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ABSTRACT. Linear transfers between probability distributions were introduced
in [5,6] in order to extend the theory of optimal mass transportation while pre-
serving the important duality established by Kantorovich. It is shown here that
{0, 4+00}-valued linear transfers can be characterized by balayage of measures
with respect to suitable cones of functions a la Choquet, while general linear
transfers extend balayage theory by requiring the “sweeping out” of measures to
optimize certain cost functionals. We study the dual class of Kantorovich oper-
ators, which are natural and manageable extensions of Markov operators. It is
also an important subclass of capacities, and could be called “convex functional
Choquet capacities,” since they play for non-linear maps the same role that con-
vex envelopes do for arbitrary numerical functions. A forthcoming paper [7] will
study their ergodic properties and their applications.

1. INTRODUCTION

Given a closed convex cone A of lower semi-continuous functions on a compact
metric space €2 that is stable under finite maxima and containing the non-negative
constant functions, one defines a partial order on the set P(2) of probability mea-
sures via the relation

(1.1) uw=4v if /(bd,ug/qﬁdy for all ¢ € A.
Q Q

This is the so-called balayage order with respect to A and cones with the above
properties will be called balayage cones. They often appear in convex analysis,
probability theory, analysis in several complex variables and potential theory. Here
are a few examples.

e The cone of lower semi-continuous convex functions on a convex compact
set €2 in a locally convex topological vector space.

e The cone of subharmonic (resp., plurisubharmonic) functions on a domain
2 in R™ (resp., C").

e The cone of excessive (resp., supermedian) functions associated to a ho-
mogenous Markov process.
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e The cone of 1-Lipschitz functions on a compact metric space €2, as well as its
tangent cone at a given f, i.e., Ay = {\(f—g); A > 0, gis 1-Lipschitz on Q}.

We are interested in balayage as a transport procedure between probability distri-
butions that are sometimes supported on different compact metric spaces X and Y.
We shall then consider closed convex cones A of lower semi-continuous functions

on the disjoint union Q = X LY and define a restricted balayage only on pairs of
probabilities (i, v) in P(X) x P(Y') -as opposed to P(X UY)- via:

(1.2) 1 =4 v if and only if / odp < / odv for all ¢ € A.
X Y

Note the difference between (1.1) and (1.2). For example, the first pre-order is a
transitive relation while the second is not, even if X = Y. Still, a celebrated theorem
of Strassen [25] can be applied whenever (1.2) holds to deduce the following (See
for example [10]).

Proposition 1.1. For every pair (u,v) in P(X) x P(Y) with p <4 v, where A
is a balayage cone on X UY, there exists a Markov kernel (or a transport plan)
m € P(X xY) whose marginals are (u,v) and such that the disintegration (m)zex
of m with respect to u, i.e,

(1.3)
(X x B) =v(B) and (A x B) = / 7 (B) du(z) for all Borel AC X, BCY,
A

also satisfies
(1.4) Op ATy [ — ae.

These are sometimes called A-dilations of p into v. The set of such A-dilations
will be denoted K 4(p, ). The extreme points of the set {(u,v); p <4 v} are then
pairs of the form (d,,7n) where 0, <4 7.

In this paper, we consider the problem of finding A-dilations of p into v that
minimize appropriate cost functionals of the form ¢ : X x P(Y) — RU {+o0}, that
is

(1.5) T(p,v) = inf{/X c(x, g )dp(z); m € Kalp,v)}.

This can be seen as a problem of finding an optimal Strassen disintegration of trans-
port plans between two probability measures in balayage order. This is known as
the optimal martz’ngale transport [16,21] whenever A is the cone of convex functions,
and ¢(z,0) = [, d(x,y)do(y) with d(z,y) being the cost of moving mass from z to
.

One of our objectives is to characterize those convex functions 7 on P(X)xP(Y)
that can be described as a value function of an optimal transport problem as in (1.5)
for a suitable cost function ¢ and an appropriate balayage cone A. These turn out
to be the backward linear transfers between probability distributions, a notion we
introduced in [5,6] in order to extend the theory of optimal mass transportation
while preserving the important duality established by Kantorovich.

Backward linear transfers are essentially lower semi-continuous convex function-
als 7 on P(X) x P(Y) whose partial maps 7, : v — T (u,v) are such that their
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Legendre-Fenchel transforms lead to a map p — 7, that is linear with respect to p.
This class of functionals is rich enough to naturally extend the cone of convex lower
semi-continuous energies on Wasserstein space, Markov operators, and cost minimiz-
ing mass transports, but also many other couplings between probability measures
to which Monge-Kantorovich theory does not readily apply. Examples include op-
timal martingale transports [16,21], optimal Skorokhod embeddings [17,18], optimal
stochastic transports [13,19,23] and the weak mass transports of Talagrand [26],
Marton [22], Gozlan et al. [20]. The class also includes various couplings such as
the Schrodinger bridge associated to a reversible Markov process [15]. Here is the
precise definition:

Let M(X) is the class of signed Radon measures on X. The domain of a func-
tional 7 : M(X) x M(Y) — RU {400} will be denoted

(1.6) D(T) :={(p,v) € M(X) x M(Y); T (u,v) < +00}.

We consider for each p € P(X) (resp., v € P(Y)), the partial maps 7, on P(Y)
(resp., T, on P(X)) given by v — T (u,v) (resp., u — T (1, v)).

We let C(X) (resp., B(X)) (resp., USC(X)) (resp., LSC(X)) be the space of
continuous (resp., Borel measurable) (resp., bounded above, proper and upper semi-
continuous), (resp., bounded below, proper and lower semi-continuous) functions on
a compact space X.

Definition 1.2. A functional 7 : M(X) x M(Y) — R U {400} is said to be a
backward linear transfer (resp., forward linear transfer) if

(1) T: M(X) x M(Y) - RU {+0o0} is a proper, convex, bounded below, and
weak™ lower semi-continuous.

(2) D(T) CP(X) xP(Y).

(3) There exists a map T~ (resp., T") from C(Y) (resp., C(X)) into the space
of bounded above (resp., below) Borel-measurable functions on X (resp.,
on Y) such that for all 4 € P(X) and g € C(Y) (resp., v € P(Y) and

f e (X)),
(L.7) T*(g) = /X T gdu, (resp.. To(f) = /Y T* (= f)dv),

where 77 (resp., 7,7) is the Fenchel-Legendre transform of 7, (resp., 7,)
with respect to the duality of C(X) and M(X) (resp., C(Y) and M(Y))).

Note that since D(7) C P(X) x P(Y), the Legendre transforms are simply
(1.8)
T = swp ([ gdo =~ T(uo)} vesp. To(7)i= swp {[ fdo—Tlom).

oceP(Y) JY ceP(X) JX

The map T~ (resp., T") is then called the backward (resp., forward) Kan-
torovich operator associated to the transfer 7. We shall restrict our analysis
to backward transfers since if T is a forward linear transfer with TT as a forward
Kantorovich operator, then 7 (u,v) = T (v,u) is a backward linear transfer with
T~ f = —T7%(—f) being the corresponding backward Kantorovich operator.



1682 NASSIF GHOUSSOUB

Note that since T~ and T'" arise from a Legendre transform, they must satisfy
certain additional properties that we exhibit in Section 2. These -mostly non-
linear- Kantorovich operators are important extensions of Markov operators and
are ubiquitous in mathematical analysis and differential equations. They appear
as the réduite operators in potential theory, as filling scheme operators in ergodic
theory, as well as in Monge-Kantorovich duality of optimal mass transport (hence
the name). They also include maps that associate to an initial (resp., final) state
the solution at a given time ¢ (resp., initial time) of a first or second-order Hamilton-
Jacobi equation. They are actually general value functions in dynamic programming
principles ( [14] Section I1.3) and also appear in the mathematical theory of image
processing [2].

