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define the notion of pointwise co-Lipschitzness similarly. Other local notions of co-
Lipschitzness have also been considered, for example in [8]. Another local notion
we are going to use is local injectivity. We say a mapping f : X → Y between
two metric spaces is locally injective at x ∈ X if there exists r > 0 such that the
restriction of f to BX

r (x) is injective.
Co-Lipschitz mappings were first introduced in [5, 6, 12] but first systematically

studied in [1, 7]. The results in [1] support the intuitive notion that Lipschitz
quotient mappings are non-linear analogues for linear quotient mappings between
Banach spaces. When considering linear quotient mappings X → Y the point
preimage of each x ∈ X is an affine subspace of X with dimension d := dim(X) −
dim(Y ). In [10] it is shown that provided the constants c and L are sufficiently
close then point preimages, under Lipschitz quotient mappings, cannot be (d+ 1)-
dimensional. However, if no condition is imposed on the constants, it is shown
in [3] that there exist Lipschitz quotient mappings R3 → R2 which collapse a subset
containing a 2-dimensional plane to a single point.

Such a result is not possible for planar Lipschitz quotient mappings, no matter
how far the constants c and L are. It is shown in [7] that such mappings have a
very specific structure:

Theorem 1.1 ( [7, Theorem 2.8(i)]). Suppose f : C → C is a Lipschitz quotient
mapping. Then f = P ◦ h, where h : C → C is a homeomorphism and P is a
complex polynomial of one complex variable.

Note that in Theorem 1.1 we did not specify the norms associated to the domain
and co-domain. This is justified since passing to an equivalent norm preserves
whether a mapping is a Lipschitz quotient; hence in the finite dimensional setting
there is no need to specify the norm considered. We also highlight here that the
original statement of Theorem 1.1 in [7] is given for Lipschitz quotient mappings
from R2 to itself. The restatement in Theorem 1.1 follows due to the natural
identification of R2 with C, which is required in the definition of the polynomial P
in any case.

Surprisingly little is known for higher dimensional analogues of Theorem 1.1. It
is not even known if Lipschitz quotient mappings Rn → Rn, n ≥ 3 are discrete, see
Conjecture 2.28.

In light of Theorem 1.1, and in the search of converses to such a statement, the
authors of [7] pose questions regarding the uniqueness of the homeomorphism h
obtained from the decomposition of a Lipschitz quotient mapping and whether a
converse statement to Theorem 1.1 holds also. It is shown that, up to a linear
transformation, the homeomorphism obtained via the decomposition of a Lipschitz
quotient mapping is unique, see [7, p. 22].

In connection to the structural decomposition of planar Lipschitz quotient map-
pings, we ask the following questions concerning converse statements to Theo-
rem 1.1.

Question 1.2. (a) Can every planar homeomorphism h : C → C be obtained
via a decomposition of a Lipschitz quotient mapping? In other words, is it
true that for every homeomorphism h : C → C there exists a non-constant
complex polynomial P such that P ◦ h is a Lipschitz quotient mapping?
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(b) Can every non-constant complex polynomial P be obtained via a decom-
position of a planar Lipschitz quotient mapping? In other words, is it true
that for every non-constant polynomial P there exists a homeomorphism
h : C → C such that P ◦ h is a Lipschitz quotient mapping?

We begin by considering Question 1.2 (a). We provide a planar homeomorphism h
such that P ◦h is not Lipschitz quotient for every non-constant complex polynomial
P . Indeed, consider the homeomorphism h : C → C given by h(z) = |z|2ei arg(z).
Observe that P ◦ h is not Lipschitz for every non-constant complex polynomial P .
This follows simply as

lim
R→+∞

|P ◦ h(R)− P ◦ h(0)|
R

= +∞.

The main motivation of this paper is to consider Question 1.2 (b), as the authors
of [7] do. The authors claim to answer this in [7, Proposition 2.9] in the positive,
and provide a sketch proof of the following statement.

Proposition 1.3. Let P be a non-constant polynomial in one complex variable with
complex coefficients. Then there exists a homeomorphism h of the plane such that
f = P ◦ h is a Lipschitz quotient mapping.

However, as we show in Section 3, the construction of their mapping h is not in
fact a homeomorphism of the plane. In this paper we prove Proposition 1.3. To
do so we follow the framework provided in [7] but correct oversights in the original
sketch and in doing so introduce a stronger (pointwise) notion of co-Lipschitzness,
namely strongly co-Lipschitz.

With this new notion, we pose a question regarding the existence of Lipschitz
quotient mappings Rn → Rn, n ≥ 3 which are strongly co-Lipschitz at some point.
We explain the logical equivalence between this question and the long-standing
conjecture of [7] whether such mappings are necessarily discrete. Moreover, with
this new notion, we consider the following question.

Question 1.4. For a fixed homeomorphism h : C → C does there exist a non-
constant complex polynomial P such that P ◦h is not a Lipschitz quotient mapping?

We answer Question 1.4 in the positive in Lemma 2.30.

2. Preliminaries

Throughout this paper, for a metric space X and S ⊆ X, Int(S) denotes the
topological interior of S and ∂S represents the boundary of S.

Notation 2.1. For any z ∈ C\{0} we take arg(z) ∈ (−π, π] to denote the principal

argument of z. Further, for any a > 0, b ∈ R we define |z|aeib arg(z) = 0 when z = 0.
For any non-constant complex polynomial P in one complex variable and a > 0

we define the closed set

(2.1) V P
a =

⋃
zj∈S(P ′)

Ba(zj),

where P ′ is the derivative of P and S(P ′) = {z ∈ C : P ′(z) = 0}.
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We now state properties of particular functions which are important in the ju-
dicious choose of r > 0 which we are making in Claim 3.5. First, let P be a fixed
non-constant complex polynomial of one complex variable, P ′ be its derivative and
zj ∈ S(P ′). Of course if P is non-zero and linear, then S(P ′) = ∅. Define the
polynomial

(2.2) Qj(z) :=
P (z)− P (zj)

(z − zj)mj
,

where mj ≥ 1 is the multiplicity of zj as a root of the polynomial P (z) − P (zj).
Note, for future reference, that P (z) = (z − zj)

mjQj(z) + P (zj). Further, by the
maximality of mj ,

(2.3) Qj(zj) ̸= 0.

We define the expansion of the polynomial Qj about zj by

(2.4) Qj(z) =

n−mj∑
l=0

cl,j(z − zj)
l

where n = deg(P ) and cl,j ∈ C. Thus (2.3) implies c0,j = Qj(zj) ̸= 0 for each j such
that zj ∈ S(P ′).

We now define a function which proves useful in the construction of the Lipschitz
quotient mapping in Section 3. For each m ≥ 1, let Am ⊆ C× C be defined by

Am :=
{
(z, w) : |z|eim arg(z) ̸= |w|eim arg(w)

}
∪ {(w,w) : w ∈ C \ {0}} .

Now, for each m ≥ 1 and l ∈ {1, . . . ,m} we define the mapping Φl,m : Am → C by

(2.5) Φl,m(z, w) =


|z|

l+m
m ei(l+m) arg(z) − |w|

l+m
m ei(l+m) arg(w)

|z|eim arg(z) − |w|eim arg(w)
, if z ̸= w;

l +m

m
|w|

l
m eil arg(w), if z = w.

Lemma 2.2. Let m ≥ 1 and 1 ≤ l ≤ m. For each w ∈ C \ {0}, there exists ρ > 0
such that Bρ(w)× {w} ⊆ Am and

lim
z→w

z∈Bρ(w)

Φl,m(z, w) = Φl,m(w,w).

