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More precisely, if the k-density exists and is positive and finite for all x ∈ E′

with H k(E′) > 0, then for H k-almost every x ∈ E′ the set of tangent measures
at x is nonempty and contains only k-uniform measures with 0 ∈ supp µ, see [14,
Proposition 3.4]. Here a measure µ is called k-uniform if, for some c > 0,

µ(B(y, r)) = crk for every y ∈ supp µ and r > 0.

Additionally, at H k-almost every x ∈ E′ there exists a tangent measure which
is flat, i.e. a constant multiple of H k restricted to a k-dimensional subspace of
Rd, [14, Theorem 6.8]. These two properties of tangent measures imply partial
k-rectifiability, see [14, Theorem 6.10].

Naturally, the situation in random graph theory is not as sophisticated and tech-
nically involved as in geometric measure theory. But still, the general concept of
tangents is used to prove (or disprove) regularity in a somewhat analogous way: A
property that holds for the tangents around all vertices taken from a set of positive
measure implies a global regularity property. The role of tangents is now played
by weak local limits of graphs, the ‘tangent graphs’, which were introduced by
Benjamini and Schramm [3]. We now explain this analogy in detail.

The objects of interest are sequences of graphs (G(N))N such that G(N) has N
vertices. We study the limit N → ∞ for sparse sequences, which means that the
number of edges is also of order N . The graphs may or may not be random, and
they need not be embedded into each other or into Euclidean space. The regularity
that we are interested in is the existence of a giant component, i.e. a connected
subgraph C(N) ⊂ G(N) such that

lim inf
N→∞

|C(N) |
N

> 0.

This means that there exist θ > 0 such that (with probability converging to one)
a proportion θ of the graph can be covered by a connected subgraph, so that con-
nectedness of a graph plays a similar role here as being the image of a Lipschitz
function in analysis.

There are two principal differences between the measure theoretical and the graph
theoretical set-up that are crucial when defining an analogue to the notion of tangent
measures. First, as the minimal metric distances in graphs are one, rather than
‘zooming into a point’ we need to keep the observation scale fixed (or even let it
grow slowly) while the surrounding graph grows. Second, and even more important,
there is no natural global limiting object of the graphs from which we could choose
the point at which we take the tangent. Instead, we pick a random point from each
graph G(N) . Our tangents therefore do not represent what a concrete object looks
like around a specific point but rather what the statistics of objects is around a
typical point in a large graph.

Looking at the regularity results in geometric measure theory the local criteria
implicitly refer to the neighbourhood of a ‘randomly chosen’ point from the set E.
We can therefore uphold the analogy when defining a tangent based on neighbour-
hoods of randomly chosen vertices in G(N) . Limits now have to be taken on the
probability space of neighbourhoods, i.e. in the weak or distributional sense. The
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notion of a tangent graph is therefore statistical (even if the graphs are not ran-
dom) in the sense that it is a random object that tells us what a neighbourhood of
a typical point looks like on average as the graphs get large. This often suffices to
get information about the (lack of) regularity of the graphs.

1.2. Weak local limits. We now carefully introduce our concept of tangent for
graph sequences (G(N))N . The tangents will be probability measures on the space
G∗ of locally finite, rooted graphs. Elements (G, o) of G∗ are graphs G with a finite
or countably infinite vertex set and a distinguished vertex o ∈ G called the root,
such that every vertex has a finite number of adjacent edges (called its degree). For
(G, o) ∈ G∗ and n ∈ N we denote by G ∧ n the finite subgraph consisting of all
vertices in G that can be reached from o by a path with no more than n edges. Two
elements (G1, o1), (G2, o2) ∈ G∗ have metric distance d(G1, G2) =

1
N+1 where

N = max
{
n : ∃ bijection ϕ : G1 ∧ n → G2 ∧ n with ϕ(o1) = o2 and

{u, v} is an edge in G1 iff {ϕ(u), ϕ(v)} is an edge in G2

}
.