Linear transfers that can only take 0 or +oco values are particularly interesting
since we shall be able to characterize them completely in terms of the classical
notion of balayage.

Definition 1.3. Say that a subset S of P(X) x P(Y) is a backward transfer set if
its characteristic function

(1.9) T, v) = {0 if (u,v) €6,

400 otherwise,

is a backward linear transfer.

Definition 1.4. 1) Say that a functional 7 : P(X)xP(Y) — RU{+o0} is standard
if

(1.10) for each x € X, there is 0 € P(Y) with 7 (dz,0) < +o0.

2) A set S C P(X) x P(Y) is then said to be standard!® if its characteristic
function is standard, that is if for each x € X, there is 0 € P(Y) with (05,0) € S.

A typical example of a transfer set is given by the classical notion of convex order.

Balayage of measures in convex order: If X is a convex compact subset of a locally
convex topological vector space, consider the functional

[0 if u<v
(1.11) B(p,v) = { +oo  otherwise,

and where 1 < v if and only if [ ¢pdu < [ ¢ dv for all convex continuous functions
¢. It follows from standard Choquet theory [12], that B is a backward linear transfer
whose Kantorovich operator is T~ f = f , where f is the upper semi-continuous
concave upper envelope of f. It is also a forward linear transfer with T f being
the lower semi-continuous convex lower envelope of f. In other words,

(1.12) S={(p,v)eP(X)xP(X); u<v}

is a standard transfer set.
Balayage orders (though “restricted”) with respect to appropriate cones turned
out to characterize transfer sets, as we shall prove in Section 3 the following. For

¢ turned out that, motivated by some work of Dubins and Savage, Dellacherie-Meyer [8] had
called such sets gambling houses. We shall adopt this terminology throughout this paper.



LINEAR TRANSFERS AS MINIMAL COSTS OF DILATIONS OF MEASURES 1683

that, recall that a positively 1-homogenous operator T is one that verifies T (Af) =
AT f for any A > 0.

Theorem 1.5. Let S be a weak™-compact conver subset of P(X) x P(Y). The
following are then equivalent:
(1) S is a gambling house.
(2) S is a standard backward transfer set.
(3) S ={(u,v) € P(X)xP(Y); u <4 v}, where A is a balayage cone on X 1Y .
(4) (p,v) € S if and only if there exists m € K(p,v) such that (6, m,) € S for
p-almost z € X.
(5) S ={(pu,v) € P(X) xP(Y); v <Typu}, where T : C(Y) = USC(X) is a
positively 1-homogenous Kantorovich operator and Typ(g) := fX Tgdu for
every g € C(Y).

Definition 1.6. Sets of the form (1.12) will be called restricted (resp., true)
balayage sets if the cone A is in LSC(XUY') (resp., if X =Y and A C LSC(X)).

Note the two basic differences between an eztended balayage and a true balayage,
even when X = Y. For one, a probability measure is comparable to itself in a
true balayage order, that is the set of ordered pairs must containing the diagonal
{(y p); 0 € P(X)}. Another difference is that a true balayage is clearly transitive,
that is if p <4 0 and 0 <4 v then u <4 v. Neither property makes sense for an
extended balayage, even if X =Y. We prove in Section 4 that these two properties
actually suffice to have a backward transfer set represented by a true balayage.

Definition 1.7. Say that a subset S of P(X) x P(X) is transitive if
(1.13) (u,0) € S and (o,v) € S = (u,v) €S.

Theorem 1.8. Let S be a subset of P(X)xP(X). Then the following are equivalent:

(1) S is a transitive backward transfer set containing the diagonal {(u, p); u €
P(X)}.

(2) S ={(u,v) e P(X)xP(X); u <4 v}, where A is a balayage cone in C(X).

(3) S={(p,v) e P(X) x P(X); v <Typu}, where T : C(X) = USC(X) is an
idempotent positively 1-homogenous Kantorovich operator such that Tf > f

forall f € C(Y).

Actually, we shall show that any standard backward transfer set is contained in
a minimal transfer set represented by a true balayage.

The following example illustrates the difference between these two notions of
balayage.

The prescribed Markov transfer: Let T : C(X) — C(X) be a bounded linear pos-
itive operator such that T'1 = 1, i.e., a Markov operator, then one can associate a
backward linear transfer in the following way:

_Jo if v="T%)
(1.14) Tr(p,v) = { +00 otherwise,
where T% : M(X) — M(X) is the adjoint operator. This is an example of a transfer
set which cannot arise from a true balayage with respect to a cone A in C(X), unless
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T is the identity. On the other hand, we shall see in Section 4 that it is associated to
a restricted balayage, and that the smallest true balayage set containing it is the one
corresponding to balayage with respect to the cone of T-superharmonic functions.

So far, we have only encountered positively 1-homogenous Kantorovich operators.
The next examples are not.

Optimal mass transport: Cost minimizing mass transports a la Monge-Kantorovich
[27] are functionals on P(X) x P(Y) of the form,

(1.15) Te(p,v) = inf { c(z,y)dm;me K(p,v)},
XxY

where c(x,y) is a lower semi-continuous cost function on the product measure space
X x Y, and K(u,v) is the set of probability measures 7 on X x Y whose marginal
on X (resp. on Y) is u (resp., v) (i.e., the transport plans). A consequence of the
Monge-Kantorovich theory is that cost minimizing transports 7. are both forward
and backward linear transfers with Kantorovich operators given for any f € C(X)
(resp., g € C(Y)), by

(116) T f(y) = gg)f({daz y)+ f(x)} and T g(z) = zlelg{g(y) —c(z,9)}.

Optimal weak mass transport: A typical example of a backward linear transfer
is the following natural generalization of optimal transport: The optimal weak
transport, formally introduced by Gozlan et. al. [20], in order to include previous
work by Talagrand, Merton and others.

Definition 1.9. Let ¢ : X x P(Y) - RU {400} be a bounded below, lower semi-
continuous function such that for each x € X, the function o — ¢(x,0) is proper
and convex. The optimal weak transport problem with cost ¢ from p € P(X) to
veP(Y)is

(1.17) Vel ) = in{ /X o, ) dp(@); 7 € K, v))

where (7). is the disintegration of 7w with respect to .

As shown in [1] and [20], V.(p,v) = sup{ [, gdv — [ T~ gdu}, where

(1.18) T g(z) := sup{/y gdo —c(z,0); 0 € P(Y)},

a duality that will be key to our study. The effective domain of V., is not necessarily
a backward transfer set, but we shall show in Section 3 that the domain of every
backward linear transfer is contained in a minimal backward transfer set.

Optimal balayage transport with cost: This example which combines balayage and
optimal transport can be described as follows:

Definition 1.10. Assume A is a balayage cone in LSC(X LUY), and let ¢ : X X
P(Y) — RU{+0o0} be as in definition (1.9). The following is also a backward linear
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transfer:

inf{ [ c(x,mp)dp(x) ; m € Ka(p,v)} i p=av,
400 otherwise.

(1.19) Bea(p,v) = {

The corresponding Kantorovich operator is then

(1.20) T f(z) = sup{/ fdo—c(z,0); (x,0) € X x P(Y)and 6, <4 0}.
Y

We shall refer to it as an optimal restricted balayage transport with cost c.
If X =Y and A is a balayage cone in LSC(X), then B, 4 is said to be an
optimal balayage transport with cost c.