Proof. Note for w ∈ C \ {0} fixed that there exist finitely many points z ∈ C such
that (z, w) ̸∈ Am; namely this happens exactly when z ̸= w but |z| = |w| and
eim arg(z) = eim arg(w). Hence, there exists ρ > 0 such that Bρ(w)× {w} ⊆ Am.

If z ∈ Bρ(w) \ {w}, then Φl,m(z, w) = (g(f(z)) − g(f(w)))/(f(z) − f(w)) where

f, g : C → C are given by f(z) = |z|eim arg(z) and g(z) = z(l+m)/m. As w ̸= 0 is
fixed, f is continuous at w and g is differentiable at f(w), observe that

lim
z→w

z∈Bρ(w)

Φl,m(z, w) = lim
z→w

z∈Bρ(w)

g(f(z))− g(f(w))

f(z)− f(w)
= g′(f(w)) = Φl,m(w,w).

□
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Corollary 2.3. Let m ≥ 1 and 1 ≤ l ≤ m. For each w ∈ C \ {0} and ε > 0 there
exists ρ > 0 such that Bρ(w)× {w} ⊆ Am and whenever z ∈ Bρ(w),

(2.6) |Φl,m (z, w) | < ε+ |Φl,m(w,w)| .

The following result concerns planar mappings which have the inherent structure
of a Lipschitz quotient mapping. The below identifies a finite set E such that
mappings of the form P ◦ h are locally injective on C \ E. In the following proof
card(S) represents the cardinality of the set S.

Proposition 2.4. Let f : C → C be a mapping such that f = P ◦ h where P is
a non-constant complex polynomial in one complex variable and h : C → C is a
homeomorphism. Then there exists a finite subset E ⊆ C such that f is locally
injective at each x ∈ C \ E. Moreover, E = h−1 (S(P ′)).

Proof. Fix x0 ∈ C such that h(x0) ̸∈ S(P ′). We claim f is locally injective at
x0. Since P ′(h(x0)) ̸= 0, by [4, Theorem 7.5], there exists an open neighbourhood
Nh(x0) of h(x0) such that P

∣∣
Nh(x0)

is injective. Therefore f = P ◦ h is injective on

the open neighbourhood G = h−1(Nh(x0)) of x0.
As this holds for any x0 ∈ C such that h(x0) ̸∈ S(P ′), f is locally injective outside

of E = h−1(S(P ′)). Since P ′ is a non-zero polynomial, card(S(P ′)) ≤ deg(P ) − 1.
As h is bijective, card(E) = card(S(P ′)). □

We state a couple of standard results regarding Lipschitz mappings.

Lemma 2.5. Let X, Y be metric spaces, A ⊆ X dense in X and L > 0. If
f : X → Y is a continuous mapping such that f

∣∣
A

is L-Lipschitz, then f is L-
Lipschitz.

The following lemma ensures that a mapping which is pointwise Lipschitz every-
where, with a uniform constant, is necessarily Lipschitz, with the same constant.
However, for this we need the linear structure induced by normed spaces.

Lemma 2.6. Let X,Y be normed spaces, U ⊆ X be open and convex and L > 0.
If f : X → Y is pointwise L-Lipschitz at each x ∈ U , then f

∣∣
U

is L-Lipschitz.

Recall [3, Section 4] and [11, Lemma 2.3] which introduce a result analogous to
Lemma 2.6 for co-Lipschitz mappings in the case U = X = Y = C.

Lemma 2.7. Let c > 0. If f : (C, ∥ · ∥) → (C, |||·|||) is continuous and is pointwise
c-co-Lipschitz at every x ∈ C, then f is (globally) c-co-Lipschitz.

Homeomorphisms between two metric spaces preserve pointwise co- and Lips-
chitzness of such mappings and their inverses in the following manner.

Lemma 2.8. Let X and Y be metric spaces, h : X → Y be a homeomorphism,
x0 ∈ X and c > 0. Then h is pointwise c-co-Lipschitz at x0 if and only if h−1 is
pointwise (1/c)-Lipschitz at h(x0).

Proof. If h is pointwise c-co-Lipschitz at x0 there exists r0 > 0 such thatBY
cr(h(x0)) ⊆

h
(
BX

r (x0)
)
for each r ∈ (0, r0). Therefore

h−1
(
BY

cr(h(x0))
)
⊆ h−1

(
h
(
BX

r (x0)
))

= BX
r (x0) = BX

r

(
h−1 (h (x0))

)
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for each r ∈ (0, r0). Hence h−1 is pointwise (1/c)-Lipschitz at h(x0). The reverse
direction follows similarly. □

The traditional examples of planar Lipschitz quotient mappings fn, as defined in
Lemma 2.9, possess sharp constants, in the sense that the ratios of constants c/L
for such mappings are maximal, cf. [10, Theorem 2].

Lemma 2.9. For each n ∈ N define fn : (C, | · |) → (C, | · |) to be given by fn(z) =

|z|ein arg(z). Then fn is a Lipschitz quotient mapping; namely fn is n-Lipschitz and
1-co-Lipschitz with respect to the Euclidean norm.

Remark 2.10. We highlight here that in Corollary 2.26, which we prove later, we
show that fn satisfy properties which are stronger than 1-co-Lipschitzness.

The following lemma concerns the Lipschitz property of variants of the standard
Lipschitz quotient mappings fn introduced in Lemma 2.9.

Lemma 2.11. Let n ∈ N and k ∈ {1, . . . , n− 1}. For each ε > 0 there exists D =

D (ε, k, n) > 0 such that gk,n : C \BD(0) → C defined by gk,n(z) = |z|k/neik arg(z) is
ε-Lipschitz on C \BD(0).

Proof. Fix ε > 0. Define fk(z) = |z|eik arg(z) for z ∈ C as in Lemma 2.9. Further,

define hk(t) = tk/n for t > 0. Let T > 0 be such that hk is (ε/2)-Lipschitz on
[T,+∞) and let R > 0 be such that k+1

R1−k/n < ε
2 . Define D := max {T,R}. Fix

z1, z2 ∈ C \BD(0). Now

(2.7)
|gk,n(z1)− gk,n(z2)| ≤∣∣∣gk,n(z1)− |z2|k/neik arg(z1)

∣∣∣+ |z2|k/n
∣∣∣eik arg(z1) − eik arg(z2)

∣∣∣ .
As |z1|, |z2| ≥ D ≥ T and as hk is (ε/2)-Lipschitz on [T,+∞),

(2.8)

∣∣∣gk,n(z1)− |z2|k/neik arg(z1)
∣∣∣ = |hk(|z1|)− hk(|z2|)| ≤

ε

2

∣∣∣∣|z1| − |z2|
∣∣∣∣

≤ ε

2
|z1 − z2| .

Further, since |z2| ≥ D ≥ R,

|z2|k/n
∣∣∣eik arg(z1) − eik arg(z2)

∣∣∣
≤

∣∣∣|z2|k/n − |z1| · |z2|
k
n
−1

∣∣∣+ ∣∣∣|z1| · |z2| kn−1eik arg(z1) − |z2|
k
n eik arg(z2)

∣∣∣
=

1

|z2|1−
k
n

(∣∣∣∣|z1| − |z2|
∣∣∣∣+ |fk(z1)− fk(z2)|

)
≤ ε

2
|z1 − z2| ,

where the last inequality follows by the choice of R > 0 and Lemma 2.9. Substituting
this and (2.8) into (2.7) we obtain

|gk,n(z1)− gk,n(z2)| ≤ ε|z1 − z2|.