We identify (G1, o1) and (G2, o2) if N = ∞. In particular, we identify a rooted
graph with the connected component of its root. With this convention G∗ becomes
a complete, separable metric space.

We take a sequence of graphs (G(N))N such that G(N) has N vertices and turn
G(N) into a random rooted graph by picking the root uniformly at random from the
vertices of G(N) . We say that (G(N))N converges weakly locally to a random rooted
graph (G, o) if, for every bounded, continuous function h : G∗ → R we have

1

N

∑
o∈G(N)

h
(
G(N) , o

) N→∞
−→ E

[
h(G, o)

]
.

If the graphs (G(N))N themselves are random, the objects on the left hand side
are random variables and the convergence is supposed to hold in probability. A
useful tool to establish weak local convergence is that it has to be checked only for
functions h which are the indicator function of balls in G∗.

An example of an interesting function h to which weak local limits apply is
given by h((G, o)) = 1/|Co|, where |Co| is the number of vertices in the connected
component of o if this finite, and h((G, o)) = 0 otherwise. Then the l.h.s. is the
number of connected components in the finite graph G(N) divided by N and weak
local convergence implies that this random quantity converges in probability to a
constant which is positive if and only if the limiting rooted graph is finite with
positive probability.

The weak local limit (G, o), if it exists, plays the role of a tangent graph. In the
remainder of this section we compare characteristic properties of tangent measures
and of tangent graphs. In the main part of this paper we then identify the tan-
gent graph of two random graph models and demonstrate its use in identifying the
regularity of the underlying graph sequence.
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1.3. Regularity of tangent measures. Key to the usefulness of any concept of
tangent is that the tangents to an object should have better symmetry or invariance
properties than the original object. One way to make the invariance properties of
tangent measures visible is to randomise the scales at which we zoom into the
neighbourhoods of x ∈ E. To this end we look at the random measure µx,R where
R is chosen randomly according to the truncated Haar measure

1δ<r<1

log(1/δ)

dr

r
.

The distributional limit points of µx,R as δ ↓ 0 are random measures with values in
the set of tangent measures at x, they (or, more precisely, their distributions) are
called tangent measure distributions, see [9,15]. Loosely speaking, tangent measure
distributions describe what we see at random scales when we zoom into x.

The invariance of tangent measure distributions can be expressed using the con-
cept of Palm distributions. Loosely speaking, these are derived from stationary
distributions of measures by conditioning on the origin being in the support of the
measure. More specifically, a σ-finite measure Q on the space of measures is station-
ary if Q ◦ θ−1

x = Q for all x ∈ Rd where the shift θx is given by θxµ(B) = µ(x+B).
For a measurable function w : Rd → [0,∞) with

∫
w(x) dx = 1 we define the inten-

sity of Q as

λQ =

∫∫
w(x)µ(dx)Q(dµ),

which does not depend on the choice of w. If the intensity is finite, the Palm
distribution P associated with Q is given by

P(A) = λ−1
Q

∫∫
1θxµ∈Aw(x)µ(dx)Q(dµ).

A probability measure P is called a Palm distribution if it is the Palm distribution
associated with some stationary measure of finite intensity. Palm distributions are
characterised by the invariance equation

(1.1)

∫∫
G(µ, u)µ(du)P(dµ) =

∫∫
G(θuµ,−u)µ(du)P(dµ),

which holds for all G : M (Rd) × Rd → [0,∞), see [19]. It is shown in [15] that at
H k-almost every x ∈ E all tangent measure distributions are Palm distributions.

1.4. Regularity of weak local limits. Equation (1.1) can be read as a mass
transport principle for tangent measures. A similar property holds for weak local
limits, it has been introduced by Benjamini and Schramm [3], see also [1] for an
extensive survey.

We take G∗∗ to be the space of graphs with two distinguished vertices in the same
connected component. Up to isomorphism classes this can be turned into a metric
space in a similar way as G∗. A random rooted graph (G, o) is unimodular if it
satisfies the mass transport principle, i.e.