The following summarizes our main results. It roughly shows that mass transport
theory is essentially balayage theory (or potential theory) with a “cost” assigned
for moving distributions around.

Theorem 1.11. Let T be a standard functional on P(X) x P(Y). Then the fol-
lowing are equivalent:

(1) T is a backward linear transfer.
(2) T is an optimal restricted balayage transport, i.e., T = B a with cost func-
tion c(x,0) =T (dz,0) and where A is a balayage cone on X UY .
Moreover, for any (u,v) € D(T), there exists 7r € Ka(p,v) such that
(02, m2) €D(T), 05 =4 g for p-a.e. x€X and T (p,v) = [ T (0z, 7z) dp(x).

Furthermore,

e D(T)=D(B.a) C{(p,v) e P(X)xP(Y); p <a v}, and we have equality
if and only if D(T) is a backward transfer set, in which case,

D(T) ={(u,v) e P(X) x P(Y);3 € Kalp,v), 0z <4 75 for p-a.e. v € X}.
o If X =Y, then D(T) C D@) = {(u,v) € P(X) x P(X); u <4 v},

where A is a cone of lower semi-continuous functions on X.
e D(T) = D(B, ) if and only if D(T) is a transitive backward transfer set
containing the diagonal {(dz,0,);x € X }.

Note that (2) can be seen as an extension of Strassen’s theorem since the latter
correspond to when 7 is the zero-cost balayage transfer.
There are two important connections that emerge from our analysis:

(1) The class K(Y, X) of backward Kantorovich operators in the smallest “man-
ageable” convex set in the space F (Y, X) of maps from C(Y) to USC(X)
that is stable under pointwise suprema, while containing the Markov oper-
ators.

(2) Essentially any map T : C(Y) — USC(X) has a lower “envelope” that is
a backward Kantorovich operator. Moreover, K(Y, X) is an important sub-
class of functional capacities that could be called “convex functional Cho-
quet capacities,” since essentially any functional capacity has a backward
Kantorovich operator lower envelope for the standard order on capacities.
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These connections make the cone of Kantorovich operators particularly rich and
flexible as it echoes the role of convex functions vis-a-vis general numerical functions.

Here is an outline of the paper. In Section 2, we exhibit the duality between
linear transfers and Kantorovich operators as well as some of their properties that
will be needed later. We also show that backward Kantorovich operators are Cho-
quet functional capacities. In Section 3, we prove Theorem 1.5 and show that if
T is a standard backward linear transfer, then its effective domain D(T) is con-
tained in a minimal restricted balayage set. In Section 4, we prove Theorem 1.8
and show that if X =Y, then D(T7) is contained in a minimal true balayage set.
In Section 5, we show that if 7 is a standard backward linear transfer, then it can
be represented as an optimal weak transport, and characterize those whose domains
D(T) are backward transfer sets. This is then used in Section 6 to construct back-
ward Kantorovich operators (resp., Choquet-Kantorovich operators) as envelopes
of general maps from C(Y') to USC(X)(resp., functional capacities).

2. DUALITY AND KANTOROVICH OPERATORS AS CHOQUET FUNCTIONAL
CAPACITIES

We shall restrict our study throughout to the case where X and Y are two
compact metric spaces. Extensions to the non-compact case are of course possible
and sometimes desirable, but could add complications and technical hypotheses
that would take a way from this natural setting. Recall that USC(X) is the cone
of proper, bounded above, upper semi-continuous functions on X.

Definition 2.1. A backward Kantorovich operator is a map 7~ : C(Y) —
USC(X) that satisfies the following properties:
(1) T~ is monotone, i.e., if g < gy in C(Y), then T~ g1 < T~ go.
(2) T~ is affine on the constants, i.e., for any c€ Rand g € C(Y), T (g+¢) =
T g+c.
(3) T~ is a convex operator, that is for any A € [0, 1], g1, g2 in C(Y'), we have

T"(Ag1+ (1 =Ng2) AT g1 + (1 = N)T" ga.

(4) T~ is lower semi-continuous in the sense that if g, — g in C(Y") for the sup
norm, then liminf, ..o T g, > T g.

Similarly, a forward Kantorovich operator is is amap 7" : C(X) — LSC(Y)
that satisfies (1)and (2) above, but instead of (3) and (4), it satisfies:

(3") T is a concave operator.

(4) T is upper semi-continuous.
This class of operators is in a way “dual” to the class of backward linear transfers.

Theorem 2.2. Let X and Y be two compact metric spaces. Then, the following
assertions are equivalent:

(1) T~ is a backward Kantorovich operator from C(Y') to USC(X).
(2) There exists a backward linear transfer T : P(X) x P(Y) — RU{+o0} such
that for all p € P(X) and g € C(Y),

(2.1) 7o) = [ Tgdn
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(3) There exists a proper lower semi-continuous function ¢ : X x P(Y) — RU
{+o0} such that for all x € X, the functional o — c(x,0) is conver, and
for any g € C(Y),

(2.2) T g(x):= sup{/y gdo —c(z,0); 0 € P(Y)}.

We shall need the following lemma.

Lemma 2.3. Let T : C(Y) - USC(X) be a backward Kantorovich operator, and
suppose x € X is such that T0(x) > —oo.Then, there exists o € P(Y) such that

(2.3) sup { [ gdo—Tg(z)} < +o0.
geC(y) JY

Proof: Note first that the hypothesis yields that T'g(xz) > —oc for every g € C(Y),
since by the first 2 properties of a Kantorovich operator, we have for every g € C(Y'),
Tg — infy g = T'(g — infy g) > T0. It follows that the functional ®, : C(Y) — R
defined by ®,(g) = T'g(x) is clearly convex, lower semi-continuous and finite. Hence,
by the Hahn-Banach theorem, it is the supremum of all affine functionals below it,
that is, for every g € C(Y),

D,.(9) = sup{/ gdo+kice MY),ke R0+ k<P onC(Y)}.
%

By compactness, there is kg € R and o¢p € M(Y') such that o9 + ko < @, and
®,(0) = ko =sup{k;o e M(Y),keR,0+k<P,onC(Y)}.

Since @, is affine on constants, we have o(Y) + ko < ®,(1) =1+ ®,(0) = 1 + ko,
hence 0o(Y) < 1. On the other hand,

O, (-1)+1=2,(0) = /Y(—l) dog + ko + oo(Y) < @,(—1) + 0p(Y),

hence 0¢(Y) > 1 and therefore it is equal to 1.
To show that og is a non-negative measure, let f € C(Y) with 0 < f <1, then

1—00(f) =00(1) = oo(f) = 00(1 = f) < P(1 = f) — ko.
Using the monotonicity of ®,, we obtain
o0(f) > 1= ®,(1 = f)+ko=—Pu(—f) + ko > —P4(0) + ko = 0.
It follows that og € P(Y), 0o + ko < @, on C(Y) and therefore for every g € C(Y),
we have

Tg(ac):sup{/ gda+k:;0€/\/l(Y),k‘ER,Uij‘S(I)wonC(Y)}Z/gdao+k‘0.
Y Y

Proof of Theorem 2.2: (1) = (2) since if T~ is a backward Kantorovich oper-
ator then T~0 € USC(X), that is (2.3) holds for some z € X, and the following
functional
(2.4)

Tl = {supgec(y){fy gdv — [ T~ gdu} for all (u,v) € P(X) x P(Y)

400 otherwise,
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is therefore proper. T is also bounded below since
iE{(7 (1.0): (1) € PLX) x PY)} > int(~ [ T70dupe PO}
X
> —supT'(0)
X
> —00,

because T'~0 is upper semi-continuous. It is clear that 7T is jointly convex and lower
semi-continuous on M(X) x M(Y') since T~ is valued in USC(X). Now define for
1 € P(X), the functional F,(g) := [, T~ gdp.