By the arbitrariness of z1, z2 ∈ C \BD(0) we conclude the required Lipschitzness of
gk,n. □
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We now introduce a quick lemma regarding the composition of pointwise co-
Lipschitz functions.

Lemma 2.12. Suppose X, Y and Z are metric spaces and f : X → Y , g : Y → Z
are functions. Suppose f is pointwise a-co-Lipschitz at x ∈ X and g is pointwise
b-co-Lipschitz at f(x) ∈ Y for some constants a, b > 0. Then g ◦ f is pointwise
(ab)-co-Lipschitz at x.

Proof. As f is pointwise a-co-Lipschitz at x ∈ X, there exists ρf > 0 such that

f(BX
r (x)) ⊇ BY

ar(f(x)) for each r ∈ (0, ρf ). Similarly, there exists ρg > 0 such that

g(BY
r (f(x))) ⊇ BZ

br(g(f(x))) for each r ∈ (0, ρg). Define ρ := min(ρf , ρg/a). Then,
for each r ∈ (0, ρ),

(g ◦ f)
(
BX

r (x)
)
⊇ g

(
BY

ar(f(x))
)
⊇ BZ

abr ((g ◦ f)(x)) .
Hence, g ◦ f is pointwise (ab)-co-Lipschitz at x ∈ X. □

The next lemma provides a sufficient property for a mapping between metric
spaces to be pointwise co-Lipschitz at a given point. To be able to conveniently
refer to this property, we first give the following definition.

Definition 2.13. Suppose (X, dX) and (Y, dY ) are metric spaces and c > 0. We
say a function f : X → Y is strongly c-co-Lipschitz at x0 ∈ X if there exists ρ > 0
such that:

(i) f(x0) ∈ Int
(
f
(
BX

ρ (x0)
))
;

(ii) dY (f(x), f(x0)) ≥ cdX(x, x0) for all x ∈ BX
ρ (x0).

If we do not need to specify c, we shall simply write f is strongly co-Lipschitz at
x0.

Lemma 2.14. Let (X, dX) and (Y, dY ) be metric spaces and c > 0. If f : X → Y
is strongly c-co-Lipschitz at x0 ∈ X, then f is pointwise c-co-Lipschitz at x0.

Proof. Let ρ > 0 be as in Definition 2.13. By property (i) of Definition 2.13 there
exists a positive constant R < ρ such that

(2.9) BY
R (f(x0)) ⊆ Int

(
f
(
BX

ρ (x0)
))

⊆ f
(
BX

ρ (x0)
)
.

Define r := R
2c > 0, let 0 < s < r and fix y ∈ BY

cs (f(x0)). By the choice of r, note

cs < cr < R. Thus (2.9) implies y ∈ f
(
BX

ρ (x0)
)
. Hence there exists x ∈ BX

ρ (x0)

such that y = f(x). We claim x ∈ BX
s (x0) follows by (ii) of Definition 2.13. Indeed,

since x ∈ BX
ρ (x0) and y ∈ BY

cs(f(x0)),

cs > dY (y, f(x0)) = dY (f(x), f(x0)) ≥ cdX(x, x0),

so x ∈ BX
s (x0). Therefore y = f(x) ∈ f

(
BX

s (x0)
)
and since y ∈ BY

cs (f(x0))

was arbitrary we deduce BY
cs (f(x0)) ⊆ f

(
BX

s (x0)
)
. Finally, since s ∈ (0, r) was

arbitrary we conclude f is pointwise c-co-Lipschitz at x0. □
Corollary 2.15. Let (X, dX), (Y, dY ) be metric spaces. Suppose f : X → Y
is an open map, x0 ∈ X and there exist positive constants c and r0 such that
dY (f(x), f(x0)) ≥ cdX(x, x0) for each x ∈ BX

r0(x0). Then f is pointwise c-co-
Lipschitz at x0.
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Remark 2.16. When proving pointwise or strong co-Lipschitzness of mappings
defined in Section 3, we will often consider X to be an open subset of C. In such
cases, instead of BX

r (x), we will consider balls centred at x ∈ X and open in the
Euclidean metric. To be able to use the definition of a co-Lipschitz mapping or
Definition 2.13 and subsequent results about strongly co-Lipschitz mappings, it is
enough to ensure r is sufficiently small so that the Euclidean ball of radius r around
x coincides with BX

r (x).

Remark 2.17. Using the notion introduced in Definition 2.13, the following impli-
cation follows by Lemma 2.14:

(2.10) strongly c-co-Lipschitz at x0 =⇒ pointwise c-co-Lipschitz at x0.

One may naturally ask the question of whether a reverse implication holds. In
Lemma 2.18 below, we show that only property (ii) of Definition 2.13 needs to be
verified for a pointwise co-Lipschitz mapping to be strongly co-Lipschitz.

Lemma 2.18. Let (X, dX) and (Y, dY ) be metric spaces, f : X → Y , x0 ∈ X and
c > 0. Suppose f is pointwise c-co-Lipschitz at x0. If there exists ρ0 > 0 such that
dY (f(x0), f(z)) ≥ cdX(x0, z) for each z ∈ BX

ρ0(x0), then f is strongly c-co-Lipschitz
at x0.

Proof. It is enough to prove (i) of Definition 2.13 is satisfied for some 0 < ρ < ρ0.
Indeed, as f is pointwise c-co-Lipschitz at x0, there exists a positive r0 such that
f(BX

r (x0)) ⊇ BY
cr(f(x0)) for each r ∈ (0, r0). Define ρ := 1

2 min(r0, ρ0). Then

f(x0) ∈ BY
cρ(f(x0)) ⊆ f(BX

ρ (x0)). Hence as BY
cρ(f(x0)) is open, we deduce (i) is

satisfied. Thus f is strongly c-co-Lipschitz at x0. □

The reverse implication of (2.10) can easily be seen in the case when the function
is locally injective, as we show in the following lemma.

Lemma 2.19. Let (X, dX), (Y, dY ) be metric spaces, x0 ∈ X and c > 0. Suppose
a mapping f : X → Y is both pointwise c-co-Lipschitz and locally injective at x0.
Then f is strongly c-co-Lipschitz at x0.

Proof. Since f is pointwise c-co-Lipschitz at x0, by definition, there exists r0 > 0
such that

(2.11) BY
cr (f(x0)) ⊆ f

(
BX

r (x0)
)

for each r ∈ (0, r0).

Since f is locally injective at x0 there exists r1 > 0 such that f
∣∣
BX

r1
(x0)

is injective.

Define ρ := 1
2 min (r0, r1). Recall Lemma 2.18. Thus it suffices to show

(2.12) dY (f(x), f(x0)) ≥ cdX(x, x0) for all x ∈ BX
ρ (x0).

This is trivially satisfied for x = x0. Suppose, for a contradiction, that (2.12) is not
satisfied, i.e. there exists x ∈ BX

ρ (x0)\{x0} such that dY (f(x), f(x0)) < cdX(x, x0).

Define r := dX(x, x0), so 0 < r < ρ < r0. Hence, f(x) ∈ BY
cr(f(x0)) ⊆ f

(
BX

r (x0)
)

where the inclusion follows by (2.11). Therefore, as f
∣∣
BX

ρ (x0)
is injective, x ∈ BX

ρ (x0)

and BX
r (x0) ⊆ BX

ρ (x0), it follows x ∈ BX
r (x0) and so r = dX(x, x0) < r, providing

contradiction. Hence (2.12) is satisfied. □
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Corollary 2.20. Suppose X and Y are metric spaces, f : X → Y is a mapping
which is locally injective at x0 ∈ X and c > 0. Then

f is strongly c-co-Lipschitz at x0 ⇐⇒ f is pointwise c-co-Lipschitz at x0.