(1.2)

∫ ∑
x∈G

g(G, o, x)P(d(G, o)) =

∫ ∑
x∈G

g(G, x, o)P(d(G, o)),
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for every Borel measurable g : G∗∗ → [0,∞] where the sums are over all x in an
arbitrary connected graph G representing the class (G, o). To understand the role
of the unimodularity put g(G, x, y) = f(deg(x))/|G| where deg(x) is the degree of
x in G. If the graph is finite almost surely the l.h.s. in (1.2) is the expectation of
f(deg(o)) while the r.h.s. is the expectation of f(deg(x)) for x uniformly chosen in
G. This characterises the root as a typical vertex.

Benjamini and Schramm [3] have shown that any weak local limit is unimodular.
The converse problem, whether any unimodular random rooted graph is a weak local
limit, is an open problem. Aldous and Lyons [1] explain potential consequences of
an affirmative answer.

2. Simple preferential attachment graphs

In this section we discuss a random graph model which is designed as possibly the
simplest model sufficiently nontrivial to test the theory on it. The simple preferential
attachment graph is an iteratively constructed sequence of random graphs where in
each step a new vertex is added to the graph and connected to existing vertices
independently with a preference for older (and implicitly more powerful) vertices.
The idea of constructing graphs from this (or a similar) principle goes back to [2],
see [12] for a more mathematical overview of different models. The arguments
presented here are boiled down from the paper [6] in which we discuss a ‘serious’
preferential attachment model. The proofs in [6] are technically much harder but
the ideas are the same in principle.

2.1. The model. Vertices arrive one-by-one and vertex n attaches to each earlier
vertex m ∈ {1, . . . , n − 1} independently with a probability proportional to m−γ

for some parameter 0 < γ < 1 parametrising the strength of the preference of
early vertices. The proportionality factor is chosen so that the expected number of
connections of a vertex is asymptotically constant. As, for some constant c > 0,

n−1∑
m=1

m−γ ∼ cn1−γ

the proportionality factor has to be of order nγ−1. Altogether, the connection
probability of two distinct vertices with number (or rank) i and j is

pij = β(i ∨ j)γ−1(i ∧ j)−γ

for some fixed parameter β > 0, and all connections are independent. The resulting
random graph on the vertices {1, . . . , N} is denoted G(N) .

2.2. The tangent graph. The problem at hand is to find for which parameters
β > 0 and 0 < γ < 1 there exists a giant component of (G(N))N . This problem
can be explicitly solved, the main tool in our solution is to identify the weak local
limit of this random graph sequence. To prepare this we now review an important
concept from probability theory.

Given a σ-finite measure space (X,X , µ) we can always define a Poisson process
P with intensity measure µ, which is a random measure on (X,X ) such that
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• for every A ∈ X with µ(A) < ∞ the random variable P (A) is Poisson-
distributed with expectation µ(A),

• for A,B ∈ X disjoint, the random variables P (A) and P (B) are independent.

Note that the random measure P takes values in the nonnegative integers almost
surely, i.e. it is purely atomic. The idea is that the Poisson process randomly scatters
points on X and P (A) counts the points landing in A. It is easy to see that for
every measurable f : X → [0,∞) we have

E
[ ∫

f dP

]
=

∫
f dµ.

We now construct a random rooted tree using Poisson processes to determine
offspring numbers. For its construction vertices are given a position on the negative
halfline (−∞, 0). We start with a root placed at a fixed position −x ∈ (−∞, 0).
We sample a Poisson process P with intensity measure µ and place the children of
the root such that for every Borel set A ⊂ (−∞, 0) the number of children in A
is P (x + A). In other words, when P has atoms y1, y2, . . . the first generation in
the tree consists of vertices in positions y1 − x, y2 − x, . . . if these are negative (and
otherwise they are discarded).

Continuing iteratively, given individuals in positions −x1,−x2, . . . ,−xk in the
nth generation, we determine the next generation by sampling independent Pois-
son processes P1, P2, . . . , Pk and determining that the number of children of the
individual at −xi which are placed in A ⊂ (−∞, 0) is Pi(xi + A). The process
thus constructed is the Poisson branching random walk with intensity measure µ
and start in −x killed at the origin. Note that the expected number of children of
a vertex in position −x is µ((−∞, x)) so that the further to the left a particle is
placed on the line, the more powerful it is, i.e. the more offspring it is expected to
produce.