Assuming F,(g) # —oo for some g € C(Y) and since g — T~ g is convex and
lower semi-continuous in the sense defined above, F), is then a convex and lower
semi-continuous on C(Y). By Fenchel-Moreau duality, we will be done if we show
that F};(v) = T (u,v) for all v € M(Y'), where

Ei(v) =sup{ [y gdv — [ T~gdu; g € C(Y)} on M(Y).
The equality holds when v € P(Y') by the definition of 7T, so suppose v € M(Y)
with (Y) = A # 1. Taking g(x) =n € Z, wehave T~ (9) =T~ (0+n) = n+T(0),
and therefore
Fi(v) > nA - /XT_(n)du =nA—1)— /XT_(O)du.

With n — +oo, depending on if A < 1 or A > 1, we deduce F};(v) = +oo. Hence
Fi(v) =T(pv) for all v € M(Y), and it follows that

Fu(g)= sap {[ gdv—F;(v)}= sup {| gdv—"T(uv)}="T,(9)
veM(Y) JY veM(Y) JY
If now Fj, = —oo, that is if Fj,(9) = [y T gdp = —oo for every g € C(Y), then
formula (2.4) gives that 7, = +o00, and again 7, (9) = —oco = [ T~ gdp.
(2) = (1): Suppose now 7 is a backward linear transfer, and let 7~ be the

operator associated to it in Definition 1.2. Since 7T is proper, we have T (i, ) < +00
for some (u,v) € P(X) x P(Y), hence

[ 70 = T ) = sup{=T(n.0):r € PV} = ~T(pow) > ==,

from which follows that there is € X such that 770(z) > —oc.
To show that T~ is a Kantorovich operator, note that for every g € C(Y) and
any ¢ € X,

(2.5) T g(x) =Ts5,(f) = sup {| gdv—T(bz,v)}.
veP(Y) JY

It is clear that T~ is monotone, convex and affine on the constants. To show
that T—g € USC(X) for every g € C(Y), note first that T~ g is proper since
T70(xz) > —oo and the monotonicity yields that it is also the case for any g € C(Y').
Moreover, if z, — x in X so that -up to a subsequence- limsup,,_,., T g(zy,) =
limj o T~ g(2n; ), then there is nothing to prove if the latter is equal to —oo. How-
ever, if lim; o, T g(y,,) > —00, then we let v; achieve the supremum above when



LINEAR TRANSFERS AS MINIMAL COSTS OF DILATIONS OF MEASURES 1689

T = z,; (the supremum is achieved by upper semi-continuity of v fy gdv —
T (6,,v) on the compact space P(Y')). By the weak* compactness of P(Y'), we may
extract a further subsequence if necessary and assume v; — v for some 7 € P(Y).
It follows from the weak*- lower semi-continuity of 7~

n—oo

fimsup T~g(z,) = lim Tg(z,) < [ oo~ T(6:.9)
< sup { [ gdv—"T(b,v)}
veP(Y) JY
=T g(x),

hence T7g € USC(X).
This also yields the following Lipschitz property: for any g, h in C(Y), and any
x € X, where T~ h(z) > —o0,

(2.6) Tg(z) =T h(z) < [lg = hlloo,

since if T~ g(x) > —oo (otherwise there is nothing to prove), then

T g(x)= sup {[| gdo—T(dz,0)}

ceP(Y) JY
< sup { [ hdo —T(dz,0)} + g — hlle
ceP(Y) JY

=T (@) + [|g = hlloo

This immediately yields the lower semi-continuity property since if g, — g € C(Y),
then, T7g(z) < T gn(z) + ||g — gnllco, and T~ g < liminf,, oo T~ gn(z).

(2) = (3) is immediate by taking c(z,0) = T (d,,0) and using the definition of a
Legendre transform.

That (3) = (1) is immediate from expression (2.2), which was used in (2) = (1)
to establish the 4 properties of a Kantorovich operator.

Finally, note that for each p € P(X), 7, is convex, lower semi-continuous and
bounded below such that 7*(g9) = [y T~ g dpu. It follows that for each v € P(Y),

T(nw) = Tu) = T3 w) = sup ([ gav-Ti (o)} = suw { [ gav— [ 77gau).
gec(y) Jy geCc(y) Jy X
Proposition 2.4. Consider the class K(Y, X) of backward Kantorovich operators
from C(Y') to USC(X). Then,
(1) IfTh and Ty are in K(Y, X), and X € [0,1], then XT1 + (1 —\)Th € K(Y, X).
(2) If X € RY and T € K(Y,X), then the map (A-T)f = $T(\f) for any
feC(Y), belongs to K(Y, X).
(3) If Ty and Ty are in K(Y, X), then the map Ty x Ty defined for f € C(Y) and
x e X by

(Th xT5)f(x) :== sup  inf / (f —g—h)do +Tig(z) + Toh(x)
oceP(Y) 9:heC(Y) Jy

is in K(Y, X)
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(4) If T1 and Ty are in K(Y, X), then the map (Ty V1) f(x) :=T1 f(z) VTaf(x)
for any f € C(Y), and x € X belongs to K(Y, X).

(5) If (T})ier is a family in K(Y, X), such that for every f € C(Y), the function
sup;c; Iif is bounded above on X, then the operator f — sup;c;Tif is a
Kantorovich operator, where here g(x) = inf{h(x);h € C(X),h > gon X}
s the smallest upper semi-continuous function above g.

Proof. (1) and (2) are immediate, while (3) follows from the fact that

Ty xTof(x)= sup {[| fdo—"Ti(x,0)—Ta(z,0},
ceP(Y) JY

where 77 and 75 are the linear transfers corresponding to 17 and 15 respectively. In
other words, in view of Theorem 2.2, the convex cost associated with 17 x 15 is

c(x,0) =T1(0z,0) + T2(0z,0),

hence T7 x T5 is a Kantorovich operator.

4) is immediate from the definition of a Kantorovich operator, while for 5) first
notice that the operator T f := sup;c; T;f clearly satisfies properties (1), ..., (4)
of a backward Kantorovich operator. Indeed, the monotonicity, convexity, and
affine with respect to constants, properties of S, are readily inherited from each
S; being Kantorovich. The map f — To f(x) is also lower semi-continuous. The
first three properties extend to the operator f — T,.f. It remains to check the
lower semi-continuity. For this, suppose g — ¢ in C(X) for the sup norm. If
lim infy, Thogx(x) = +00, there is nothing to prove. Otherwise, we have from (2.6)
that Tig(x) < Tigk(x) + |9 — gklleo, so that sup; Tig(z) < sup; Tigr(z) + [|g — gklloo
and therefore

sup Tg(z) < sup Tigr(2) + g — gkl oo,
(2 (2
since f + ¢ = f + c for any constant ¢, hence Toog(z) < liminfy_soo Toogk (). O

Remark 2.5. The duality allows to construct and identify new Kantorovich oper-
ators. Indeed, let I : P(Y) — RU {+o0} be a bounded below, convex, weak*-lower
semi-continuous function on P(Y’) and consider

(2.7) Z(p,v) :=1(v) forall (u,v) e P(X)xP(Y),

so that 7 is a backward linear transfer with corresponding backward Kantorovich
operator T~ g = I*(g) (hence a constant function of ). If now 7 is a general linear
transfer, then the following functional on P(X) x P(Y),

(2.8) Tr(p,v) = inf{/X[T(m,Wz) + I(my)] du(z);m € K(p,v)}

is also a linear transfer, and if T is given by an optimal mass transport 7. associated
to a proper lower semi-continuous cost function ¢ : X x Y — R U {400}, whose
backward Kantorovich operator is T,.g(x) := sup{g(y) — c¢(z,y);y € Y}, then

(2.9) Tr(p,v) = inf{/X[C(w,y) dry(y) + I(me)] du(z);m € K(p,v)},
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and the associated Kantorovich operator is given by

Ty g(x) =T ©I"(g9)(x) = sup { gdU—T(:C,U)—I(U)}

o€P(Y)
= sup{ [ (9(0) — e 9))doly) = I(0)s 7 € P(V))
=I"(gea),
where g, is the function y — g(y) — c(z,y).

