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VISUALIZATION OF ENUMERATION QUESTIONS WITH
FACTOR SPECTRUM TILING

YUKE HUANG AND ZHIYING WEN

ABSTRACT. The Fibonacci word F is the fixed point beginning with a of mor-
phism o(a) = ab and o(b) = a. Since F is uniformly recurrent, each factor w
appears infinitely many times in the sequence which is arranged as w, (the pth
occurrence of w, p > 1). Here we distinguish w;, # wq if p # ¢. In this paper, we
calculate the number of repeated palindromes in F[ni, na].

1. INTRODUCTION

Combinatorics on words, is a field which grew simultaneously within disparate
branches of mathematics such as group theory and probability. It has grown into an
independent theory finding substantial applications in computer science, automata
theory and linguistics [12,13]. The numbers of special types of factors have been
investigated in recent years, such as palindromes, squares, cubes, r-powers, etc.

See [3-6,14-17,19).

The Fibonacci word [F, also called the Fibonacci sequence in some papers, is the
fixed point beginning with a of morphism o(a) = ab and o(b) = a. We define
F_5 = ¢ (the empty word), F_1 = b, and F,, = ¢™(a) for m > 0. Then Fy = a,
F,, = F_1F,_o for m > 1. We call |F,,,| = fn the mth Fibonacci number for
m > —2. Here |w| means the length of w. Let |w|, denote the number of letter a
occurring in w.

Denote ¢ = @ and || is the largest integer not more than a. We abbreviate
li,i+1,...,i+7j] as [i..i+j] or [0..j]@®i for i € Nand j € NT. Let X[dy,da, . ..,d,] =
Z?:l d;.

Let One(i) = [1,1,...,1] and Zero(j) = [0,0,...,0].

i J

Since F is uniformly recurrent, each factor w appears infinitely many times in
the sequence which is arranged as w, (the pth occurrence of w for p > 1). Here we
distinguish w, # wq if p # ¢. We let Occ(w, p) (resp. Pos(w,p)) denote the position
of the first (resp. last) letter of w), in F.

A palindrome is a finite word that reads the same backwards as forwards, such as
“noon”. Let w = x1---x,. We define w(i, j| = zjzijp1---xjqz; for 1 <i<j<n.

2020 Mathematics Subject Classification. 68R15.
Key words and phrases. Combinatorics on words, palindrome, derived sequence, factor spec-
trum, factor spectrum tiling.
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wli] = wli,i]| = z; and wli,i — 1] = . In Huang-Wen [9], we gave an algorithm for
counting the number of repeated palindromes in F[1, n| (the prefix of F of length n).
In this paper, we calculate the number of repeated palindromes in F[nq, ns|, denoted
by Num(n,ng). Without causing confusion, we omit “repeated”. A natural idea
is that we consider two functions: (1) the number of palindromes in F[1,ns], (2)
the number of palindromes whose first letter occurs in F[1,n;]. But unfortunately,
Num(n1, n2) is not equal to the difference between the two functions.

The calculation method adopted in this paper is based on the exact structure
of the derived sequence of the Fibonacci word F, and the structure of palindromes
in F. The main tool of study the derived sequence is “kernel word” in Huang-
Wen [7]. Denote by d,, the last letter of F),, for m > —1, then d,, = a if and
only if m is even. The mth kernel word of F is defined as K,, = 5m+1Fm5;L1 for
m > —2, which is also called singular word in Wen-Wen [17]. Let Ker(w) be the
maximal kernel word occurring in factor w. Let L = |F[ni,ng]| = na —ny + 1 and
m = min{m | f, < L < fm4+3 —2}. Then there exist several palindromes with
kernel K (h =m,m + 1,m + 2) satisfying Occ(w, p) < n; and Pos(w, p) > na.

In order to calculate Num(ni,ns), we only need to consider sequences Num
NumZy, and Num,,. For n > 1 and L € {fn..fm+3 — 2}

pos
<m>

Num) [n] = = #{(w,p) | Ker(w) = Kj, =1 < h < m, Pos(w,p) = n};
Num,[n] = #{(w,p) | Ker(w) = Kj,, =1 <h <m, Occ(w,p) =n};
Numm[L,n = #{(w,p) | Ker(w) = Kp,

Occ(w,p) > n, Pos(w,p) <n+ L — 1}.