Forgetting the positions of the vertices in the branching random walk after its
construction we obtain a random rooted tree denoted by T(x, µ). If

µ((−∞, a]) < ∞ for all a > 0

all the vertices of this tree have finite degree and hence T(x, µ) is a random element
of the space G∗ of locally finite, rooted graphs. The random rooted graph T(x, µ)
could be finite or infinite and we will later see a sharp criterion for when it is almost
surely finite.

Lemma 2.1. The weak local limit of the simple preferential attachment graphs is the
tree T(X,π) associated with the Poisson branching random walk killed at the origin
with initial particle placed at −X, where X is standard exponentially distributed,
and intensity measure π given by

π(dz) = β(ez(1−γ)1z<0 + ezγ1z>0) dz.
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We now explain the idea behind this lemma. The vertices of G(N) are indexed
1, 2, . . . , N with small indices indicating powerful vertices. Define

tn =

n−1∑
k=1

1

k
∼ log n

and the mapping

ϕN : {1, . . . , N} → (−∞, 0], n 7→ tn − tN .

A uniformly chosen vertex is then mapped into a position which, as N → ∞,
converges to the law of logU for U uniform on (0, 1), which equals −X for X
standard exponentially distributed.

We now fix a relative age u ∈ (0, 1) and look at a vertex duNe ∈ G(N) and the
point process consisting of all points ϕN (j) such that the edge {j, duNe} is present.
The claim is that this process converges in distribution to log u+ P defined by

log u+ P (A) := P (− log u+A) for A ⊂ (−∞, 0),

where P is a Poisson point process with intensity measure π.

Take a < b < u, then

P
(
duNe does not connect to any j ∈ [aN, bN ]

)
=

⌊bN⌋∏
j=⌈aN⌉

(
1− β(uN)γ−1j−γ

)
∼ exp

(
− β(uN)γ−1

⌊bN⌋∑
j=⌈aN⌉

j−γ
)

−→ exp
(
− βuγ−1

∫ b

a
x−γ dx

)
= exp

(
− β

∫ log b−log u

log a−log u
ez(1−γ) dz

)
= exp

(
− π(log a− log u, log b− log u)

)
.

Hence the probability that there are no points ϕN (j) ∈ [log a, log b] with j ∼ duNe
converges to the probability that log u + P ([log a, log b]) = 0 and, by the same
calculation, the expected number of points ϕN (j) ∈ [log a, log b] with j ∼ duNe
converges to the expectation of log u + P ([log a, log b]) as well. By Kallenberg’s
theorem, see e.g. [18, Proposition 3.22], this implies convergence to the Poisson
process log u + P on (−∞, log u] and a similar calculation gives convergence on
(log u, 0].

Suppose we have explored the offspring of duNe and move to the next generation.
If dvNe is an offspring vertex, then we can do the same calculation omitting the
vertices that we have already seen in the exploration so far. If these are o(N) many
we also get offspring distributed like an independent point process with distribution
log v + P .

For the actual proof of weak local convergence we fix a rooted tree t of fixed
depth at most k and let h be the indicator of a ball centred in t with radius 1

k+1 .
Refining the calculation above we can construct T(log u, π) and the rooted graph
(G(N) , duNe) on the same probability space such that

h
(
G(N) , duNe

)
→ h

(
T(log u, π)

)
in probability.
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Such a construction is called a coupling. To complete the proof we then verify that
the local neighbourhoods in different points of G(N) are sufficiently independent so
that by a law of large numbers the average over all possible roots converges to the
expectation of the limit under a uniformly chosen u ∈ (0, 1). Recall that if U is a
uniform random variable on (0, 1), then logU = −X for a standard exponentially
distributed X.

