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2. Existence of a fixed point, convergence and well-posedness
properties

Assume that (X, ρ) is a complete metric space, ∆ > 0, and that the following
assumption holds:

(A) For each x, y ∈ X, there exist an integer q ≥ 1 and points xi ∈ X, i = 0, . . . , q,
such that

x0 = x, xq = y, ρ(xi, xi+1) ≤ ∆, i ∈ {0, . . . , q} \ {q}.
For each x, y ∈ X, define

ρ1(x, y) := inf
{ q−1∑

i=0

ρ(xi, xi+1) : q ≥ 1 is an integer,

(2.1) xi ∈ X, i = 0, . . . , q, x0 = x, xq = y, ρ(xi, xi+1) ≤ ∆, i ∈ {0, . . . , q} \ {q}
}
.

It follows from assumption (A) and equation (2.1) that for each x, y, z ∈ X, ρ1(x, y)
is finite,

ρ(x, y) ≤ ρ1(x, y) < ∞,

if ρ(x, y) ≤ ∆, then ρ1(x, y) = ρ(x, y),

ρ1(x, y) = ρ1(y, x),

ρ1(x, x) = 0,

if ρ1(x, y) = 0, then ρ(x, y) = 0 and x = y,

and

ρ1(x, z) ≤ ρ1(x, y) + ρ1(y, z).

Clearly, ρ1 is a metric on X.
Assume that K ⊂ X is a nonempty closed set and that the following assumption

holds:
(B) For each x, y ∈ K,

ρ1(x, y) := inf
{ q−1∑

i=0

ρ(xi, xi+1) : q ≥ 1 is an integer,

xi ∈ K, i = 0, . . . , q, x0 = x, xq = y, ρ(xi, xi+1) ≤ ∆, i ∈ {0, . . . , q} \ {q}
}
.

Let T : K → X be a mapping. We assume that for each x, y ∈ X satisfying
ρ(x, y) ≤ ∆, the inequality

ρ(T (x), T (y)) ≤ ρ(x, y)

holds. In view of (B) and the above assumption, for each x, y ∈ X, we have

ρ1(T (x), T (y)) ≤ ρ1(x, y).

Such a mapping T is said to be uniformly locally nonexpansive.
We remark in passing that the smaller class of uniformly local (strict) contractions

was introduced in [9], while the larger class of locally nonexpansive mappings was
studied in [3]. The work [9] also contains an example of a uniformly local (strict)
contraction which is not nonexpansive.
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Assume that ϕ : [0,∆] → [0, 1] is a decreasing function,

ϕ(t) < 1 for all t ∈ (0,∆],

and that for each x, y ∈ K satisfying ρ(x, y) ≤ ∆, we have

ρ(T (x), T (y)) ≤ ϕ(ρ(x, y))ρ(x, y).

The following theorem is established in [31]. It shows the well-posedness of the
fixed point problem for the mapping T .

Theorem 2.1. Given ϵ > 0, there exists δ > 0 such that for each x, y ∈ K satisfying

max{ρ(T (x), x), ρ(T (y), y)} ≤ δ,

the inequality
ρ(x, y) ≤ ϵ

holds.

Our next theorem was also proved in [31].

Theorem 2.2. Let ϵ,M > 0 be given. Then there exist a number δ ∈ (0, ϵ) and
an integer n0 ≥ 1 such that for each integer n > n0 and each finite sequence
{xi}ni=0 ⊂ K which satisfies

ρ1(x0, x1) ≤ M

and
ρ(xi+1, T (xi)) ≤ δ, i = 0, . . . , n− 1,

the inequality
ρ(xi, xi+1) ≤ ϵ

holds for all i = n0, . . . , n− 1.

Theorems 2.1 and 2.2 easily imply the following two results regarding the exis-
tence of a unique fixed point and the convergence of inexact iterates.

Theorem 2.3. Assume that for each integer n ≥ 1, there exists a finite sequence
{x(n)}ni=0 ⊂ K such that

sup{ρ1(x(n)0 , x
(n)
1 ) : n = 1, 2, . . . } < ∞

and
lim
n→∞

sup{ρ(x(n)i+1, Tx
(n)
i ) : i = 0, . . . , n− 1} = 0.

Then there exists a unique point x∗ ∈ K such that T (x∗) = x∗.

