In this case one finds{

z ∈ Bs(y) : dist(z, P \ Σj) > s
}
= Bs(y),

so

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) > s

})
= λd−1

(
Bs(y)

)
= ωd−1s

d−1.
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Second case, ε/2 < s ≤ 2ε: Since s/4 ≤ ε/2, we infer from the first case

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) >

s

4

)}
≥ λd−1

({
z ∈ B s

4
(y) : dist(z, P \ Σj) >

s

4

})
≥ ωd−1

sd−1

4d−1
.

Third case, 2ε < s ≤ 1: From the fact that P \ Σj is compact, we not only get
that ε > 0, but we also obtain the existence of a point (y∗, 0) ∈ bd∂Q−(Σj) with
‖y − y∗‖Rd−1 = ε. Since Bs−ε(y

∗) ⊆ Bs(y), this yields

λd−1

({
z ∈ Bs(y) : dist(z, P \ Σj) >

c0
2
s
})

≥ λd−1

({
z ∈ Bs−ε(y

∗) : dist(z, P \ Σj) >
c0
2
s
})
.

The condition 2ε < s implies c0
2 s < c0(s − ε). Using this and Lemma 4.17, we

continue to estimate

· · · ≥ λd−1

({
z ∈ Bs−ε(y

∗) : dist(z, P \ Σj) > c0(s− ε
})

≥ c1(s− ε)d−1 ≥ c1
2d−1

sd−1.

Invoking once more the observation from the end of the proof of Lemma 4.17, we
deduce the claim. □

Let, in all what follows, ĉ0, ĉ1 be the constants from Lemma 4.18. Also, we will
often use the decomposition Rd 3 x = (x̄, xd) ∈ Rd−1 × R.

For t ∈ R, we define the mapping ψt : Rd → Rd by

(4.15) ψt(x) = ψt

(
(x̄, xd)

)
:=

(
x̄, xd − t dist(x̄, P \ Σj)

)
.

Later on we will transform our problem again under the mapping ψt for a suitably
chosen value of t and afterwards reflect it in correspondence with Lemma 4.12. In
order to justify this transformation, we first prove a little lemma.

Lemma 4.19. Consider ψt be as in (4.15). Then the following holds true:

(a) The function Rd 3 x = (x̄, xd) 7→ dist(x̄, P \ Σj) is a Lipschitz contraction.
(b) For every t ∈ R, the function ψt is Lipschitz continuous and bijective with

inverse ψ−t. In particular, the inverse is also Lipschitz continuous.
(c) For every t ∈ R, the function ψt is volume preserving.

Proof. The function under consideration in (a) is the concatenation of the projection
Rd 3 x 7→ (x̄, 0) onto [xd = 0] and the restriction of the function Rd 3 x 7→
dist(x, P \ Σj) to Rd−1 × {0}. Both of these functions are Lipschitz continuous
contractions, thus so is the considered concatenation.

For (b), the first assertion follows from (a), and the second is easy to verify.
Finally, it is clear that the determinant of the Jacobian of ψt (cf. [13, Ch. 3.2.2])

is identically 1 a.e., thus the assertion (c) follows from [13, Ch. 3.3.3 Thm. 3.9]. □
In the following we choose t = 3

ĉ0
and abbreviate ψ := ψ3/ĉ0 . We transform (4.13)

under ψ to a problem

(4.16) −∇ · ω∇w = h ∈W−1,p
Σ∆

(Q∆),
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where the resulting domain is Q∆ := ψ(Q−) and the new Dirichlet boundary part
is Σ∆ := ψ(Σj). We suppress the dependence on j here, so w is the transforma-
tion of wj by slight abuse of notation, and h is the transformed gj . Furthermore,
the resulting coefficient function ω is again real, elliptic and bounded thanks to
Proposition 4.10.

The crucial effect of the transformation ψ is that the new Neumann boundary
part N∆ := ∂Q∆ \ Σ∆ is identical to the old Neumann part P \ Σj and that N∆ =

P \ Σj = ∂Q∆ ∩ P . In particular, ∂Q∆ ∩ P consists of Neumann boundary only.
Thus, the geometry of the problem (4.16) is now exactly of the shape needed to
reflect the problem across the plane [xd = 0], according to Lemma 4.12. We end up
with the domain

Λ := Q∆ ∪N∆ ∪
{
z = (z̄, zd) ∈ Rd : (z̄,−zd) ∈ Q∆

}
,

while the new coefficient function ω̂ is again real, bounded and elliptic and the
resulting right hand side ĥ belongs to the space W−1,p(Λ) with p > d. Lemma 4.12

already tells us that the solution ŵ of the equation on Λ belongs to W 1,2
0 (Λ). Thus,

in order to infer Hölder continuity for ŵ by Proposition 4.4, the only thing that is
left to verify is that our final geometry satisfies Assumption 4.1 (a). This will be
the main part of the proof.