Being a random rooted tree associated with a ‘classical’ branching process the
‘tangent graph’ thus constructed for the simple preferential attachment graph is a
much more accessible object than the original graph sequence.

2.3. Existence of a giant component. We now argue how a solution to our
problem can be obtained from the weak local limit. Loosely speaking, a giant
component exists if the weak local limit has positive probability of being an infinite
connected graph. Indeed, let hk be the indicator of the event that there is no self-
avoiding path of length k starting at the root and denote the weak-local limit (G, o).
Then, denoting by C(N)

v the connected component containing the vertex v,

1

N
#{v ∈ G(N) : diam(C(N)

v ) ≤ 2(k − 1)} ≥ 1

N

∑
o∈G(N)

hk
(
G(N) , o

)
−→ P((G, o) has no self-avoiding path of length k starting at o),

and as k → ∞ the right hand side converges to the probability that (G, o) is a finite
rooted graph. In particular, if (G, o) is a finite rooted graph almost surely, then
(G(N)) has no giant component. For the converse direction, i.e. to show that there
is a giant component if the tangent graph has positive probability of being infinite,
the convergence type in the weak local limit is not strong enough. In the present
example this can be resolved by taking suitable sequences hn → h of functions on
G∗ that capture growing graph neighbourhoods and replace the coupling argument
above by

hN
(
G(N) , duNe

)
→ h

(
T(log u, π)

)
in probbability,

see [6], but there is also a general criterion of van der Hofstad [11] that can be
checked. This is more technical and we cannot give further details here.

To answer our initial question we still need to decide whether there is a positive
probability that the tangent graph is an infinite rooted graph. The killed branching
random walk is simple enough to explicitly decide when this is the case in terms of
the model parameters β > 0, 0 ≤ γ < 1.

Theorem 2.2. In the simple preferential attachment model a giant component exists
if and only if

γ ≥ 1

2
or β >

1

4
− γ

2
.

We can use general branching process theory [4] to find the parameters for which
the tangent graph is finite. Observe that unimodularity implies that, if the tree is
almost surely finite, the degree of a randomly chosen vertex has the same distri-
bution as the degree of the root, and hence its offspring number is stochastically
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smaller and its spatial position biased to the right compared to the root. This is
reflected in the finiteness criterion.

Indeed, the Poisson branching random walk killed at the origin with intensity π
dies out (and hence the associated tree is finite) almost surely if and only if there
exists α > 0 such that

ρ(α) :=

∫ ∞

−∞
e−αtπ(dt) ≤ 1.

This can be calculated as

ρ(α) = β
(∫ 0

−∞
e−αz+(1−γ)z dz +

∫ ∞

0
e−αz+γz dz

)
,

which is finite only if γ < α < 1− γ. Such a choice is only possible if γ < 1
2 and in

this case ρ(α) equals
β

1− α− γ
+

β

α− γ
.

This expression is minimal if α = 1
2 and then equals 4β

1−2γ . Hence no giant component
exists if and only if γ < 1

2 and β ≤ 1
4 − γ

2 .

In particular if γ ≥ 1
2 then a giant component exists even if the edge density

(i.e. the total number of edges per vertex, which is proportional to β in our model)
is arbitrarily small. For this robustness phenomenon the threshold of γ = 1

2 (the
value at which the variance of the degree distribution becomes infinite) is typical
for graph models without clustering, which is the case when the tangent graph is a
tree. However, this turns out differently in the spatial models we consider below.

3. Spatial preferential attachment graphs

The fact that the scale-free networks we looked at so far are locally tree-like was
useful for the analysis, because we have a good understanding of random trees and,
in particular, branching processes. But precisely this feature is not desirable for
modelling purposes, as network data typically has clustering, i.e. the probability
that two vertices in the neighbourhood of a given vertex are connected is much
larger than the probability that two arbitrary vertices are connected. Spatial models
address this problem: Points are now embedded in space and the probability of edges
connecting two points depends on their geometric distance, in that far away points
are much less likely to be connected. This creates the desired clustering effect in a
natural way, but makes the models harder to analyse.