Thus the number of repeated palindromes in F[ny,ns] is
Num(ny,ng)

= Z #{(w,p) | Ker(w) = Kj, Occ(w, p) > n1,Pos(w,p) < na}
h=—1

= Z_: #{(w,p) | Ker(w) = Kj,Pos(w, p) < na}

h=-1
(1.1) — 3" #{(w.p) | Ker(w) = Kp, Occ(w,p) < ny — 1}
h=-1
m+2
£ #{(w.p) | Kerlw) = Ky, Ocelw,p) > my. Pos(w.p) < o)}
h=m
m+2
= YNum%; | [1,n] — XNum%y,_[1,n — 1] + Z Numyp,[L, n1].
h=m

We will prove all of the three sequences are the Fibonacci words in Sections 3-5.
So we can give the expressions of the enumeration questions using the Zeckendorf
numeration system. Besides that, we give some basic notions in Section 2, and give
the main result and an example in Section 6.
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2. BASIC NOTIONS

The calculation method adopted in this paper is based on the exact structure of
the derived sequence of the Fibonacci word F, the factor spectrum tiling, and the
structure of palindromes in F.

2.1. The Derived Sequence.

The definitions of both the return word and derived sequence are from Durand [2].

Recall that w, denotes the pth occurrence of w, and Occ(w, p) denotes the position
of the first letter of w, in F. Let R,(w) = F[Occ(w, p),
Occ(w, p+1)—1] be the pth return word of w. Denote by H,, the set of return words
over factor w < F. Then the Fibonacci word F can be written in a unique way as
a concatenation F = F[1,h — 1Ry (w)R2(w) - - - where R,(w) € H,, and F[1,h — 1]
is the prefix of F occurring before the first occurrence of w. Let us give to H,,
the linear order defined by the rank of the first occurrence in F. This defines a
one to one and onto map A, : H, — {1,...,Card(H,)} = N, and the sequence
Dy = Aw(R1(w))Aw(Ro(w))Ay(Rs(w)) - - -. This sequence of alphabet N, is called
a derived sequence of F. Notice that we omit the prefix F[1,h — 1]. Wen-Wen [17]
and Huang-Wen [7] characterized the exact structure of the derived sequence of the
Fibonacci word F. More precisely, Wen-Wen [17] proved that for any kernel word
K,, € F (a special type of factors) the derived sequence {R,(Ky,)}p>1 is still a
Fibonacci word; and Huang-Wen [7] proved that for all factors w € F the derived
sequence {Ry,(w)}p>1 is still a Fibonacci word.

2.2. The factor spectrum and the factor spectrum tiling.

Huang-Wen [7-11] introduced and researched “the factor spectrum”. As a new
tool, the definitions of the factor spectrum in these papers are different in details.
Essentially, the factor spectrum consider two variables: factor variable and posi-
tional variable. In this paper, we visualize the number of repeated palindromes in
F[n1, ne| with factor spectrum tiling. We believe that by analogous arguments we
can visualize some more enumeration questions with factor spectrum tiling.

2.3. The Structure of Palindromes.
Let Pr be all palindromes occurring in F. Huang-Wen [9] gave the structure of
palindromes in F. Any palindrome with kernel K,, can be expressed uniquely as

(2'1) Km+1[i + 17 ferl]KmeJrl[la fm+1 - 2} = Km+3[i + 17 fm+3 - i]>
where 1 <14 < fj,41 and m > —1.

Proposition 2.1 (Properties 3.1 and 3.3 in Huang-Wen [9]).
Form>—1andp > 1,

(1) Pos(Km,p) = pfm+1+ ([¢p] +1) fm — 1; in particular, Pos(a,p) = p+ ¢p]
and Pos(b,p) = 2p + |#p].

(2) Let w be a palindrome with kernel K, satisfying Expression (2.1), then
Pos(w,p) = Pos(Kp, p) + fm+1 —i = (p+ 1) 1 + ([op] + 1) frn —i =1 for
1< < fm—l—l'
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2.4. The Zeckendorf numeration system.

In the Zeckendorf numeration system, natural numbers are represented as sums of
Fibonacci numbers [18]. Recall f,,, = |F},,| be the Fibonacci numbers for m > —2.
Ignoring leading zeros, any natural number N can be written uniquely as N =
Z?io d; fi, with digits d; = 0 or 1, and where d;d;+1 = 11 is not allowed. We write
Z(N) =dp---dadidy. For instance, Z(6) = 1001, since f3 = 5, fo = 1, see Dekking
[1]. Define inverse mapping of Z(n) = dps---dadidy that (dps---dodido)r =
Zj]\/io d;f;. For instance, (1001)p = 6.