(1) If I is the potential energy functional I(v) = € [, V/( , where V is a
bounded below lower semi-continuous potentlal on Y then TI g=T (g9 —
eV).

(2) Less obvious is the case when I is the relative entropy H,, with respect to
vy, i.e.,

~ ] d if
(2.10) H, (v):= Y duo Og( ) W uv <<' Yo
+00 otherwise.
w

In this case, Tey f(x) = elog [y e
entropic regularization of 7.

Denote by USC(X) (resp., USCy(X)) the cone of functions in USC(X) that
are finite (resp., bounded below), and by USC,(X) the closure of USC(X) with

respect to monotone increasing limits.

dvy(y), which corresponds to an

Definition 2.6. Say that a Kantorovich operator T' is standard (resp., regular)
if T'maps C(Y') to USC¢(X) (resp., USCy(X)).

The following proposition follows readily from the above theorem.
Proposition 2.7. Let T be a Kantorovich operator and T its associated linear

transfer. Then, the following are equivalent:

(1) T is standard (resp., regular).
(2) The function T(0) is finite (resp., bounded below).
(3) The corresponding linear transfer T satisfies

(2.11) 17r)1(f T(z,0) < +o0 forall x € X,

o€
2.12 resp., k:=sup inf T(r,0) < +oc.
(2.12) (resp sup inf (z,0) )

If T is a standard Kantorovich operator, then T is a contraction from C(Y) to

USCf(X), that is

(2.13) sup [T_g(z) — T_h(@)| < lg — hll.
zeX

A regular operator is clearly standard and T + k then maps C(Y) to USCL(X)

Let F(X) (resp F1 (X)) (resp., Fy(X)) denote the class of all extended numerical

(resp., non-negative) (resp., bounded below) functions on X.
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Definition 2.8. A Choquet functional capacity is a map 7" : F. (V) — F{(X)
such that
(1) T is monotone, ie., f < g=Tf <Tg.
(2) T maps USC(Y) to USC(X) and if g,,g € USC(Y) and g, | g, then
T g 1T g.
(3) If gn, g € F4(Y) with g, T g, then T7g, 1 T g.

The class USC,(X) will denote the closure of USC(X) with respect to monotone
increasing limits.

Theorem 2.9. Let T be a backward linear transfer and let T~ : C(Y) — USC(X)
be the associated Kantorovich operator. Then

(1) T~ can be extended to be a functional from F(Y) to F(X) via the formula
(2.14) T g(x) = sup{/ gdv — T (0z,v); v € P(Y), (05,v) € D(T)},
Y

where f; gdv is the outer integral of g with respect to v.
Moreover, T~ maps bounded above functions on Y to bounded above func-
tions on X. It is monotone and satisfies T— g+ ¢ = T (g + ¢) for every
g€ F(Y) and c € R.

(2) For any upper semi-continuous functions g on'Y, we have

(2.15) T g(z) :=inf{T h(z); he C(Y), h > g},

and T~ maps USCy(Y') to USC(X).

(3) If T~ is standard (resp., regular), then it maps USCy(Y) to USC(X)
(resp., USCy(Y)).

(4) If T~ is regular, then the map T~ + k is a functional capacity that maps
F.(Y) to F1(X), and consequently, if g is a K-analytic function that is
bounded below on'Y , then

(2.16) T g(x) :=sup{T h(z); he USC(Y),h < g}.

Proof. 1) Note first that formula (2.14) makes sense for any function g : ¥ —
R U{+o00} provided one uses the outer integral [* g dv in formula (2.14). Moreover,
T~ g(w) < supyey 9(y) —m7, where m7 is a lower bound for 7, hence if g is bounded
above then, T~ g is also bounded above. The monotonicity and the affine properties
on constants are clear. Finally note that since there exists (d,,0) € D(T), we have
for any g € Fp(Y), T~ g(z) > infy g — T (6,,0) > —0o0, hence T~ g is proper.

2. We now show that the extension as defined in (2.14) and still denoted T,
maps USC(Y) to USC(X). Indeed, if g € USC(Y) and h,, \, g is a decreasing
sequence of continuous functions converging to g, then, T~ ¢ < inf,, T~ h,, so that
if inf, T~ hy,(z) = —oo, we have equality at that point. On the other hand, if
inf, T~ hy,(x) > —oo, then

T g(z)<inf T~ h,(x)=inf sup { [ hpdo — T (s, J)}:inf/ hpdop — T (05, 00),
m "o geP(Y) JY n Jy
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where the supremum is achieved for some probability measure o, because o —
fY hndo —T (0,,0) is weak™ upper semi-continuous and bounded above on the com-
pact set P(Y).

Let (ng)r be a subsequence such that inf, fY hndop — T(0z,0n) =
limy o0 [y Anydom, — T (0z,0p,) and by weak* compactness of P(Y'), extract a fur-
ther increasing subsequence (that we call again ny) so that o,, — &. For any
J < k, we have hy, < hy;, hence for this fixed j, we have that h,, € C(Y) and so
J hn;don, — [ hn;do as k — oo, and since T is lower semi-continuous, we obtain

inf/ hndoy, — T (0z,0,) < lim b dop, — T (0, 0n,) < / b, dT — T (02,7).
Y Y

n k—oo Jy

Finally fy hn;do — fY gdo by monotone convergence, and we obtain
T g(x) <inf T hy(x) < inf/ hpdop, — T (62, 00n)
n n Y

< sup { [ gdo—T(6z,0)}
ceP(Y) JY

=T g(z).

It follows that T~ g(z) := inf{T~h(xz); h € C(Y), h > g}, and T~ g is upper semi-
continuous. If now g € USCy(Y'), then T~ g is proper and therefore belongs to
USC(X).

3) Suppose now that g,,g € USC(Y) are such that g, N\, g. We claim that
T gn ¢y T~ g. Indeed, by the monotonicity property of T, we have T~ g(z) <
liminf,, T~ g, (z). If for some n, T~ g,(xr) = —oo, then T~ g(x) = —oo and there is
nothing to prove. Otherwise, T~ g, (z) > —oo for all n, in which case the expression
(2.14) is finite. The map o — [i gndo — T (0,,0) is weak™ upper semi-continuous
(since ¢ — [, hdo is weak* upper semi-continuous for any h € USC(Y)), so it
achieves its supremum at some oy, i.e., T~ gy (z) = [ gndon, — T (65, 00).

Extract now an increasing subsequence ny, so that lim sup,, T~ g, () = lim;, T~ gy, ()
and o0, — 0. Similarly to the proof above, we get by the monotonicity of g,, that

(2.17) T gp,(z) < /gnjdamC — T (03,0p,) for fixed j < k.