Remark 2.21. We highlight the relevance of Corollary 2.20 in the context of map-
pings with the inherent structure of planar Lipschitz quotient mappings. Indeed
Proposition 2.4 identifies at which points of the plane a composition P ◦ h of a
polynomial P and a homeomorphism h is locally injective, hence where the notions
of strongly co-Lipschitzness and pointwise co-Lipschitzness agree. In Corollary 2.25
below, we show that these two notions automatically agree everywhere for any Lips-
chitz quotient mapping. However, as mentioned in Section 1, not all mappings with
this underlying structure P ◦ h are Lipschitz quotient.

Further, we are able to show the equivalence between the two notions of pointwise
co-Lipschitz and strongly co-Lipschitz for discrete co-Lipschitz mappings. To see
this we follow the method presented in [9, p. 2091]. Let us first recall the definition
of a discrete mapping.

Definition 2.22. Let X,Y be topological spaces and S ⊆ X. We say:

• S is a discrete set if for each x ∈ S there exists a neighbourhood U of x
such that U ∩ S = {x};

• f : X → Y is a discrete mapping if f−1 (y) is a discrete set for each y ∈ Y .

Lemma 2.23. Suppose (X, dX), (Y, dY ) are metric spaces and f : X → Y is a
discrete c-co-Lipschitz mapping for some c > 0. Then f is strongly c-co-Lipschitz
at each x ∈ X.

Proof. Fix x ∈ X and define Ax = f−1 (f(x)). Since f is a discrete mapping
there exists r0 > 0 such that B (x, 2r0) ∩ Ax = {x}. Fix z ∈ BX

r0(x) \ {x} and let

r := dX(z, x). Then BX
r (z)∩Ax = ∅, so f(x) ̸∈ f

(
BX

r (z)
)
. Since f is c-co-Lipschitz,

f
(
BX

r (z)
)
⊇ BY

cr (f(z)). As f(x) ̸∈ f(BX
r (z)) this implies dY (f(x), f(z)) ≥ cr =

cdX(x, z).
Observe that dY (f(x), f(z)) ≥ cdX(x, z) is trivially satisfied when z = x. There-

fore, by Lemma 2.18, we conclude f is strongly c-co-Lipschitz at x. □
We highlight that Lemma 2.19 and Lemma 2.23 are the strongest possible, in the

sense that there exist Lipschitz quotient mappings which are 1-co-Lipschitz but not
locally injective, not discrete and are not strongly co-Lipschitz at any point. We
show this in the following example.

Example 2.24. Let n, k ≥ 1 be integers and f : Rn+k → Rn be the standard
projection, where both spaces are equipped with the Euclidean norm. Then f is
1-Lipschitz and 1-co-Lipschitz. This trivially follows since f (Br (x)) = Br (f(x))
for each r > 0 and x ∈ Rn+k. Further, it is clear that f is not discrete. Moreover,
f is neither injective nor strongly c-co-Lipschitz, for any c > 0, at any x0 ∈ Rn+k

as f−1(x0) is a k-dimensional hyperplane.

Using Lemma 2.23, we deduce the following two corollaries. First we show that
planar Lipschitz quotient mappings, or any continuous co-Lipschitz planar map-
pings, are necessarily strongly co-Lipschitz at every point.
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Corollary 2.25. Suppose f : C → C is a continuous c-co-Lipschitz mapping for
some c > 0. Then f is strongly c-co-Lipschitz at each x ∈ C.

Proof. By [1, Proposition 4.3], or equivalently [7, Proposition 2.1], f is discrete and
so Lemma 2.23 yields the result. □
Corollary 2.26. For every n ∈ N let the function fn : C → C be defined by
fn(z) = |z|ein arg(z) as in Lemma 2.9. Then fn is strongly 1-co-Lipschitz at each
z ∈ C.

Following Corollary 2.25 one may ask the following question.

Question 2.27. For n ≥ 3 do there exist Lipschitz quotient mappings f : Rn → Rn

which are not strongly co-Lipschitz at some x0 ∈ Rn?

We highlight the logical equivalence between Question 2.27 and a long-standing
conjecture from [1, p. 1096]. Namely:

Conjecture 2.28. Suppose n ≥ 3 and f : Rn → Rn is a Lipschitz quotient mapping.
Then f is a discrete mapping.

First we note that a positive answer to Conjecture 2.28 implies, via an applica-
tion of Lemma 2.23, that every Lipschitz quotient mapping f : Rn → Rn, n ≥ 3
is strongly c-co-Lipschitz everywhere, where c = co-Lip(f), providing a negative
answer to Question 2.27.

Conversely a negative answer to Question 2.27, i.e. every Lipschitz quotient
mapping f : Rn → Rn is strongly co-Lipschitz everywhere, implies Conjecture 2.28.
This implication is proved in the following simple lemma.

Lemma 2.29. Let (X, dX), (Y, dY ) be metric spaces and y ∈ Y . If f : X → Y is
strongly co-Lipschitz at each element of f−1(y), then f−1(y) is a discrete set.

In particular, if f is strongly co-Lipschitz at every x ∈ X, then f is a discrete
mapping.

Proof. To show f−1(y) is discrete we require to show for each x ∈ f−1(y) that there
exists a neighbourhood Ux of x such that Ux∩f−1(y) = {x}. Fix x ∈ f−1(y). Since
f is strongly co-Lipschitz at x, there exist positive constants cx and ρx such that

(2.13) dY (f(w), f(x)) ≥ cxdX (w, x) for each w ∈ BX
ρx(x).

Define Ux := BX
ρx(x). Let z ∈ Ux ∩ f−1(y). Then since z ∈ BX

ρx(x) and f(z) = y,
by (2.13) it follows that 0 = dY (f(z), f(x)) ≥ cxdX(z, x). Thus z = x since cx > 0
and so Ux ∩ f−1(y) = {x}. Since x ∈ f−1(y) was arbitrary, we conclude f−1(y) is a
discrete set. □

With the introduction of the notion of strong co-Lipschitzness, we are in a position
to answer Question 1.4 affirmatively. Formally, we prove the following.

Lemma 2.30. Let h : C → C be a homeomorphism. Then there exists a complex
polynomial P in one complex variable such that P ◦ h is not Lipschitz quotient.

Naturally Lemma 2.30 is a consequence that squaring Lipschitz quotient map-
pings of the plane never produces a Lipschitz mapping, also. We prove this in the
following lemma.
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Lemma 2.31. Suppose f : C → C is a Lipschitz quotient mapping. Then g(z) =
(f(z))2 is not Lipschitz.

Proof. Suppose f is cf -co-Lipschitz and Lf -Lipschitz and, for a contradiction, sup-
pose g is Lipschitz. Let us assume, without loss of generality, that both g/f are
Lipschitz/Lipschitz quotient with respect to the Euclidean norm. Now [11, Theo-
rem 2.8 (1)] provides the existence of a positive constant R such that

(2.14) |f(x)| ≥ cf (|x| −M) ,

whenever |x| > R. Here M := max {|z| : f(z) = 0}. Let Lg > 0 be such that g
is Lg-Lipschitz and fix z0 ∈ C such that |z0| > R + M + Lg/(2c

2
f ). Since f is

strongly cf -co-Lipschitz at z0, by Corollary 2.25, there exists r0 ∈ (0, 1) such that
|f(z0)− f(w)| ≥ cf |z0 − w| for all w ∈ Br0(z0). As g is Lg-Lipschitz,

cf |z0 − w| |f(z0) + f(w)| ≤
∣∣∣(f(z0))2 − (f(w))2

∣∣∣ = |g(z0)− g(w)|

≤ Lg |z0 − w| ,
for all w ∈ Br0(z0). Hence, for any w ∈ Br0(z0) \ {z0}, |f(z0) + f(w)| ≤ Lg/cf .
Thus, by the continuity of f , |f(z0)| ≤ Lg/(2cf ). However, by our choice of z0 and
(2.14), |f(z0)| > Lg/(2cf ), providing contradiction. Hence g is not Lipschitz. □

3. Construction of the Lipschitz quotient mapping

Recall the function h : C → C given in [7, Proposition 2.9] (for some large R > 0):

(3.1) h(z) =


z, if |z| ≤ R,(
2R− |z|

R
|z|+ |z| −R

R
|z|1/n

)
eiarg(z), if R ≤ |z| ≤ 2R,

|z|1/neiarg(z), if |z| ≥ 2R.