Now we list some classical conclusions based on the Zeckendorf numeration sys-
tem. We will use the Zeckendorf numeration system to rewrite the algorithms of
enumeration questions into expressions.

Proposition 2.2. Let p be a Fibonacci word over alphabet {R4, Rp} with prefix
Ry where |Ra| = fim+1 and |Rp| = fm for m > —1.
When n > ‘R0|, let Z(TL — ‘R()D = deM_l...dm+1dm...d1d0, then
(1) there exist N = (dprdpr—1...dm+1)r’s return words {Ra, R} in p[l,n],
omit the last return word (maybe incomplete or equal to the empty word €);
(2) there exist Ny := [(N + 1)¢|’s Ra in p[l,n]; in particular, |F[1,n]|l, =
|(n+1)¢]; and there exist Ng := [(N + 1)¢?|’s Rp in p[1,n];
(3) the length of the last return word is n—|Ro|—Na|Ra|—Np|Rp| = (dmdm—1...do) F;
moreover, the last return word is P[1, (dydm—1...do) p|] where P = dp, 11 Rp+
(1 —dmns1)Ra.

See Figure 1 as an example. (1) When n =27 =21+4+5+1= fs + f3 + fo, thus
Z(n — |Rp|) = 1001001. There exist N = (1001)r = 6’s return words {R4, Rp} in
p[1,27]. In this case, the last return word is incomplete. When n =26 =21+5 =
fo+ f3, thus Z(n — |Ry|) = 1001000. In this case, the last return word is the empty
word €. (2) There exist No = |(N+1)¢| =4’s R4 and Ng = |(N+1)¢?| = 2’s Rp
in p[1,27]. (3) The length of the last return word is n — |Rg| — Na|Ra| — Np|Rp| =
27 —0—4x5—2x 3 =1, which is equal to (001)r = 1. Moreover, since d3 = 1,
the last return word in p[1,27] is Rp[l,1] = [a].

Sequence 123456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 -
F[12345,abc]=[1 2 34 Bla b c[12345[1 234 5[abc]1 2345labc[l2345[12345]a-

Ry Rs R4 R4 Rs Ra Rs R4 R4

FIGURE 1. The Fibonacci word p over alphabet {Ra,Rp} =
{12345, abc} with prefix Ry = . In this case, m = 2.

pos

3. THE SEQUENCE Numg,
We first consider the sequence Num??® that
(3.1) Num??*[n] = #{(w, p) | Ker(w) = K, Pos(w, p) = n}.

Obviously, NumZ) [n] = >7" | Numj®[n] for all n > 1.
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3.1. The sequence Num?’.
Lemma 3.1. The number of factor b occurring before ap, in F is |¢p].

Proof. Using the exact structure of the derived sequence, the derived sequence
{R,(a)}p>1 is a Fibonacci word over the alphabet {R4, Rp} = {Ri(a), R2(a)} =
{ab,a} with prefix Ry(a) = . Thus the number of factor b occurring before a, in
F is equal to the number of return word R4 occurring before the pth return word.
Furthermore, it is equal to the number of factor a occurring in F[1,p — 1]. By
Proposition 2.2(2), the number is |F[1,p — 1]|, = [¢p]. O

Proposition 3.2. For m > —1, the sequence NumP?® is a Fibonacci word over
the alphabet {R 4, Rp} with prefix Ry, where R4 = One(fim+1), Rp = Zero(fy,) and
Ro = Zero(fm+2 — 2).
Proof. On one hand, by Proposition 2.1(2), for m > —1 and p > 1

{Pos(w,p) | w € Pr,Ker(w) = K, }
(3.2) = [pfims1 + (Lop) + 1) fm — Lopfins1r + (Lop) + 1) frn + frg1 — 2]

= [1..fis1] @ {pfms1 + (lop] + 1) frn — 2}

These positions correspond to all digits 1’s in sequence Num??®.

On the other hand, let p be a Fibonacci word over the alphabet {R4, Rp} =
{One( fm+1), Zero(fm)} with prefix Ry = Zero(fm42 —2). We let R4, denote the
pth occurrence of R4. Obviously, the number of R4 occurring before Ry ) is p — 1.
The number of Rp occurring before R4, is equal to the number of b occurring
before a,. By Lemma 3.1, it is equal to |¢p].