Lemma 4.20. The domain Λ is of class (Aγ) for some γ ∈ (0, 1).

Proof. The boundary of Λ is the union of the sets ψ(Σj ∩ P ) and ψ(∂Q− \ P ) and
their reflected counterparts. We show the assertion for the points from ψ(Σj ∩ P )
and from ψ(∂Q−\P ), the proof for points from the reflected parts is then analogous.

Let r ∈ (0, 1] and assume y = (ȳ, yd) ∈ ψ(Σj ∩ P ). Then y is necessarily of the
form

(
ȳ,−3/ĉ0 ·dist(ȳ, P \Σj)

)
with (ȳ, 0) ∈ P . Now let first r < 3/ĉ0 ·dist(ȳ, P \Σj).

Then the ball Br(y) lies completely in the half space [xd < 0]. This gives

Br(y) \ Λ = Br(y) \Q∆ = Br(y) \ ψ(Q−).

Applying the volume-preserving map ψ−1, cf. Lemma 4.19, and using that ψ−1(y) ∈
P , one deduces the inequality

λd
(
Br(y) \ Λ

)
= λd

(
ψ−1(Br(y)) \Q−

)
≥ λd

(
ψ−1(Br(y)) ∩ [xd > 0]

)
=

1

2
λd

(
ψ−1(Br(y))

)
.

Since ψ−1 is Lipschitz continuous by Lemma 4.19, the set ψ−1
(
Br(y)

)
contains the

ball Br/ℓ

(
(ȳ, 0)

)
, where ` is the Lipschitz constant of ψ−1. Thus, we can continue

to estimate

≥ 1

2
`dωdr

d =
1

2
`dλd

(
Br(y)

)
.

Now we consider the second case r ≥ 3/ĉ0 · dist(y, P \ Σj). Let

B−
r (y) := Br(y) ∩

{
z ∈ Rd : zd ≤ −3/ĉ0 · dist(ȳ, P \ Σj)

}
.

Since yd = −3/ĉ0 · dist(ȳ, P \ Σj), this is exactly the ’lower’ half of Br(y). By
construction of Λ, one has

Br(y) \ Λ ⊇ B−
r (y) \ Λ = B−

r (y) \Q∆.
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Due to the choice of ψ, we have Q∆ ⊆
{
(z̄, zd) ∈ Rd : zd ≤ −3/ĉ0 · dist(z̄, P \ Σj)}.

Thus, we may continue

Br(y) \ Λ ⊇ B−
r (y) \

{
(z̄, zd) ∈ Rd : zd ≤ − 3

ĉ0
dist(z̄, P \ Σj)

}
= B−

r (y) ∩
{
(z̄, zd) ∈ Rd :

3

ĉ0
dist(z̄, P \ Σj) > −zd

}
.

We aim to parametrize the last set by layers along the zd-direction. To this end,
for s ∈ [0, r] we denote by Hs the hyperplane

{
(z̄, zd) ∈ Rd : zd = −3/ĉ0 · dist(ȳ, P \

Σj)− s
}
. Then we obtain

Br(y) \ Λ ⊇ B−
r (y) ∩

( ⋃
s∈[0,r]

Hs

)
∩
{
(z̄, zd) ∈ Rd :

3

ĉ0
dist(z̄, P \ Σj) > −zd

}
=

⋃
s∈[0,r]

(
B−

r (y) ∩Hs

)
∩
{
(z̄, zd) ∈ Rd :

3

ĉ0
dist(z̄, P \ Σj) > −zd

}
=:

⋃
s∈[0,r]

Gs

with

Gs :=
{
(z̄, zd) ∈ Rd : zd = − 3

ĉ0
dist(ȳ, P \ Σj)− s, z̄ ∈ B√

r2−s2(ȳ),

3

ĉ0
dist(z̄, P \ Σj) >

3

ĉ0
dist(ȳ, P \ Σj) + s

}
.

We now note the representation Gs = Gs ×
{
− 3

ĉ0
dist(ȳ, P \ Σj)− s

}
with

Gs = B√
r2−s2(ȳ) ∩

{
z̄ ∈ Rd−1 :

3

ĉ0
dist(z̄, P \ Σj) >

3

ĉ0
dist(ȳ, P \ Σj) + s

}
.

Thus, applying Cavalieri’s principle,

λd
(
Br(y) \ Λ

)
≥

∫ r

0
λd−1(Gs) ds =

∫ r

0
λd−1(Gs) ds ≥

∫ r√
2

r
2

λd−1(Gs) ds.