The authors of [7] claim first this is a homeomorphism from C to itself and go on
to provide a sketch for a proof of Proposition 1.3. However it is clear that h is not
injective by observing that, for R > 21/(n−1) if n > 1, the curve ∂B2R(0) is mapped
under h inside the open ball BR(0) where the mapping remains fixed. Further,
the authors introduce an amendment to the function h which may further provide
points at which h is not injective. They describe how to change the function h
defined by (3.1) on a finite collection of open balls. However they neglect the fact
the prescribed radii of these balls are potentially very small and hence will require a
‘scaling’ to ensure the function is necessarily injective, as indicated by the r1−(1/mj)

term in (3.11). Finally, the authors state the co-Lipschitzness of the function h
outside of the union of these balls, but do not verify the co-Lipschitzness on their
boundaries, which is intricate.

Below we give a correct construction, for a fixed polynomial P , of a homeomor-
phism h of the plane to itself such that P ◦ h is a Lipschitz quotient mapping. The
proof of Proposition 1.3 will be split into many claims, which verify the pointwise
co- and Lipschitz property of the required functions, and remarks, which utilise
earlier lemmata to conclude co- and Lipschitzness on specific regions. To highlight
the end of the proof of a claim we use the symbol ♢, whereas the end of the proof
of the proposition is highlighted by the usual □.
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Proof of Proposition 1.3. Fix n ∈ N. We may assume without loss of generality that
P is a monic polynomial of degree n. Indeed if P is not monic, let a ̸= 0 denote
the leading coefficient of P . One can apply the present Proposition to the monic
polynomial Q := P/a to find the homeomorphism h such that f(z) = (Q ◦ h)(z)
is a Lipschitz quotient mapping. Then (P ◦ h)(z) = af(z) is a Lipschitz quotient
mapping.

Therefore, assume P (z) = zn+an−1z
n−1+· · ·+a1z+a0. If n = 1 define h(z) := z

and then f(z) = (P ◦ h) (z) = z + a0 is 1-co-Lipschitz and 1-Lipschitz.
Suppose n ≥ 2. The structure of the proof is as follows: we begin by defining a

homeomorphism h1 of the plane, let F1 = P ◦ h1 and show that F1 is Lipschitz on
C and pointwise co-Lipschitz on C with the exception of a small neighbourhood W
of finitely many points. Namely, W contains a neighbourhood of the set of roots
of the polynomial P ′, the derivative of P . We use this to show F1 is strongly co-
Lipschitz at each z ∈ C\V , where V ⊇ W . We then proceed by defining an amended
homeomorphism h2 which coincides with h1 everywhere outside of V , define the new
function F2 = P ◦ h2 and prove F2 is pointwise co- and Lipschitz at the remaining
points. Let us introduce some notation which will be important in the construction.

Notation 3.1. If ak ̸= 0 and 1 ≤ k ≤ n − 1, let Dk = D (1/(2n|ak|), k, n) be

provided by Lemma 2.11, such that gk,n(z) = |z|k/neik arg(z) is 1/(2n|ak|)-Lipschitz
on R2 \BDk

(0); otherwise if ak = 0, let Dk = 0.

Let R > 1 be such that

(a) the roots of the derivative P ′ lie inside the open ball of radius R centred at
the origin;

(b) R ≥ max {Dk : 1 ≤ k ≤ n− 1}.
Define h1 : C → C by

h1(z) = ϕ(|z|)ei arg(z),

where

ϕ(t) =


t1/n, if t ≥ 2nRn;(

t−R

2nRn−1 − 1
+R

)
, if R ≤ t ≤ 2nRn;

t, if 0 ≤ t ≤ R.

Since ϕ : [0,+∞) → [0,+∞) is a continuous, piecewise C∞ strictly increasing home-

omorphism, h1 is bijective and continuous. Further we note h−1
1 (z) = ϕ−1(|z|)ei arg(z)

which is continuous. Hence h1 is indeed a homeomorphism of C to itself. Finally,
let Uj := B2nRn+j(0) for j = 1, 2. Define F1 = P ◦ h1.

Claim 3.2. F1 is Lipschitz on U2.

Proof. We first show that h1 is Lipschitz on U2. Note that h1 is pointwise 1-Lipschitz
at each z0 ∈ BR(0), since if r > 0 if sufficiently small such that Br(z0) ⊆ BR(0),
then h1 (Br (z0)) = Br (z0) = Br (h1(z0)).

To see that h1 is pointwise Lipschitz at each z0 ∈ U2 \BR/2(0), first note that ϕ

is Lipschitz on [R/2, 2nRn + 2]. Moreover observe that ei arg(z) = z/|z| is Lipschitz
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on C \BR/2(0), as if z, w ∈ C \BR/2(0), then∣∣∣∣ z|z| − w

|w|

∣∣∣∣ ≤ 1

|z| · |w|

(
|w| · |z − w|+ |w| ·

∣∣∣∣|w| − |z|
∣∣∣∣) ≤ 4

R
|z − w|.

Thus, h1(z) = ϕ(|z|)ei arg(z) is the product of two bounded Lipschitz functions on
the bounded domain A = {z ∈ C : R/2 ≤ |z| ≤ 2nRn + 2}. Therefore, h1

∣∣
A
is L-

Lipschitz for some L > 0. In particular, we conclude that h1 is pointwise L-Lipschitz
at each z ∈ U2 \BR/2(0).

Therefore Lemma 2.6 implies h1 is max (1, L)-Lipschitz on the convex, open set
U2. Now, F1 = P ◦ h1 is the composition of P , a polynomial, which is Lipschitz on
the bounded set h1(U2) and h1, which is Lipschitz on U2. Therefore, F1 is Lipschitz
on U2. ♢

Claim 3.3. F1 is Lipschitz on C \ U1.

Proof. To see F1 is Lipschitz outside of U1 note for z ̸∈ U1 that F1(z) takes the
specific form

(3.2) F1(z) = a0 + fn(z) +
n−1∑
k=1

akgk,n(z),

where fn is defined as in Lemma 2.9 and gk,n as in Lemma 2.11 for each k ∈
{1, . . . , n− 1}.

Hence, as fn is n-Lipschitz on C by Lemma 2.9, to show F1 is Lipschitz on C\U1

it suffices to show for each k ∈ {1, . . . , n− 1} that akgk,n is Lipschitz on C \U1; this
follows by Lemma 2.11 and the choice of R and Dk in Notation 3.1 (b). Hence F1

is Lipschitz on C \ U1. ♢

Remark 3.4. Recall by Claims 3.2, 3.3 that F1 is Lipschitz on both C\U1 and U2.
Therefore Lemma 2.6 yields that there exists L1 > 0 such that F1 is L1-Lipschitz
on C.