As gn, € USC(Y) and 0y, — &, it follows that limsupy_,., [ gn,;don, < [ gn,;do.
Hence upon taking lim supy,_, ., in (2.17), we get that lim sup,, T~ gn(z) < [ gn,do—
T (05,). Now let j — 400 and use monotone convergence to conclude that

limsup T gn(z) < sup { [ gdo —T(6z,0)} =T g(z).
n oeP(Y)

Suppose now gy,,g9 € F(Y) with g, /g, we shall show that T~ g, / T~g. Indeed,

again, by the monotoncity property for T—, we have T g(x) > limsup,, T~ g, (z).

On the other hand,

* *

T gn(x)= sup {[ gndo—T(6s,0)} > / gndo — T (05,0) for all o0 € P(Y),
oeP(Y) Jy Y
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hence by monotone convergence, lim inf, T~ gy, (z) > [* gdo—T (8, 0) for all 0. Tak-
ing the supremum over o yields liminf,, T~ g, (z) > supoep(y){f; gdo —T (6z,0)} =
T g(z).

4) If now T is a regular Kantorovich operator, then 7" maps USCy(Y') to USCy(X)
and T+ k maps F (Y) to F (X). It follows from the above established properties
that T' + k is a functional capacity. Note that for each x € X, the set function
T*(A) = T(xa)(z)+ k is then a non-negative regular Choquet capacity. Moreover,
for any Radon measure p, the functional (1" + k)xp defined as (T + k)xu(f) =
Jx(Tf(z)+ k)du(z) is also a regular capacity.

A celebrated theorem of Choquet now yields that any K-analytic function g €
F,(Y), is “capacitable”, that is

T g(x) =sup{T h(x); he USC(Y),h < g}.

This holds in particular for any bounded above function g € USC,(Y), i.e., the
closure of USC(Y') with respect to monotone increasing limits. Actually, it can
be readily be seen that T~ g(x) > sup{T " h(z); h € USC(Y),h < g}, and for an
increasing h, " g, with h,, € USC(Y), we have T~g = sup,, T~ h,, by the 3rd
property of the capacity. O

Corollary 2.10. Let T : P(X) x P(Y) = RU{+o0} be a backward linear transfer.
Then,

(1) For any (u,v) € P(X) x P(Y), we have

T(M,V):sup{/ygdu—/XTgd,u;gEUSC’b(Y)}.

(2) The Legendre transform formula (1.7) for T, extends from C(Y') to USC(Y);
that is, for u € P(X), we have for any g € USC(Y),

(2.18) T.(g) = sup{/y gdo —T(u,0);0 € P(Y)} = /XT_g dp.

Proof. 1. For g € USCy(Y'), take a monotone decreasing sequence g, € C(Y) with
gn 4 g. Since T~ is a capacity, we have

lim (/ gndl/—/ T_gndu) :/gdl/—/ T gdpu,
n—oo \Jy X Y X

from which we conclude T (u,v) > sup{ [, gdv — [ T~ gdu; g € USCy(Y)} . The
reverse inequality is immediate since C(Y) C USCy(Y).
2. Let g € USC(Y) and take g, \, g with g, € C(Y). We have

/ gndo =T (u,0) < Sup{/ gndo =T (u,0);0 € P(Y)} = / T~ gn dp
Y Y X

so that by the capacity property of T—, we have [, gdo — T (u,0) < [T~ gdp,
and consequently

(2.19) sup{/y gdo — T (u,0);0 € P(Y)} < /XTg dp.
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On the other hand, by monotonicity, T~g < T~ gy, so
(2.20) / T gdu < / T gndu < Sup{/ gndo — T (pn,0);0 € P(Y)}.
X X Y

If now sup{ [y gndo — T (p1,0);0 € P(Y)} = —oo for some n, there is nothing left
to prove. Otherwise, The supremum on the right-hand side of (2.20) is achieved by
some 0,. Extract an increasing subsequence n; so that On; = 0O for some o € P(Y).
Then if i < j, we have g,; < gn,, so that

/ T gdu < / Gn;don, — T (u,0n,;) fori<j
b's Y

where upon sending j — oo yields [, T~ gdp < [, gn,do — T (i, 0), and finally as
i — +00, monotone convergence yields the reverse inequality of (2.19). U

Now that standard Kantorovich operators can be extended so as to map USCy(Y)
into USCy(X), we can compose them in the following way.

Proposition 2.11. Let X1, ...., X,, be n compact spaces, and suppose for each i =
1,...,n, T is a reqular backward linear transfer on P(X;—1)xP(X;) with Kantorovich
operator T; : C(X;) = USCy(X;-1). For any probability measures jn on X1 (resp.,
v on Xy,), define

Ti* Toeeex Tr(p,v)
= 1inf{Ti(u,01) + T2(01,02)... + Tn(on-1,v); 0 € P(X;),i=1,....,n—1}.

Then, T :=T1 xTa...x Ty, is a linear backward transfer with a Kantorovich operator

(2.21) T =Ty oTy o...oT, .

n

In other words, the following duality formula holds:

2:22) Tuw) =suw{ [ gydvls) = [ T oT; oo Trgla)s g € CX.))

Proof. By an obvious induction, it suffices to show the proposition for two trans-
fers. For that, note that since 7; (resp., T2) is jointly convex and weak*-lower
semi-continuous on P(X;) x P(X3) (resp., P(X2) x P(X3)), then (71 * T2), :
v — (T1 * T2)(p.v) is convex and weak*-lower semi-continuous. Consider their
corresponding Kantorovich operator T} (resp., T, ) from USCy(X2) to USCy(X1)
(resp., USCy(X3) to USCy(X2) and calculate the following Legendre transform:
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For g € C(X3),

(T« Ta)ig) = sup  sup {/ gdu—ﬂ(u,a>—7a<a,u>}
veP(X3) c€P(X2) X3

= sup {(T2)5(9) — Ta(p, 0)}
c€EP(X2)

= 0687)11(13(2) {/X2 T2(g)do—ﬂ(u,d)}
= (T1)n(Ty (9))

= /TfoTQ_gdu.
X1

In other words, 71 * Ta(, v) = sup { [, g(z) dv(z) — [ Ty oTy gdp; f € C(X3)},
which means that 71 x 75 is a backward linear transfer on X7 x X3 with Kantorovich
operator equal to T o T . O

3. GAMBLING HOUSES AND POSITIVELY HOMOGENOUS KANTOROVICH
OPERATORS

In this section we study {0, +oo}-valued linear transfers, i.e., those corresponding
to a 0-cost ¢ in expression (2.2).
Definition 3.1. Let S be a non-empty subset of P(X) x P(Y).
(1) Recall that S is a gambling house if for every = € X, there exists o € P(Y)
such that (d,,0) € S, that is, if its characteristic function

{0 if (u,v) €S
Ts(p,v) == { 400 otherwise,

is a standard functional.
(2) Say that a subset S of P(X) x P(Y) is a backward transfer set if its
characteristic function 7g is a backward linear transfer.

It is clear that transfer sets are convex weak*-compact subsets of P(X) x P(Y).

Proposition 3.2. A standard backward Kantorovich operator T is 1-positively ho-
mogenous if and only there exists a closed gambling house S such that

(3.1) T g(x) = sup{/nga; (05,0) € S},
in which case
(3.2) conv(S) = {(u,v) € P(X) x P(Y); v < Typon C(Y)},

where Tup(g) := [y Tgdu for every g € C(Y).