Theorem 2.4. Let the point x∗ ∈ K satisfy

T (x∗) = x∗

and let ϵ,M > 0 be given. Then there exist a number δ > 0 and an integer n0 ≥ 1
such that for each integer n > n0 and each finite sequence {xi}ni=0 ⊂ K which
satisfies

ρ1(x0, x1) ≤ M

and
ρ(xi+1, T (xi)) ≤ δ, i = 0, . . . , n− 1,
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the inequality

ρ(xi, x∗) ≤ ϵ

holds for all i = n0, . . . , n.

Note that in [30] the results of this section were obtained in the case where
K = X.

3. Hyperbolic spaces and porosity

In the present paper we consider a complete metric space of uniformly locally
nonexpansive self-mappings of a bounded and closed subset of a complete hyperbolic
space.

Let (X, ρ) be a metric space and let R1 denote the real line. We say that a
mapping c : R1 → X is a metric embedding of R1 into X if ρ(c(s), c(t)) = |s− t| for
all real s and t. The image of R1 under a metric embedding is called a metric line.
The image of a real interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a mapping is
called a metric segment.

Assume that (X, ρ) contains a family M of metric lines such that for each pair
of distinct points x and y in X, there is a unique metric line in M which passes
through x and y. This metric line determines a unique metric segment joining x
and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point is denoted by (1− t)x⊕ ty. We say that X, or more precisely (X, ρ,M),
is a hyperbolic space if

ρ

(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z

)
≤ 1

2
ρ(y, z)

for all x, y and z in X. An equivalent requirement is that

ρ

(
1

2
x⊕ 1

2
y,

1

2
w ⊕ 1

2
z

)
≤ 1

2
(ρ(x,w) + ρ(y, z))

for all x, y, z and w in X. A set K ⊂ X is called ρ-convex if [x, y] ⊂ K for all x and
y in K.

It is clear that all normed linear spaces are hyperbolic. A discussion of more
examples of hyperbolic spaces and, in particular, of the Hilbert ball can be found,
for example, in [14,24].

We now recall the notion of porosity. Let (Y,D) be a complete metric space. We
denote by B(y, r) the closed ball of center y ∈ Y and radius r > 0. A subset E ⊂ Y
is called porous in (Y,D) [29] if there exist α ∈ (0, 1) and r0 > 0 such that for each
r ∈ (0, r0] and each y ∈ Y , there exists a point z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous in (Y,D) if it is a countable union of
porous subsets of (Y,D).

Since porous sets are nowhere dense, all σ-porous sets are of the first Baire
category. If Y is a finite-dimensional Euclidean space, then σ-porous sets are of
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Lebesgue measure 0. In fact, the class of σ-porous sets in such a space is much
smaller than the class of sets which have Lebesgue measure 0 and are of the first
Baire category. The porosity notion has been used in analysis and in optimization
theory [7, 15,19,29,34].

4. The porosity result

Let (X, ρ,M) be a complete hyperbolic space and let K be a nonempty, closed
and bounded subset of (X, ρ). Assume that

∆ > 0, θ ∈ K

and that for each γ ∈ (0, 1) and each x ∈ K,

(4.1) γθ ⊕ (1− γ)x ∈ K.

Set

(4.2) diam(K) := sup{ρ(x, y) : x, y ∈ K}.

It follows from (4.1) and the boundedness of K in (X, ρ) that

sup{ρ1(x, y) : x, y ∈ K} < ∞.

Denote by A the set of all mappings T : K → X such that

(4.3) ρ(T (x), T (y)) ≤ ρ(x, y) for each x, y ∈ K satisfying ρ(x, y) ≤ ∆.

For each A,B ∈ A, define

d(A,B) := sup{ρ(A(x), B(x)) : x ∈ K}.

Since K is bounded in (X, ρ1), d(A,B) is finite for each A,B ∈ A. It is not difficult
to see that (A, d) is a complete metric space.

A mapping T ∈ A is said to be uniformly locally contractive if there exists a
decreasing function ϕ : [0,∆] → [0, 1] such that

ϕ(t) < 1 for all t ∈ (0,∆]

and for each x, y ∈ K satisfying ρ(x, y) ≤ ∆, we have

ρ(T (x), T (y)) ≤ ϕ(ρ(x, y))ρ(x, y).

Denote by F the set of all uniformly locally contractive mappings A ∈ A.
We are now ready to first state and then establish our main result.

Theorem 4.1. The set A \ F is σ-porous.