Claim 3.5. Recall (2.1)-(2.4) from Notation 2.1 and the choice of R from Nota-
tion 3.1. There exists r ∈ (0, 1) such that:

(i) the balls B2r(zj) around roots zj ∈ S(P ′) of P ′, are pairwise disjoint;
(ii) V P

2r ⊆ BR(0);
(iii) r ≤ min

j:zj∈S(P ′)
ε
mj

j , where for each zj ∈ S(P ′) we define εj > 0 by

εj :=


|Qj(zj)|

2(1 + n)
n−mj∑
k=1

|ck,j |
, if n > mj and

n−mj∑
k=1

|ck,j | ̸= 0,

1, otherwise.

(iv) |Qj(zj)|/2 ≤ |Qj(y)| ≤ 2|Qj(zj)| for each y ∈ Br(zj) such that zj ∈ S(P ′).

Proof. Property (i) is easy to satisfy as there are only finitely many distinct roots in
S(P ′). Next, property (ii) is satisfied for sufficiently small r > 0 since S(P ′) ⊆ BR(0)
and BR(0) is open. Property (iii) follows naturally by (2.3) since each εj is positive
and there are only finitely many of these terms. Finally, it is possible to satisfy
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property (iv) since each polynomial Qj is continuous on C and Qj(zj) ̸= 0 by
(2.3). ♢

For the rest of the proof of Proposition 1.3, we fix r ∈ (0, 1) provided by Claim 3.5.
Recall (2.1), and define the closed sets W and V to be the following:

(3.3) W = V P
r/2, V = V P

r .

Claim 3.6. There exists c0 > 0 such that F1 is pointwise c0-co-Lipschitz at each
z ∈ U2 \W .

Proof. We first show that there exist positive constants L and ξ such that h1 is
pointwise (1/L)-co-Lipschitz at each z ∈ U2 and the polynomial P is pointwise ξ-
co-Lipschitz at each z ∈ h1 (U2 \W ). Then we appeal to Lemma 2.12 to conclude

that F1 is pointwise c0 :=
(

ξ
L

)
-co-Lipschitz at each z ∈ U2 \W .

By arguing similarly to the proof of Claim 3.2, namely as h−1
1 (z) = ϕ−1(|z|)ei arg(z)

is the product of two bounded Lipschitz functions, there exists L > 0 such that
h−1
1 is pointwise L-Lipschitz at h1(z) for each z ∈ U2. Thus Lemma 2.8 and the

arbitrariness of z ∈ U2 implies h1 is pointwise (1/L)-co-Lipschitz at each z ∈ U2.
Observe by Claim 3.5 (ii) that S(P ′) ⊆ W ⊆ BR(0). Therefore, as h1 is the

identity on BR(0) and since |h1(z)| ≥ R for |z| ≥ R, we conclude that h1(U2 \W )∩
S(P ′) = ∅. As P ′ is a polynomial, hence continuous, |P ′| assumes its minimal value

2ξ > 0 on the compact set h1(U2 \W ). In particular for each z ∈ h1(U2 \ W )
note P ′(z) ̸= 0 and thus, by [4, Theorem 7.5], there exist open neighbourhoods
NP (z) ⊆ F1 (U2 \W ) and Nz ⊆ h1 (U2 \W ) of P (z) and z respectively such that
P : Nz → NP (z) is a continuous bijective open mapping, hence a homeomorphism.

Further, (P−1)′(P (z)) = 1/P ′(z). Therefore for each z ∈ h1 (U2 \W ) it follows
that |(P−1)′(P (z))| ≤ 1/(2ξ). Hence P−1 is pointwise 1

ξ -Lipschitz at P (z). By

Lemma 2.8 and Remark 2.16 we hence conclude P is pointwise ξ-co-Lipschitz at z
since P : Nz → NP (z) is a homeomorphism, Nz and NP (z) are open subsets of C
and z ∈ Nz. We conclude P is pointwise ξ-co-Lipschitz at each z ∈ h1 (U2 \W ).

Now h1 is pointwise 1
L -co-Lipschitz at each z ∈ U2 \W and P is pointwise ξ-co-

Lipschitz at each h1(z) ∈ h1 (U2 \W ). Therefore by Lemma 2.12 we conclude F1 is
pointwise c0-co-Lipschitz at each z ∈ U2 \W where c0 = ξ/L > 0. ♢

Remark 3.7. Since (U2 \W ) ∩ h−1
1 (S(P ′)) = ∅, by Proposition 2.4, F1 is locally

injective at each z ∈ U2 \ W . Further, U2 \ W is open. Therefore Remark 2.16,
Corollary 2.20 and Claim 3.6 imply F1 is strongly c0-co-Lipschitz at each z ∈ U2\W .
In particular, for each z ∈ U2 \ Int(V ) there exists ρ = ρ(z) > 0 such that Bρ(z) ⊆
U2 \W and

(3.4) |F1(z)− F1(x)| ≥ c0 |z − x| for all x ∈ Bρ(z).

Claim 3.8. F1 is 1
2 -pointwise co-Lipschitz at each z ∈ C \ U1.

Proof. Fix any z0 ∈ C \ U1. Recall F1 = P ◦ h1 where P is a non-constant polyno-
mial of one variable, so is an open map, and h1 is a homeomorphism. Therefore F1

is open. By Corollary 2.15 and Remark 2.16, as C \ U1 is open, to check that F1
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is pointwise (1/2)-co-Lipschitz at z0, it is enough to verify property (ii) of Defini-
tion 2.13 is satisfied; that is, to show that there exists ρ = ρ(z0) > 0 such that

(3.5) |F1(x)− F1(z0)| ≥
|x− z0|

2
for each x ∈ Bρ(z0).

Recall by Corollary 2.26 that fn is strongly 1-co-Lipschitz at z0. Hence there exists
ρ1 = ρ1(z0) > 0 such that

(3.6) |fn(z0)− fn(x)| ≥ |z0 − x| for each x ∈ Bρ1(z0).

Choose ρ = ρ (z0) > 0 sufficiently small such that ρ < ρ1 and Bρ(z0) ⊆ C \ U1. Let

x ∈ Bρ(z0) and put s = |x−z0| < ρ. Recall (3.2), that is F1 = a0+fn+
∑n−1

k=1 akgk,n,
and so

|F1(x)− F1(z0)| =

∣∣∣∣∣(fn(z0)− fn(x)) +

n−1∑
k=1

ak (gk,n(z0)− gk,n(x))

∣∣∣∣∣
≥ |fn(z0)− fn(x)| −

n−1∑
k=1

|ak| |gk,n(z0)− gk,n(x)|(3.7)

≥ s−
n−1∑
k=1

|ak| |gk,n(z0)− gk,n(x)| ,(3.8)

where the last inequality follows from (3.6). We show

(3.9)

n−1∑
k=1

|ak| |gk,n(z0)− gk,n(x)| ≤
s

2
.

Combining (3.9) with (3.8) implies (3.5) which proves F1 is pointwise
1
2 -co-Lipschitz

at z0 as claimed.
To see (3.9) recall Notation 3.1, in particular, recall (b). As R ≥ Dk, by

Lemma 2.11, gk,n is 1/(2n|ak|)-Lipschitz on C \ BR(0) for those k ∈ {1, . . . , n − 1}
where ak ̸= 0. Hence

n−1∑
k=1

|ak| |gk,n(z0)− gk,n(x)| ≤
n−1∑
k=1

|z0 − x|
2n

=
n−1∑
k=1

s

2n
≤ s

2
.