So the position of the first letter of R4 ), in p is

|Ro| + (p — 1)|Ra| + [¢p]|RB| +1
(3.3) = fmt2 =2+ @~ 1) fms1 + [op]fm + 1
= pfm+1 + (lop] + 1) fm — L.

Since |Ra| = fm+1, the positions (from the first letter to the last letter) of the pth
occurrence of Ry are {Pos(w,p) | w € Pp,Ker(w) = K, } for p > 1. This completes
the proof. O

As an example of Proposition 3.2, Figure 2(a-b) gives the first several occurrences
of palindromes with kernel K, for m = 2, and the first 40 digits of the sequence
Num???.

3.2. The factor spectrum tiling.
Define matrices I' 1 = [1], Iy = [(1) ﬂ, and for m > 1

P2 | Ta 101
I'v=1{0---0 . For instance, I'y = [0 1 1
1. ... ... 1 1 1 1

(Mm+2)X fm+1
Lemma 3.3 (Lemma 3.4 in Huang-Wen [9]).

(1) [o(p + [op] +1)] = p,
(2) [o(2p+ [¢p] + 1) = p+ [op],
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(a) Palindromes 123 456 7 8 910111213 1415 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3§ 39 40 -

3 bab bab bab bab
5 | ababa ababa ababa ababa
7 aababaa aababaa aababaa aababaa
9  baababaab baababaab baababaab baababaab
11 | abaababaaba abaababaaba abaababaaba abaababaaba
bab bab ba
ababa ababa aba
aababaa aababaa aaba
baababaab baababaab baaba
abaababaaba abaababaaba abaaba

m

(6) NumP® =[o0 00001111 1Joooft 11111111 1Jooof1 111100011111
_Y—I\ﬁ—l‘—rw—lﬁ—lH—H—H—H—l

Ro Ra Re Ra Ra Re Ra Re Ra
) Num“"—|11111|ooo|11111|11111|oco|11111|ooo|11111|111110---
\_‘T_JMY-‘&‘_"_Y_‘W_’ﬁ ﬁ

m
!'
Ra Ra R Ra Rg Ra Ra

(

(3

(d) Palindromes 1 NHRBUBEETRONNDDUBRTBDNHRBUBBT AL -
3 bab 1 12221 11111111222111111---
5 ababa 1 117211 0

7 aababaa 1 1401

9  baababaab 1 1

11 abaababaaba 0
Num,, [10, n] = |4 432 1|1 234444444
H—J‘-

44321'123444444432

ng Y T

Ro Ra Re Ra
(e) Palindromes 12 34 5 6 7 8 9 10111213 1415 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 0 40 —
3 bab 1(11(11j0) 111112121111 1|01 11111100111 (1|1|2)2/1|1|1[1/1/1]|
5 ababa 1111 0[001/1/11/1/11[1/1/1/0{0/0|1 0j0j01[1/1/1/1(1/1/1|1/1/0 0|~
7 aababaa 1 0|0/1|1/1|0j0|1|1|1]|0 )
9  baababaab 0 0/0/1/0/0/00(1/0
11 abaababaaba 0 0|0

Num,,[9,n]= |34321|n123433334321|n1234321|o1234333343211---
T Y o T gl
Ro Ra Re Ra

FiGURE 2. Examples of sequences Num<m, Num%; and Num,,.

All of them are the Fibonacci words. (a) The first several occur-
rences of palindromes with kernel K,, for m = 2. (b) The se-
quence Num??® is the Fibonacci word over the alphabet {R4, Rp} =
{[1,1,1,1,1],[0,0,0]} with prefix Ry = [0,0,0,0,0,0]. (c) The se-
quence Num?® is the Fibonacci word over the alphabet {R4, Rp} =
{[1,1,1,1,1],]0,0,0]} with prefix Ry = e. (d-e) The sequence
Num,, (L, n] for L = 10 and 9.