3.1. The model. We now discuss a nontrivial model of a spatial random graph
with preferential attachment. The model is a variant of the model introduced and
studied in [7] and thoroughly investigated in [8]. It is a substantially simplified
version of the spatial preferential attachment model studied in [10, 13], for which
many open problems remain.

Let T1 = (−1/2, 1/2]d be the d-dimensional torus of side-length one, endowed
with the torus metric d. Let G(1) be the graph with a single vertex placed uniformly
at random in T1 and no edges. Given the graph G(N−1) with vertices in positions
x1, . . . , xN−1 vertex N is placed in position xN chosen uniformly at random in T1
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and connected by an edge to each existing node n ∈ {1, . . . , N − 1} independently
with probability

ρ
(
p−1
nN d(xn, xN )d

)
,

where pnN are exactly as in the previous model, i.e. for n < N ,

pnN = βNγ−1n−γ ,

and ρ : [0,∞) → [0, 1] is a nonincreasing profile function standardised to satisfy∫
Rd

ρ(|x|d) dx = 1.

With this choice of parametrisation the probability that the Nth vertex connects to
n is asymptotically pnN as N → ∞. Hence the connection probabilities are similar
to the simple preferential attachment model but of course the correlation structure
is much more complicated.

We can use the profile function ρ to weaken these correlations, i.e. the slower the
asymptotic decay of ρ the weaker the correlations. Another point of view is that
with ρ we can tune the influence of the geometry independently from the degree
structure of the graph. Lighter tails of ρmean stronger geometric restrictions, which
are most rigid if ρ(x) = 1[0,r](x) for r > 0. In this case vertex N is linked to vertex
n if their positions are within distance (rpnN )1/d.

For our most interesting results we take ρ(x) ∼ cx−δ for some parameter δ > 1
as in this case the behaviour changes qualitatively as δ varies. Other choices of ρ
can be studied by the same method.

3.2. The tangent graph. We now describe what turns out to be the weak local
limit of our spatial preferential attachment network. Despite the fact that this limit
is not a tree, it is still a useful and fascinating object, the age-dependent random
connection model, which we now define.

Let X denote the Poisson process on Rd×(0, 1) with Lebesgue intensity measure.
We denote the points supporting the Poisson process by x = (x, s) and say that x
is born at time s and placed at position x. Given X we let X0 = X ∪ {o} where
o = (0, U) is a vertex at the origin and U is an independent uniform mark in (0, 1).
We define the random rooted graph (G,o) by placing an edge between x = (x, u)
and y = (y, s) with s < u independently of everything else with probability

ρ
(
β−1sγu1−γ |x− y|d

)
.(3.1)

If γ < 1 the rooted graph (G,o) is almost surely locally finite. We call this random
rooted graph the age-dependent random connection model with profile function ρ
and parameters γ, β.

Lemma 3.1. The weak local limit of the spatial preferential attachment graph is
the age-dependent random connection model with the same profile function ρ and
parameters γ, β.
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We now sketch the proof of this lemma. We map the points of (G(N)) with
positions x1, . . . , xN onto Rd × (0, 1] via the mapping

hN : T1 × {1, . . . , N} → Rd × (0, 1], (x, n) 7→ (N1/dx, n
N ).

where we identify the torus with [−1
2 ,

1
2 ]

d so that a randomly chosen vertex of G(N)

is positioned at the origin. The index i of this vertex is uniformly chosen from
{1, . . . , N} and hence this vertex is mapped by hN to a point placed at the origin
with a mark which, as N → ∞, is asymptotically uniformly distributed. The point
process formed by the image of the other vertices

{hN (x1, 1), . . . , hN (xN , N)} \ {hN (xi, i)}
converges to the Poisson process on Rd×(0, 1). To see this we look at the probability
that the compact set A× [a, b] ⊂ Rd × (0, 1) contains no points, which is

bN∏
j=aN
j ̸=iN

(
1−Vol(N−1/dA)

)
−→ exp

(
− (b− a)Vol(A)

)
.