♢

Remark 3.9. Recall by Claim 3.6 that F1 is pointwise c0-co-Lipschitz at each z ∈
U2 \W and by Claim 3.8 that F1 is pointwise (1/2)-co-Lipschitz at each z ∈ C \U1.
Therefore defining c1 := min

{
c0,

1
2

}
we conclude c1 > 0 and

(3.10) F1 is pointwise c1-co-Lipschitz at each z ∈ C \W.

We continue by defining the amended homeomorphism h2 : C → C, which coin-
cides with h1 on C \ V , and prove the pointwise co- and Lipschitz properties of the
amended function F2 = P ◦ h2. Indeed, define h2 : C → C via

(3.11) h2(z) =

{
h1(z), if z ̸∈ V ;

zj + r
1− 1

mj |z − zj |1/mjei arg(z−zj), if |z − zj | ≤ r, zj ∈ S(P ′).



1762 R. HUTCHINS AND O. MALEVA

See Notation 2.1 for definition of mj . To check that h2 is a homeomorphism first
note that h2

∣∣
C\Int(V )

= h1
∣∣
C\Int(V )

and h2
∣∣
Br(zj)

is continuous for each zj ∈ S(P ′),

thus h2 is continuous. Further, as h2(Br(zj)) = h1(Br(zj)) = Br(zj), both h2
∣∣
Br(zj)

and h2
∣∣
C\Int(V )

are bijective, and h2(C \ V ) ∩ h2(V ) = h1(C \ V ) ∩ h1(V ) = ∅, we
conclude that h2 : C → C is bijective. Finally as h−1

2

∣∣
Br(zj)

is continuous for each

zj ∈ S(P ′) and h−1
2

∣∣
C\Int(V )

= h−1
1

∣∣
C\Int(V )

, we conclude h2 is a homeomorphism of

the plane to itself.
Recall from (2.2) that P (w) = (w− zj)

mjQj(w)+P (zj) and so F2(z) = P (h2(z))
has the following form:
(3.12)

F2(z) =

{
F1(z), if z ̸∈ V ;

P (zj) + rmj−1fmj (z − zj)Qj(h2(z)), if |z − zj | ≤ r, zj ∈ S(P ′),

where fmj is defined as in Lemma 2.9.

Clearly, F1(z) = F2(z) for each z ∈ ∂V as h1
∣∣
∂Br(zj)

= h2
∣∣
∂Br(zj)

for all zj ∈
S(P ′). Moreover, since P is a complex polynomial, hence an open map, and as h2
is a homeomorphism, we conclude that F2 is an open map.

Remark 3.10. If there exists zj ∈ S(P ′) such that mj = n, then P (z) = P (zj) +
Qj(zj)(z− zj)

n where Qj(zj) ̸= 0. Therefore, S(P ′) = {zj} and so F2(z) = P (zj)+
Qj(zj)r

n−1fn(z − zj) for z ∈ Br(zj). Hence, in such a case by Lemma 2.9, F2 is
pointwise

(
|Qj(zj)| rn−1

)
-co-Lipschitz and pointwise

(
|Qj(zj)|nrn−1

)
-Lipschitz at

each z ∈ Br(zj).

Claim 3.11. For each zj ∈ S(P ′) there exists dj > 0 such that F = F2

∣∣
Br(zj)

is

dj-Lipschitz when considered as a function from Br(zj) to F2(Br(zj)).

Proof. Fix zj ∈ S(P ′). We shall show that F2 is pointwise dj-Lipschitz at each
x ∈ Br(zj) for some dj > 0; the claim then follows by applying Lemma 2.6 followed
by Lemma 2.5.

If mj = n, then by Remark 3.10 it follows F2 is pointwise
(
|Qj(zj)|nrn−1

)
-

Lipschitz at each z ∈ Br(zj).
Suppose that mj < n. If x = zj , then for each y ∈ Br(zj), as F2(x) = F2(zj) =

P (zj) and |fmj (y − zj)| = |y − zj |,

|F2(x)− F2(y)| = rmj−1|Qj(h2(y))| · |y − zj | = rmj−1|Qj(h2(y))| · |x− y|.

Since h2 (Br(zj)) = Br(zj), by Claim 3.5 (iv), F2 is pointwise 2rmj−1|Qj(zj)|-
Lipschitz at x = zj .

Suppose now that x ∈ Br(zj) \ {zj}. Let ρ1 > 0 be such that Bρ1(x) ⊆ Br(zj).
Further, for each l ∈ {1, . . . , n −mj}, let ρ2,l > 0 be given by Corollary 2.3, where
w = x− zj ̸= 0, so that for each z ∈ Bρ2,l(w), Φl,mj

(z, w) is well-defined and

(3.13)
∣∣Φl,mj

(z, w)
∣∣ < 1 +

∣∣Φl,mj
(w,w)

∣∣ .
Define ρ2 := min{ρ2,l : 1 ≤ l ≤ n −mj} and ρ := min(ρ1, ρ2). Note if y ∈ Bρ(x),
then z = y − zj ∈ Bρ(w). Considering (2.4), (3.11), (3.12) and Lemma 2.9 we
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deduce that if y ∈ Bρ(x), then

F2(y)− F2(x) = F2

(
zj + |y − zj |ei arg(y−zj)

)
− F2

(
zj + |x− zj |ei arg(x−zj)

)

= rmj−1
(
fmj (z)− fmj (w)

)c0,j +

n−mj∑
l=1

r
l(mj−1)

mj cl,j · Φl,mj
(z, w)

 ,

(3.14)

where z = y − zj and w = x − zj . To see that F2 is pointwise Lipschitz at x, as
fmj is Lipschitz and |z − w| = |y − x|, it suffices to observe that |Φl,mj

(z, w)| are
uniformly bounded over z ∈ Bρ(w) and |w| = |x− zj | < r < 1. Indeed, by (3.13) as
l ∈ {1, . . . , n−mj}, observe that∣∣Φl,mj

(z, w)
∣∣ < 1 + |w|l/mj

l +mj

mj
≤ 1 +

nr1/mj

mj
≤ 1 + n.

Hence, we conclude that there exists dj > 0 such that F2 is pointwise dj-Lipschitz at
each x ∈ Br(zj), which as explained above, implies the statement of Claim 3.11. ♢

Claim 3.12. There exists L > 0 such that F2 is L-Lipschitz on C.

Proof. Recall Remark 3.4. Since F1(z) = F2(z) for z ∈ (C \ V ) ∪ ∂V we conclude
F2 is pointwise L1-Lipschitz at each z ∈ C \ V and, moreover,

|F2(z)− F2(w)| ≤ L1|z − w| for z ∈ ∂V and w ∈ C \ V .

Therefore, by Claim 3.5 (i), Claim 3.11 and by defining L to be the maximum
of L1 and maxj:zj∈S(P ′) dj , we conclude F2 is pointwise L-Lipschitz at each z ∈ C.
Hence Lemma 2.6 implies that F2 is L-Lipschitz on C. ♢

We now turn our attention to the co-Lipschitzness of F2.

Claim 3.13. For each zj ∈ S(P ′) and z ∈ Br(zj), the mapping F2 is pointwise
αj-co-Lipschitz at z, where αj is defined in (3.15).

Proof. Fix zj ∈ S(P ′) and define

(3.15) αj :=
rmj−1 |Qj(zj)|

2
.

If mj = n, then by Remark 3.10 it follows that, as αj < rn−1|Qj(zj)|, F2 is pointwise
αj-co-Lipschitz at each z ∈ Br(zj).