3) o(p+ Lop))] =p—1,
(4) [(2p + L(pr)J + ¢p] forp=>1.
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pos
Num?™;

pos
Numy,

Proposition 3.4. For m > 0, the sequence Mby® 1= ] is an (m+2) X 0o

pos
Num?”

matriz. It is a Fibonacci word over {Ra, Rp} with prefic Ry, where Ry = T'y,

RB = Fm—l and R[) =

0 0

(m+2)x (fm+2—2)
Proof. By Proposition 3.2, the sequence Num??? is a Fibonacci word. Thus we
only need to prove two fact: (1) each occurrence of 'y, in sequence MP;* is with
FmfZ,Pos(b,p)Jrl 1—‘mfl,Pos(a,p)Jrl
structure I'y, , = | 0 e 0 , where Iy, ;, is the

1 (Mm=+2)X fmi1
pth occurrence of I'y,; (2) the prefix Ry can be tiled with I'; ; for —1 <i <m — 1.

(1) By the structure of I';,, the last line of the pth occurrence of I',, in sequence
ME?? is the pth occurrence of R4 = One(f,,+1) in sequence Num??. Thus by
Equation (3.2), the columns of I';, ,, is

[Pfmir + (Lop] + 1) frn = L.(p + 1) frnga + (Lop) + 1) frn — 2
= (L. fmt1] @ {pfins1 + (L¢p) + 1) frmn — 2}

Furthermore, the columns of I, 2 pos(bp)+1 = L'm—2,2p+sp) 18

L fm-a] ®{(2p + [¢p] + 1) fm-1 + ([2(2p + [¢p])] + 1) fn—2 — 2}
35)  =[LSfomal®e{@p+op) + Dfma+ @+ [op] +1)fm—2—2}
= [L.fm—1] ® {pfm+1 + ([p] + 1) fm — 2},

the first equality holds by Lemma 3.3(4).

Similarly, the columns of I';;,_1 pog(ap)+1 = U'm—1,p+[¢p|+1 18

[ fm] @ {0+ [op] + D) fm + (o0 + [dp) + )] + 1) fm1 — 2}
(3.6) = [L.ful@{(p+ [ép] + 1) fm + (p+1) frn—1 — 2}
= [fm-1+ L. fos1] @ {pfimt1 + (lop) + 1) frn — 2},

the first equality holds by Lemma 3.3(1).
Comparing Equations (3.4)-(3.6), I'y,—2 pos(b,p)+1 a0d I'n_1 pos(a,p)+1 can tile to

(3.4)

|
(2) By Equation (3.4), the columns of I'; 1 is [fi+2 — 1.. fiye — 2]. Thus the prefix
Ry can be tiled with I'; 1 for =1 <7 <m — 1.

These two points complete the proof. ]
3.3. The sequence Num”’.
Since Num [n] = >°3" | Num}”’[n] for all n > 1, the sequence Num® is

column sum ofo,f ®. We let P,, denote the column sum of T',,,. By the definition of
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n 1/2/3 4 56 7 8 9100111213 14 1516 17 18 19 202122 23 24 25 26 27 28 29 3031|3233 34 35 36 37 38 39/40 -
F- abaababaabaababaababaabaababaabaababaaba-

K [ o[aTa] o[sfeTaaTo T JuTo Ta o T[T [alo [T e o Al o [« o [a T [alx o Ta o [T+ o 4] -

Ko 01 1[0[1 11 1[o[1 fo[1 1[7 1[o[1 1 1]o[* ot 1[v to[v sfo[x 11 1]o[1 1}~

K 0/ofo[1 1 oot 1 1fa 1 wJoTo[1 1 tfo o[t 1 1 1 t]o o[t 1 1 1 4 o ofr 11

Kz 0/0/0 o]0 ot 4 1 1 1fofo o]t 11 1l 1 1 1 1o olof1 1 11 1olofo[i 1111

Ks 0/0jo0 0000 00oftr 111111 tfofofolcofrrrrrtaafiiadriss

Ke 0/0/0/00 0000 0fo[ofo/0 000 00ft 1144111 11114ooofoooool
% Y Y Y =

Ro R4 Rs

Num® =[1[12[223[23334[33434445[3444544545556[33434445|-
-~ A A J ~ 7 ” N

Y Y Y
Po Pi Ps Ps Ps

FIGURE 3. The factor spectrum tiling in sequence Mb;*, and the
column sum of MY for m = 4.

Ty, Po1 =[1], Py = [1,2], Py = [Pm—2, Pm—1] + One(fm+1) for m > 1. Obviously,
|Pm‘ = fm+1, YP,1=1,¥P =3, ¥P,, =Y¥P, o+ YXP,,_1 + fm+1 for m > 1.
Moreover, for m > —1

XPy = mT—i_?)fm+3 + %fm—l—h

(37) EPm - EPm—l = 277?—4fm+1 - mT_Qfma

Zzl:—l Xh, = %ferE) + mTHfm+3 +2.