The limit is the probability that the Poisson process has no point in A × [a, b] ⊂
Rd×(0, 1). Similarly we see that the expected number of points in A×[a, b] converges
to (b−a)Vol(A). This shows that the point processes converge as claimed. Moreover,
there is an edge between (xn, n) and (xm,m) for n < m with probability

ρ
(
p−1
nm d(xn, xm)d

)
= ρ

(
β−1m1−γnγ d(xn, xm)d

)
= ρ

(
β−1

(
n
N

)γ(m
N

)1−γ |N1/dxn −N1/dxm|d
)
,

if xn, xm ∈ B(xi,
1
4) so that the distance in the torus metric and in the euclidean

metric of the unit cube coincide. This connection probability agrees with the prob-
ability that hN (xn, n) and hN (xm,m) are connected by an edge. As, for every k,
the probability that xi is connected in k steps to a vertex outside B(xi,

1
4) goes to

zero, we again have couplings of the neighbourhood of a randomly chosen vertex
in G(N) to the tangent graph and the proof of Lemma 3.1 can be completed by a
suitably tailored law of large numbers, see [16] for a statement that can be adapted
to our requirements.

The Poisson process on Rd × (0, 1) (with Lebesgue intensity) is stationary under
spatial shifts and the associated Palm distribution is simply the Poisson process
on Rd × (0, 1) with an additional uniformly marked point at the origin. Hence our
tangent graph is embedded in euclidean space to have the same mass transport
property as the tangent measure distributions.

3.3. Existence of a giant component. Recall that we identify two rooted graphs
if the connected components of the root agree, so that infiniteness of a rooted graph
really refers to infiniteness of the connected component of the root. As before the
spatial preferential attachment graph has no giant component if the tangent graph
is almost surely finite, but some extra work is needed to show that the spatial
preferential attachment graph has a giant component if the tangent graph is infinite
with positive probability. This is proved for a variant of the model in the PhD
thesis [14].
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Unfortunately, the tangent graph is not easy to analyse and we cannot expect to
find the precise range of γ, β and the tail index δ > 1 of the profile function, where
the rooted graph is infinite with positive probability. But we are able to identify
the values of γ and δ so that for all β > 0 the rooted graph is infinite with positive
probability.

Theorem 3.2. In the spatial preferential attachment model a giant component ex-
ists if

γ > δ
δ+1 and β > 0 arbitrary;

but if γ < δ
δ+1 no giant component exists for all sufficiently small β > 0.

This is proved in the PhD thesis [14] and in the paper [4]. The most difficult
step is to check the infiniteness of the connected component of the origin in the
age-dependent random connection model.

We note that this result is different from Theorem 2.2 because in that case for
all γ > 1

2 and β > 0 a giant component exists. The geometric embedding and
correlation structure influences the graph topology by making it less connected. If
δ > γ

1−γ the constraints coming from the geometry are strong enough so that a

giant component can only emerge if β is sufficiently large.

4. Conclusion

We have seen that the idea of weak local limits used in the study of random
graphs has a strong conceptual similarity with the idea of tangent measures used in
geometric measure theory. It is my hope that this note can inspire a further transfer
of ideas between these mathematical fields.
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[14] L. Lüchtrath, Percolation in weight-dependent random connection models, PhD Thesis, Uni-
versity of Cologne, 2022.

[15] P. Mörters and D. Preiss, Tangent measure distributions of fractal measures, Math. Annalen
312 (1998), 53–99.

[16] M. D. Penrose and J. E. Yukich, Weak laws of large numbers in geometric probability, Ann.
Appl. Probab. 13 (2003), 277–303.

[17] D. Preiss, Geometry of measures in Rn: distribution, rectifiability, and densities, Ann. of
Math. (2) 125 (1987), 537–643.

[18] S. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, 1987.
[19] U. Zähle, Self-similar random measures I, Prob. Th. Rel. Fields 80 (1988), 79–100.

Manuscript received October 14 2022

revised January 30 2023

P. Mörters
Universität zu Köln, Germany
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