Suppose that mj < n. By (2.3) we have that αj > 0. To show F2 is pointwise

αj-co-Lipschitz at each z ∈ Br(zj) we first show for each z ∈ Br(zj) that there
exists ρ = ρ(z) > 0 such that

(3.16) |F2(z)− F2(y)| ≥ αj |z − y|

for each y ∈ Bρ(z)∩Br(zj). We emphasize that (3.16) holds not only for z ∈ Br(zj)
but also for z ∈ ∂Br(zj), and this fact is used later in the proof of Claim 3.15.

Consider first when z = zj . Let ρ = r and y ∈ Bρ(z). From (3.12), we deduce
that

|F2(z)− F2(y)| = rmj−1|y − z||Qj(h2(y))|.
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Since h2(Br(zj)) = Br(zj), by Claim 3.5 (iv), we conclude that F2 satisfies (3.16)
when z = zj .

Fix z ∈ Br(zj) \ {zj}. Let ρ1 = ρ1(z) > 0 be defined by

(3.17) ρ1(z) =

{
r, if z ∈ ∂Br(zj);

r − |z − zj |, if z ∈ Br(zj) \ {zj}.

By Corollary 2.26, since fmj is strongly 1-co-Lipschitz at (z − zj) ∈ Br(0) there
exists ρ2 = ρ2(z) > 0 such that for any x ∈ Bρ2(z − zj) it follows that

(3.18)
∣∣fmj (x)− fmj (z − zj)

∣∣ ≥ |x− (z − zj)| .

Further by Corollary 2.3, for each l ∈ {1, . . . , n−mj}, let ρ3,l > 0 be such that for
each y ∈ Bρ3,l(z), Φl,mj

(y − zj , z − zj) is well-defined and

(3.19)
∣∣Φl,mj

(y − zj , z − zj)
∣∣ < r1/mj + |z − zj |l/mj

l +mj

mj
.

Define ρ3 := min {ρ3,l : 1 ≤ l ≤ n−mj} and let ρ = ρ(z) > 0 be given by ρ =

min (ρ1, ρ2, ρ3). We claim for y ∈ Bρ(z) ∩Br(zj) that

(3.20) |F2(y)− F2(z)| ≥ αj

∣∣fmj (y − zj)− fmj (z − zj)
∣∣ .

Fix y ∈ Bρ(z) ∩Br(zj). By using y ∈ Br(zj) for F2(y), z ̸= zj and y ∈ Bρ(z) for
the well-definedness of Φl,mk

(y − zj , z − zj) and recalling (3.14), it follows that

|F2(y)− F2(z)| ≥

rmj−1

|c0,j | − max
l∈{1,...,n−mj}

∣∣Φl,mj
(y − zj , z − zj)

∣∣ · n−mj∑
k=1

r
k(mj−1)

mj |ck,j |


×
∣∣fmj (y − zj)− fmj (z − zj)

∣∣ .
Therefore, since r < 1, see Claim 3.5, to show (3.20) it suffices to prove, as c0,j =
Qj(zj), that for all l ∈ {1, . . . , n−mj},

(3.21)
∣∣Φl,mj

(y − zj , z − zj)
∣∣ n−mj∑

k=1

|ck,j | ≤
|Qj(zj)|

2
.

This is trivial when
∑n−mj

k=1 |ck,j | = 0. Suppose
∑n−mj

k=1 |ck,j | ̸= 0. By property (iii)

of Claim 3.5, since |y − zj | < ρ ≤ ρ3, z ∈ Br(zj), mj ≥ 1 and l ≤ n−mj , note that∣∣Φl,mj
(y − zj , z − zj)

∣∣ < r1/mj + |z − zj |l/mj
l +mj

mj
by (3.19),

≤ (1 + n)r1/mj

≤ |Qj(zj)|

2
n−mj∑
k=1

|ck,j |
by Claim 3.5 (iii).

Thus (3.21) follows and so (3.20) is satisfied, as claimed.
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Since ρ ≤ ρ2 and y ∈ Bρ(z) it follows (y − zj) ∈ Bρ2(z−zj). Therefore, by (3.18),

|fmj (y − zj)− fmj (z − zj)| ≥ |(y − zj)− (z − zj)| = |y − z|.
Hence, combining this with (3.20) yields

|F2(y)− F2(z)| ≥ αj |fmj (z − zj)− fmj (y − zj)| ≥ αj |y − z|.

Thus we deduce that for each z ∈ Br(zj) there exists ρ > 0 such that (3.16) holds

for all y ∈ Bρ(z) ∩Br(zj).
If z ∈ Br(zj), by (3.17) and since ρ ≤ ρ1 we note Bρ(z) ⊆ Br(zj). Hence for

each y ∈ Bρ(z), (3.16) is satisfied. Therefore, since F2 = P ◦ h2 is an open map, by
Corollary 2.15, Remark 2.16 and since Br(zj) is open in C, we conclude that F2 is
pointwise αj-co-Lipschitz at any z ∈ Br(zj). ♢

Remark 3.14. Taking c2 := minzj∈S(P ′) αj > 0 we deduce

(3.22) F2 is pointwise c2-co-Lipschitz at each z ∈ Int(V ).

Claim 3.15. There exists c3 > 0 such that F2 : C → C is pointwise c3-co-Lipschitz
at each z ∈ ∂V .

Proof. Let c3 := min(c0, c2), where c0 > 0 is given by Claim 3.6 and c2 > 0 is given
by Remark 3.14. Since F2 is an open map, it suffices by Corollary 2.15 to show for
each z ∈ ∂V there exists ρ = ρ(z) > 0 such that if x ∈ Bρ(z), then

(3.23) |F2(z)− F2(x)| ≥ c3 |z − x| .
Fix z ∈ ∂V and let j be such that z ∈ ∂Br(zj). Let ρ1 > 0 be such that Bρ1(z) ⊆ U2

and Bρ1(z)∩V ⊆ Br(zj); note such ρ1 > 0 exists by Claim 3.5 (i). Since ∂V ⊆ U2 \
Int(V ) and F1

∣∣
U2\Int(V )

= F2

∣∣
U2\Int(V )

, by (3.4) and c3 ≤ c0 there exists ρ2 ∈ (0, ρ1)

such that (3.23) is satisfied for each x ∈ Bρ2(z) ∩ (U2 \ Int(V )) = Bρ2(z) \Br(zj).
Further, by (3.16) there exists ρ ∈ (0, ρ2) such that (3.23) is satisfied for each

x ∈ Bρ(z) ∩Br(zj) since c3 ≤ c2 ≤ αj ; see Remark 3.14.
We then conclude that (3.23) is satisfied for each x ∈ Bρ(z). As F2 is an open

map, Corollary 2.15 implies the statement of Claim 3.15. ♢

Claim 3.16. There exists c > 0 such that F2 is c-co-Lipschitz on C.

Proof. Let c := min(c1, c2, c3), where c1 is given by Remark 3.9, c2 is given by
Remark 3.14 and c3 is given by Claim 3.15. Recall by (3.10) of Remark 3.9 that F1

is pointwise c1-co-Lipschitz at each z ∈ C \W . As F1(z) = F2(z) for z ∈ C \ V and
W ⊆ V , we conclude

(3.24) F2 is pointwise c-co-Lipschitz at each z ∈ C \ V.
Also, Remark 3.14 implies that

(3.25) F2 is pointwise c-co-Lipschitz at each z ∈ Int(V ).

From Claim 3.15, (3.24) and (3.25), we conclude that F2 is pointwise c-co-Lipschitz
at each z ∈ C. Hence an application of Lemma 2.7 implies F2 is c-co-Lipschitz on
C. ♢

Finally, Claims 3.12 and 3.16 together imply that f := F2 = P ◦ h2 is an L-
Lipschitz and c-co-Lipschitz mapping of the plane. □
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