Proof. Note that if T~ is a 1-positively homogenous Kantorovich operator, then the
corresponding backward linear transfer

(3.3)  T(u,v)= sup { [ gdv —/ T gdu} for all (u,v) € P(X) x P(Y)
geC(y) JY X
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can only take values in {0,400}, since then

T(uw)zn sw { [ gav— [ T-gdu),
geC(y) JY X

for every n, which means it is +o00 unless fY gdv — fX T~gdp < 0 for every g €
c(Y). O

In other words,
_Jo if (u,v) € D
T(pv) = { +o0o  otherwise,

where D := {(p,v) € P(X) x P(Y); v < Typon C(Y)}. It is clear that if T is
standard, then § := D is a closed and convex gambling house.

Conversely, if S is a closed gambling house, then (3.1) defines a standard map that
satisfies properties (1)—(4) of a backward Kantorovich operator. It remains to show
that for a fixed g € C(Y'), T~ g is upper semi-continuous. For that assume x,, — z
in X. Assuming limsup,_,. 7T~ g(z,) > —oo (since otherwise there is nothing to
prove), consider a subsequence such that limsup,, ., T~ g(2n) = lim;j_s0c T g(2n, ).
Since S is closed, the set S; := {0 € P(Y); (zy;,0) € S} is compact in P(Y'), hence
there is v; in §; such that

T_g(:nnj) = sup{/ gdo; (6y, ,0) €S} :/ g dvj.
X ’ X

By the weak™ compactness of P(Y'), we may extract a further subsequence if neces-
sary and assume v; — © for some 7 € P(Y'). Since S is closed, we have (0,,7) € S.
It follows that

limsup T g(zp) = lim T_g(:vnj)Z/ gdv< sup { [ gdvi(0g,v) € S}=T" g(x),
n—00 J—00 Y veP(y) Jy
hence T~ g € USC(X).
It is clear that S, hence conv(S) is contained in D := {(u,v) € P(X)xP(Y); v <
Typ on C(Y)}. Conversely, by the Hahn-Banach theorem, every (0, v) in D belongs

to S, hence conv(S) = D since the extreme points of the latter are of the form (J,, v)
for some z € X and v € P(Y).

Theorem 3.3. Let S be a non-empty subset of P(X) x P(Y). The following are
then equivalent:

(1) S is a convex weak”-closed gambling house.

(2) S is a standard backward transfer set.

3) S ={(n,v) e P(X) x PY); v <Typ}, where T : C(Y) = USC¢(X) is a
positively 1-homogenous Kantorovich operator and Typu(g) == fX Tgdu for
every g € C(Y).

(4) S ={(u,v) € P(X)xP(Y); u <4 v}, where A is a balayage cone on X 1Y .

(5) S is conver weak*-compact in P(X) x P(Y) and (u,v) € S if and only if
there exists m € K(u,v) such that (8z,m;) € S for p-almost x € X, where
(m2)z 18 a disintegration of m with respect to pu.
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Proof. Note that 1), 2) and 3) follow from the above proposition, while the restricted
Strassen theorem mentioned in the introduction yields that 4) implies 5). In order
to show that 5) implies 2), we compute the Legendre transform of B, where B is
the characteristic function of S and show that it is a backward linear transfer with
Kantorovich operator

(34) Tga) = s [ gw)doty)

(0z,0)eS VY
Indeed, B,(9) = sup { [} gdv; v € P(X), (u,v) € S}while Strassen’s theorem gives
that for any (u,v) € S, there is (z,7;) € S such that

[ swarw = [ [ / g(y)dmm] nto) < | ((653965 / g(y)da<y>) du(z).

hence B;(g9) < [ T~ g(x) dp.

On the other hand, for each € X, the supremum of o — [ g(y)do(y) is
achieved on the set {o € P(X); (6z,0) € S} since the latter is weak® closed in
P(X) and therefore is weak® compact. By a standard selection theorem, there
is a measurable selection * — o,, where for each z, o, is where the maximum

is achieved. Note that since §, <4 o, we have that u <4 v, where v(A) :=
Jx 02(A)du(z). It follows that

/X Tg(z) dp < /X ((533?68 /X g(y)da(y)> dpi(r) = /X o(w)di(y) < Bi(g).

Note that the above also show that D;(B) = P(X), that is S is a gambling house,
where

Di(T) = {p € P(X);3v € P(Y), (n,v) € D(T)}.

It remains to define a suitable balayage cone. For that, we establish the following
general result. O

Theorem 3.4. Let T be a standard backward linear transfer on P(X) x P(Y') with
backward Kantorovich operator T, then D(T) C D(T,), where T, is a backward
linear transfer on P(X)xP(Y) whose Kantorovich operator is given by the positively
1-homogenous recession operator associated with T, i.e.,

(3.5) T, g(x):= )\EI-POO T_();\g)(:zj)

Moreover, there is a balayage cone A on XY such that the following are equivalent:
(1) (u,v) € D(Tr).
(2) p=av.
(3) [x T gdu> [y gdv for every g € C(Y).
Furthermore, D(T;) is the smallest transfer set containing D(T ), hence D(T) is a
transfer set if and only if D(T,) = D(T).
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Proof. Without loss of generality, we may assume 7 > 0 (otherwise consider 7 — C'
where C' € R is a lower bound for 7). Let

0 if (u,v) € D(T),
+o00 otherwise.

(3.6) T () = {

It is immediate that Tgpite iS a proper, bounded below, convex, and weak®™ lower
semi-continuous function with D1 (7gnite) = D1(T). We have for p € D1(Tanite),

(3.7) (Thinite) . (9) = sup{/y gdv; v e P(Y), T(pv) < +oo}.

Since for A > 0, we have

T 1
/ Mdu: sup {[ gdo— —
X

T y0) 15
A oeP(v) Jy X o))

it follows that liminfy , o [y Wd,u > sup{ [y gdo; T(p,o) < +oo} =
(Enite):i(g). On the other hand, since 7 is non-negative, we have

.
lim sup /X ff’)dﬂ < sup{ /Y gdo: 0 € PY), T(1,0) < +00} = (Thnite) ().

A—+o00
so we conclude that for p € D1 (Tgnite),

(3.8) (Tinie)(9) = lim /X L)y,

A——+o00

To show that (Tsuite)},(9) = [ Tr g dp, it remains to justify that
T (A T (A
im [ LW, / lim L),
A—+400 X )\ X)\—)-f—oo )\
This is simply by monotone convergence, since as T is non-negative, the function

A= M is monotone increasing, i.e., if Ao > Ay,

T020@ _ o (f gav— L7500}
Ao vep(y) Jy A2
> sup { [ gdv— iT(éﬂ“V)}
veP(y) Jy M
T 0u)e)
A '

Note now that 7, is a positively 1-homogenous Kantorovich operator, hence by
Proposition 2.2, the functional defined on P(X) x P(Y) by

Tr(p,v) = sup{/Y gdp — /XTrgdvsg eC(Y)}

and +o0o outside P(X)xP(Y), is a backward linear transfer that can only take values
0 or +00. Moreover, D(T) C D(T;) since if T (u,v) < 400, then 1 € Di(Tanite) and

0 = Tamselpto ) = (Toaine) () = sup { [ gdv / T gdu),
geC(y) JY X
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hence for all g € C(Y), we have [, T,g,dp > [ gdv and therefore 7y (u,v) < 0.
Consider now the cone

(3.9)

A:={pe LSC(XUY); T (—¢y) < —¢x} = {¢p € LSC(XUY); T,  (¢y) > éx},

where ¢x (resp., ¢y) is the restriction of ¢ to the component X (resp., Y) and
T.Fg = —T(—g). Then A is a balayage cone and the following holds:

(1, v) € D(T;) if and only if p <4 v.