All of them can be verified by induction.
As a corollary of Proposition 3.4, Num?” is a Fibonacci word too.

Proposition 3.5. For m > 0, the sequence Num?: is a Fibonacci word over

the alphabet {R4, Rg} with prefix Ry, where Ry = P,,, Rp = P,,_1 and Ry =
[P_1, Py, P1,...,Pp_1].

3.4. The expression of ENum®’ [1,n].

(A) When n < |Ro| = S0 1Py = 572 fat = fimaz — 2, the number of
palindromes in F[1,n] with kernel K; (-1 <4 < m) is ENum®’ [1,n] = ZRy[1,n].
Furthermore, since the first occurrence of palindromes with kernel K; (i > m) must
larger than n, ¥ Ry[1,n| is the number of palindromes in F[1,n] too.

(B) When n > ’Ro’, let Z(n— ‘R()D =dydpr—1---dmt1dm...d1dg. Using the Zeck-
endorf numeration system and Proposition 2.2, there exist N = (dprdpr—1...dmt1)F’s
return words {R4, Rp} in p[l,n]; and there exist Ny = [(IV + 1)¢]’s Ra (resp.
Np = [(N+1)¢?]’s Rp) in p[1,n]. Thus the number of palindromes in F[1, n] with
kernel K; (=1 <i<m) is
(3.8) ENumZi[l, n|

' = YR+ NaXRu + NgERp + SA[L, (dmdm—1...do) F],

where A = d, 1R + (1 — dpi1)Ra.
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Furthermore,
YRo+ NoAXRA+ NgXRp = ¥Ry + NXRp + Ns(XR4 — XRp)
(39) = {5 fmra+ " fnr + 21+ N {2 frnn + 5 fin }

+ (N +1)¢) {252 frnar — 52 fn}

Theorem 3.6. For m > —1, when n < fp,10 — 2, the number of palindromes in
F[1,n] is ¥Ro[1,n]. Whenn > fpi2—2, let Z(n— fr+1+2) = dprdpr—1...dms1dm.-..d1do.
Let N = (dyprdps—1...dm+1)F. Then the number of palindromes in F[1,n] with kernel
K; (—1<i<m)is

ZNumI;O; (1, n]
(3.10) =l Lo b2} ¢ N {2 g meLy

+ (N +1)¢) {2 frng1 — 252 fn} + SA[L (dindin—1...do) F),
where A = dy11Rp + (1 — dit1)RA.

occ

4. THE SEQUENCE NumZ,

By an analogous argument, we can prove that the sequence Num?%;, is a Fibonacci

word too, and obtain the expression of the number of palindromes whose first letter
occurrence in F[1, n] with kernel K; (—1 < ¢ <m). We just list some main results.

Proposition 4.1. Form > —1, the sequence Num{ is a Fibonacci word over the

alphabet {Ra, Rp}, where Ry = One(fm+1) and Rp = Zero(fm).

Define matrices I' _ = [1], I'p= E (1)], and for m > 1,

Th—1 | Tho 1 01
T, = 0---0 . For instance, I'y = |1 1 0f. Notice that,
1o on .. 1 1 1 1

(Mm+2)X fmt1
we use the same notations in Section 3. We can distinguish these notations according

to the sections where they appear.

Num?
Num§®

Proposition 4.2. For m > 0, the sequence MO := ) is an (m+2) x oo
Num{e

matriz. It is a Fibonacci word over the alphabet {R4, Rp}, where R4 =T, Rp =
1.

Since Num%,[n] = >3 | Num{®[n] for all n > 1, the sequence NumZ%y, is

column sum of M?%¢. We let P, denote the column sum of I';,,. By the definition of
Ty, P1= [1], Py = [2, 1], P, = [mel, meg] —I—One(me) for m > 1. Notice that,
the values of |Py,|, P, (=1 < h <m), >} _| XP, are equal to the corresponding
values in Section 3.