We may assume that

∆ ≤ diam(K).

Given A ∈ A and γ ∈ (0, 1), define

(4.4) Aγ(x) := (1− γ)A(x)⊕ γθ, x ∈ K.

In view of (4.4), for each x, y ∈ K satisfying ρ(x, y) ≤ ∆,

(4.5) ρ(Aγ(x), Aγ(y)) ≤ (1− γ)ρ(A(x), A(y)) ≤ (1− γ)ρ(x, y),
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and for each x ∈ K,

(4.6)
ρ(A(x), Aγ(x)) = ρ(A(x), (1− γ)A(x)⊕ γθ)

≤ γρ(A(x), θ) ≤ γdiam(K).

By (4.6),

(4.7) d(A,Aγ) ≤ γdiam(K).

In the sequel we use the convention that the supremum over the empty set is zero.
Theorem 4.1 can easily be deduced from the following two propositions.
For each integer n ≥ 1, denote by Fn the set of all A ∈ A such that

sup{ρ(A(x), A(y))ρ(x, y)−1 :

(4.8) x, y ∈ K and ∆ ≥ ρ(x, y) ≥ ∆n−1(diam(K) + 1)−1} < 1.

Set

(4.9) F := ∩∞
n=1Fn.

Proposition 4.2. Assume that A ∈ F . Then there exists a decreasing function
ϕ : [0,∆] → [0, 1] such that

ϕ(t) < 1 for all t ∈ (0,∆]

and for each x, y ∈ K satisfying ρ(x, y) ≤ ∆, we have

ρ(A(x), A(y)) ≤ ϕ(ρ(x, y))ρ(x, y).

Proof. Set ϕ(0) = 1. For each t ∈ (0,∆], define

ϕ(t) := sup{ρ(A(x), A(y))ρ(x, y)−1 :

(4.10) x, y ∈ K and ∆ ≥ ρ(x, y) ≥ t}.
By (4.8)–(4.10),

ϕ(t) < 1, t ∈ (0,∆].

It is clear that ϕ : [0,∆] → [0, 1] is a decreasing function. Let x, y ∈ K satisfy

0 < ρ(x, y) ≤ ∆.

Set t = ρ(x, y). By (4.10),

ϕ(ρ(x, y)) = ϕ(t) ≥ ρ(A(x), A(y))ρ(x, y)−1.

This completes the proof of Proposition 4.2. □
Proposition 4.3. Let n be a natural number. Then A\Fn is a porous set in (A, d).

Proof. Set

(4.11) α = ∆(8n)−1(diam(K) + 1)−2.

Assume that

A ∈ A, r ∈ (0, 1].

Set

(4.12) γ = 2−1(diam(K) + 1)−1r.
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Define
Aγ(x) := (1− γ)A(x)⊕ γθ, x ∈ K.

In view of (4.7) and (4.12), we have

(4.13) d(Aγ , A) ≤ γdiam(K) ≤ r/2.

Assume now that B ∈ A satisfies

(4.14) d(B,Aγ) ≤ αr.

It follows from (4.11), (4.13) and (4.14) that

d(A,B) ≤ d(A,Aγ) + d(Aγ , B)

(4.15) ≤ αr + r/2 ≤ r.

By (4.4), (4.5) and (4.14), for each x, y ∈ K satisfying

(4.16), ∆ ≥ ρ(x, y) ≥ ∆n−1(diam(K) + 1)−1

we have

ρ(B(x), B(y)) ≤ ρ(Aγ(x), Aγ(y)) + 2αr

≤ (1− γ)ρ(x, y) + 2αr

and in view of (4.11)–(4.12) and (4.16),

ρ(B(x), B(y))ρ(x, y)−1 ≤ 1− γ + 2αrρ(x, y)−1

≤ 1− γ + 2αr∆−1n(diam(K) + 1)

≤ 1− 2−1(diam(K) + 1)−1r + 2rαn(diam(K) + 1)∆−1

≤ 1− 2−1(diam(K) + 1)−1r + 4−1(diam(K) + 1)−1r

= 1− 4−1(diam(K) + 1)−1r.

Thus
B ∈ Fn

and
{B ∈ A : d(B,Aγ) ≤ αr} ⊂ {B ∈ A : d(A,B) ≤ r} ∩ Fn.

Therefore A \ Fn is a porous set. This completes the proof of Proposition 4.3. □
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