For s ∈ [0, r√
2
] we have Bs(ȳ) ⊆ B√

r2−s2(ȳ). On the other hand, for s ≥ r
2 the

supposition r ≥ 3/ĉ0 · dist(ȳ, P \ Σj) yields 3s ≥ r + s ≥ 3/ĉ0 · dist(ȳ, P \ Σj) + s.
So, for r

2 ≤ s ≤ r√
2
,

Gs ⊇ Bs(ȳ) ∩
{
z̄ ∈ Rd−1 :

3

ĉ0
dist(z̄, P \ Σj) > 3s

}
,
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and using Lemma 4.18 we can continue to estimate:

λd
(
Br(y) \ Λ

)
≥

∫ r√
2

r
2

λd−1

({
z̄ ∈ Bs(ȳ) : dist(z̄, P \ Σj) > ĉ0s

})
ds

≥ ĉ1

∫ r√
2

r
2

sd−1 ds

=
ĉ1
d

[(1
2

) d
2 −

(1
2

)d]
rd =

ĉ1(2
d
2 − 1)

dωd2d
λd

(
Br(y)

)
.

This was the claim for y ∈ Σj ∩ P .
It remains to discuss the points y ∈ ψ(∂Q− \ P ). Clearly, Λ is contained in the

’strip’ (−1, 1)d−1 × R, and ψ maps the lateral faces M := {−1, 1}d−1 × [−1, 0] of
Q− into {−1, 1}d−1 × (−∞, 0] which are exactly (the ’lower’ half of) the faces of
(−1, 1)d−1 × R. Thus, for y ∈ ψ(M), the set Br(y) \ Λ contains at least half of the
ball Br(y) and we have

λd
(
Br(y) \ Λ

)
≥ λd

(
Br(y) \ ((−1, 1)d × R)

)
≥ 1

2
λd(Br(y)).

The only case left is y ∈ ψ
(
{−1}×(−1, 1)d−1

)
, i.e., y is in the image of the ’bottom’

of the half cube. Then the ball Br(y) lies completely inside the ’lower’ halfspace
[zd ≤ 0] for all r ∈ (0, 1]. Thus, since ψ was volume-preserving,

Br(y) \ Λ = Br(y) \ ψ(Q−) = Br

(
ψ(ψ−1(y))

)
\ ψ(Q−).

By Lemma 4.11 we get the desired estimate once we can prove it for the untrans-
formed geometry Br(ψ

−1(y)) \ Q− where ψ−1(y) is in the bottom face of the unit
cube. But this is straightforward since Q− is convex. □

Let us mention that in [10] there is an even sharper version of the foregoing
result (see Lemma 5.7 there), giving an explicit estimate of γ in terms of the input
data c0, c1 in Assumption 4.1. With Lemma 4.20 at hand, we complete the proof
of Theorem 4.2 easily with the pendant to Lemma 4.16; its proof is completely
analogous to the one of Lemma 4.16 up to the additional transformation ψ.

Lemma 4.21. Let j ∈ {1, 2, . . . ,m} with xj ∈ D ∩N . Then there is some αj > 0
independent of f such that ηjv ∈ Cαj (Ω) and we have

‖ηjv‖Cαj (Ω) ≤ c‖f‖
W−1,q

D (Ω)
.

The constant c is uniform with respect to the L∞(Ω)-bound and ellipticity constant
κell of the given coefficient function µ.

We have shown in Lemmata 4.15, 4.16 and 4.21 that all localized functions ηvj
for j = 0, . . . ,m are Hölder continuous of (possibly different) degree αj with an

estimate against f ∈W−1,q
D (Ω) which is uniform with respect to the L∞(Ω)-bound

and ellipticity constant κell of the given coefficient function µ. Thus, if we choose α
to be the minimum of the αj , the claim of Theorem 4.2 follows and we are done. □
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topics, Astérisque, 249 (1998).

[4] S. Bechtel, R. M. Brown, R. Haller-Dintelmann and P. Tolksdorf, Extendability of functions
with partially vanishing trace, arXiv,1910,06009.

[5] S. Bechtel, M. Egert and R. Haller-Dintelmann, The Kato square root problem on locally
uniform domains, Adv. Math. 375 (2020): Article ID 107410, 37 pp.

[6] R. Chill, H. Meinlschmidt and J. Rehberg, On the numerical range of second-order elliptic
operators with mixed boundary conditions in Lp, J. Evol. Equ. 21 (2021), 3267–3288.

[7] K. Disser, J. Rehberg, The 3D transient semiconductor equations with gradient-dependent and
interfacial recombination, Math. Models Methods Appl. Sci. 29 (2019), 1819–1851.

[8] P. Dondl, M. Zeinhofer, Lp(I, Cα(Ω)) Regularity for Reaction-Diffusion Equations with Non-
smooth Data, arXiv,2112.09500,

[9] M. Egert, R. Haller-Dintelmann and J. Rehberg, Hardy’s inequality for functions vanishing on
a part of the boundary, Potential Anal. 43 (2015), no. 1, 49–78.
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