Proposition 4.3. Form > 0, the sequence NumZy,

alphabet {Ra, Rp}, where Ry = P, and Rp = Pp,_1.

is a Fibonacci word over the
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n 1234567 8 910111213 14 1516 17 18 19 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 -
F- abaababaabaababaababaabaababaabaababaaba-

ko PTo T o [o AT o T T TR To T« T To] e o[ 4f 4] o [a o] o [a] o [a]a] o [aTa] o [ 1] o [4]4] o[ 1]
Ko it 1[o[1 ] 1 1o 1]of+ 1k 1]of1 1]+ 1]of1 1]o]1 1]1 1]o[1 1ol1 4]1 1[o]1 1]1 -
K o1 1Joof1 1 11 1 1]o okt 1 1oof1 1 1f1 1 1]o o1 1 1{1 1 1{o0o[1 1 1]o of1 -
3 EEEE I (EEEE EEEE OO R R I O
3 (EEEEEREE OopoD mEEEEEE EEEEEER NN R
Kt a1a 010414000 ofoofofojoft ittt 11111111111
Y Y B
Ra Rs Ra
Num% =[6555454454443[54443433[6555454454443[655545-
C° Y = ¥ G Y =
Pa Ps Pa

FIGURE 4. The factor spectrum tiling in sequence M?%“ and the
column sum of M2 for m = 4.

Theorem 4.4. For m > —1, let Z(n) = dydpyr—1...dmy1dm...d1idg. Let N =
(dyvrdpr—1...dmt1)F. Then the number of palindromes whose first letter occurrence
in F[1,n] with kernel K; (—1 <i<m) is

YNumZy, [1,7]
A1) =N{ZE2foo+ 22} 4 (N + Do) {22 fr iy — 25210}
+ 2A[L, (dmdp—1...do) F],

where A = dypt1Rp + (1 — dt1)Ra.

5. THE SEQUENCE Num,,

For any m > —1, now we consider sequence Num,, that

Numy, [L, n] =#{(w,p) | Ker(w) = Ky,

(5.1)
Occ(w,p) > n, Pos(w,p) <n+ L — 1},

where n > 1 and L € {fn..fm+s — 2}. By an analogous argument, the sequence
Num,, is a Fibonacci word. The expressions of R4, Rp and Ry is given in Figure
5. Specifically, in order to determine the three expressions, we only need to given
the triangles with digits 0’s.

6. MAIN RESULT AND AN EXAMPLE

6.1. Main Result.
Let L = |Fny,n2]| = ng —n1 + 1 and m = min{m | f, <L < fi43 —2}. By
Equation (1.1), the number of repeated palindromes in F[n, ng] is

Num(nq,ng)

6.1
€ _ SNum? _[1,n9] — SNum%, [1,n1 — 1] +Z Numh [L,n].
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|{fm- an—l + 1) |(fms Sfm+ys — 1)| |(fm: fm+3 + fme1 + 1)|
(fim: fmt1 — 1) ((Fm: Fnt3 + D) [(fon, 2Fmnta — 1)

(fma 1) |(f'm~fm+3 + fm+l T l)l
L“\ﬂZ *755101\‘21 151‘L71$N21ﬂ232£262725330313233343536373!3540"'

Num,,[L,n] = uunE|1nunnun1|ﬂunu1uunuum1unnunuu1nuun1
00011(0000001100011(00000011/000000110001 1
00121(0000012100121(00000121/00000121001 21

3
4
5
6m1221|]|]UU1221m1221000012210000122101221
7
8
9

AM23210001232¥W2321[00012321(0001232112321
23321]00123322123321001233210012332223321
34321fofJ1234333|34321f0f]1234321/0123433334321
104432

- SIS ESESTE N

23444444432 YN 2344321(1234444444321
1§ T L

Ro Ra Rs Ra

(fm+‘2 — 2: l) Il(frrl+'2 - 2-fm+3 - 1)”(.fm+‘2 =+ fm - 2~fm+3 < f-m+l = 1)|
|(fm+‘2 +fm =2, fms1 + l)l

FiGURE 5. The sequence Num,, for m = 2, and the expressions of
R4, Rp and Ry for m > —1. Here the tuple (a,b) means L = a and

n=>"b.
Let
(Z(nl — 1) =enpepry—1...€10, N1 = (epprepr—1...em)F;
Py =[1], Py = [2,1), Py, = [Py, Ppy_o] + One(fria),m > 1;
(6.2) A =enPy, o+ (1 —en)P,_y;

Z(ng — fm+1 + 2) =dpydpyr_q...d1dy, No = (deM—l-‘-dm)FQ
P = [1]7P0 = [172]7Pm = [Pm—2>Pm—1] + One(fm+1)7m > 1;
Ao =d, Pr—a + (1 — dm)mel-

By Theorems 3.6 and 4.4, we get further simplification that
ENumz;‘:hl[l,ng] — YNumZy, [1,n1 — 1]

= {52 s + B 1 + 2} + No {75 frpr + 252 frn1 }
+ [(Ny 4+ 1)¢p) {22 fr, — 23 fr 1} + SA9[1, (dm—1dm—2...do) F]
— N {2 fr + 22 1} — (N1 4+ 1)) {2822 f — 222 fr 1}
— XM [, (em—16m—2-.-€0) F]

={22 frgs + Bfmr1 + 2} + (N2 = N1) {2 o1 + 22 o1 }

+(L(NV2 + 1)) = [(N1 + 1)@ ]) {25652 fine — 52 frn1 }
+ EAQ[l, (dm_ldm_g...do)p] — ZAl[l, (€m_1em_2...€0)p].

(6.3)

Notice that, there are two cases in Theorem 3.6. But by the definitions of L and
m, when we consider Num(ni,n2), no > L must be larger than f,,4; — 2. That
means we don’t need to consider the first case in Theorem 3.6, when we calculate
SNum?” | [1,n9].
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Theorem 6.1. Let L =ny —n1 + 1 and m = min{m | f, < L < fi43 — 2}, the
number of repeated palindromes in Fnq, no| is

Num(ny, ng)
= mTﬂfm'H; + %fm'f‘l + 2} + (NQ - Nl) {mTHfm-‘rl + mTizfm—l}
(6.4) + ([(Na+1)¢) — [(N1+ 1)o)) {252 fry — 25 1}
+ EAQ[]., (dmfldmfg...do)p] — EAl[l, (em,lem,g...eo)p]

m—+2
+ Z m Numh [L, nl].

The expressions of N1, No, A1, As, (dpm—1dm—2...do)r and (em—1€m—2...€0)F are
given in Equation (6.2). The values of ZZZFWQL Numy[L,n;| are given in Figure 5.

6.2. An Example.

According to the different kernel Ker(w), we can divide all repeated palindromes
in F[17,25] = ababaabaa into five parts as below, where w(n) means there are n’s
palindrome w occurring in F[17, 25].

-1 =a} = {a(6)};

0 = b} = {b(3), aba(3)};

1 = aa} = {aa(2),baab(1), abaaba(1)};
9 = bab} = {bab(1), ababa(1)};

3 = aabaa} = {aabaa(1)};

m,m >4} = (empty set).

{w|w e Pp,Ker(w
{w|w € Pp,Ker(w
{w|w e Pp,Ker(w

(w) }
(w) =
(w)

{w|w € Pp,Ker(w)
(w)
(w)

(6.5)

{w|w e Pp,Ker(w
({w | w € Pp,Ker(w

I
AARR IR

Thus the number of repeated palindromes in F[n, ns] is 19.
By Theorem 6.1, L = |F[17,25]| =9 and m = 2. By Equation (6.2)

17— 1 = 16;
16 = f5 + f2 = Z(17) = 100100, N1 = (100) 7 = 3;

Pl—l = [1]7P0/ = [2’1]’P1, = [Pé,P’_l] +[1,1,1] = [3,2,2];
em=1= A =P =1[2,1],A1[1,(00)p] = ¢.

25— f3+2=22;

22 = f + fo = Z(22) = 1000000, N = (1000)r = 5;
Py =1}, =[1,2], L = [P-1, P] +[1,1,1] = [2,2,3];
\dm =0=> Ay =P = [2,2,3],[\2[1, (Ol)F] = [2]

By Figure 5, Nums[9,17] = 2, Nums[9,17] = 1, Numy[9, 17] = 0.
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Thus by Theorem 6.1 the number of repeated palindromes in F[nj, ns] is

Num(ni, n2)

= {mT_Qme + B fmar + 2} + (N2 — N1) {mTHme + defm—l}
+([(N2+1)¢) — (N +1D)o)) {52 fon — 252 frna }
+ XA, (dm—1dm—2...do) r] — ZA1[1, (em—1€m—2...€0)F]

m+2
(6.7) + Zh:m Numy,[L, n1]

={3fs+2} +(5-3){fs}
+(6+1)¢) — [B+1)p)) {Ef2+ t 11}
+X2] -Xe+2+1+0

=109.

This value is equal to the conclusion in Equation (6.5).
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