Indeed, the convexity, lower semi-continuity and positive homogeneity of 1.~ clearly
yield that A is a closed convex cone of LSC(X UY') containing the constants. The
fact that 7/~ is monotone increasing yields that if ¢!, ¢? are in A, then

T (=(0y vV 61)) = T7 ((—¢y) A (=6%)) < T (=oy) AT (—6%)
< (=ox) A (=¢%) = — (6% V 6%)-
It follows that A is a balayage cone.
Suppose now that (u,v) € D(T;), then

(3.10) 0= 7o) = sund [ oav = [ T (g)a

hence [ T, (g)dp > [y gdv for all g € C(Y). Take now any ¢ € A, then by
assumption,

(3.11) Aeww>ﬂzxwww>ﬁhmma

which translates into [y ¢xdu < [, ¢y dv for every ¢ € A, hence p <, v.
Conversely, suppose p <4 v. For g € C(Y'), consider the function ¢ € LSC(X U
Y) defined by ¢x := =T, g and ¢y := —g. Then ¢ € A, so that

(3.12) - [ Tradn= [ oxaus [ ovar—— [ giv

hence [ T, gdp > [y gdv, which implies that 7,.(p,v) = 0 and so (p,v) € D(T;).
It follows that D(7,) is a balayage, hence a transfer set.

Suppose now that S is a transfer set containing D(7), then its Kantorovich
operator is given by

Tsf(x) = sup{ / gdo; (6,,0) € S} > sup| / gdo: (6,,0) € D(T)} = T; f(x).
Y Y
If (u,v) € D(T;), then

0= Sup{/ gdp —/ T, gdvige C(Y)} = sup{/ gdu —/ Tsgdv,g € C(Y)},
Y X Y X
which means that (u,v) € S and therefore D(T) C D(T,) C S. O

Now we explore when the domain D(T) of a linear transfer is a transfer set.

Proposition 3.5. Let T be a standard backward linear transfer, T~ the corre-
sponding Kantorovich operator, and T,” the associated recession operator. Then the
following properties are equivalent:
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T) is a transfer set.
T)=D(T;) = {(p,v) € P(X)xP(Y); [y gdv < [ T gdu, Vg € C(Y)}.
T) is weak*-closed in P(X) x P(Y).
(T) is weak*-closed in P(X).

(T) =P(X).
Proof. That (1) and (2) are equivalent follows from the preceding proposition. 2)
yields 3) since T ¢ is upper semi-continuous for every g € C(Y). 3) implies 4) is
immediate. For 5) note that £ := {d;;x € X} is the set of extreme points of P(X)
and & C Dy(T) since T is standard. The rest follows from Krein-Milman’s theorem
and the fact that D;(7) is closed and convex.

If now (5) holds, then by the above proposition, we have (Tgnite);,(9) = [x T g dp,
for any p € D1(Tanite) = P(X). It follows that D(7) = D(7;), hence it is a transfer
set. O

Remark 3.6. Note that in general D(7) # D(7,;) and D(T) is not necessarily a

transfer set, since we cannot say much about (7inf);, when p ¢ D1(T). However,

suppose for every p € D1(T), there exists a € L'(u) such that
(3.13) T(z,0) < afx) for all o € P(Y) such that T (z,0) < 400,
then D(7) = D(7,) and D(T) is a transfer set. Indeed, in this case

T g(z) = sup{/ygdo —T(z,0);0 € P(Y)}

> Sup{/ gdo; T(x,0) < +oo} — a(x)
Y
> Trig(x) - a(x)7
from which follows that if 7,(u,v) < 400, then T (u,v) < Tr(p,v) + [y a(x) dp <

+00.
Conversely, if D(T) is a transfer set then we shall see that in this case

(3.14) D(T) =A{(u,v) € P(X) x P(Y);3Im € K(p,v), T (6g, 7z) < +00 p—a.s}
(3.15) — {(1,v) € PX) x P(Y): Ir € K, v), /X T (5, m2) du(x) < +oo},

which indicates a type of uniform boundedness on 7 that is slightly weaker than
(3.13).

4. TRANSFER SETS AND TRUE BALAYAGE OF PROBABILITY MEASURES

We now consider the case where we can have a true balayage.

Theorem 4.1. Let S be a standard backward transfer subset of P(X) x P(X) and
let T~ be its associated Kantorovich operator. Then
(1) S is contained in a true balayage set S = {(u,v) € P(X) x P(X); p =g v},
where A is the balayage cone of lower semi-continuous T -superharmonic
functions on X.
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The Kantorovich operator associated to S, is given for every f € C(X) and
every x € X by the expression,

(4.1) Tf(z) :=inf{o(z); —p € Aand ¢ > f on X}.
(2) S is minimal in the sense that if R is any other true balayage set containing

S, then R D S.

Proof. Since S C P(X)xP(X) is a backward transfer set, we let T be its character-
istic function in such a way that S = D(T), with backward Kantorovich operator

T g(r):= sup /g(y)da(y%
(0z,0)ES J X

which is positively 1-homogenous. According to Theorem 3.4, there is also a cone
C C LSC(X U X) such that

S = D(T) ={(n,v) € P(X) x P(X); p <c v},

and that u <¢ v if and only if fX T gdp > fX gdv for every g € C(X). Consider
the cone

C={feLSC(X); T(~f) < —f} ={f € LSC(X); T*(f) = [}

and the set § := {(p,v) € P(X) x P(X); u <¢ v}.
Note that S O S, since if [, T~ gdu > [y gdv for every g € C(X), then for any

f € C, we have
—/deuZ/XT(—f)dMZ/X—de-

Moreover, C is a balayage cone on X and therefore S is a transfer set containing
the diagonal {(p,p); u € P(X)}. Let now

T f(x) = sup /f Ydo(y
61,0')68

be the Kantorovich operator corresponding to S, and consider the cone
(4.2) A={ge LSC(X); g(z) < / gdv for all (§,,v) € S}.
X

It is clear that A is a closed convex balayage cone. We claim that for any f € C(X),

(4.3) flz) < T~ f(z) < f(z) .= inf{p(x); —p € Aand ¢ > f on X}.

Indeed, since (d,,8;) € S, we have that T~ f(x) > f(x). Moreover, for any ¢ € —A,
¢ > f on X, we have

T~ f( zsup/f Ydo(y _5up/qz5 Ydo(y) < ¢(z),
(0z,0)€S (6z,0)€S
the last inequality holding since ¢ € —A. Hence (4.3) is verified.
Now the mapping f — f is a backward Kantorovich operator, hence the func-
tional

T(u,v) == sup { de—/ fdu}

feC(X)
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is a backward linear transfer, and since f — fis positively 1-homogenous, T is
necessarily {0, +oo}-valued. We let S := D(7) and claim that

(4.4 § = {(1v) € P(X) x P(X); u <av}.
Indeed, if (p,v) € S, then Ix fdu> Jx [ dv for every f € C(X), hence for every

Y € A, we have [, —pdu = [ ( /\du > [y —tdv, that is [ dp < [y dv,
hence p <4 v. R
For the reverse implication assume (u,v) ¢ S, then

sup { [ fav~ [ fdp = +oc,
X X

fec(x)
hence there is f € C(X) such that
(4.5) / fdv > / fdv > / fdu+1.
X b's b's

Note now that for every € > 0, and for each x € X, we may choose ¢, € —A, ¢cz >
f, such that ¢ (x) < flx)+ $. By continuity, there exists an open neighbourhood
B, (z) C X such that ¢.,(z') < f(2') + € for all 2/ € B, (z). The collection
{By,(z)}zex is an open cover of X, hence by compactness, there exists a finite
subcover {B,, (zi)}{_; of X. Define

¢e(x) := min{ Pz, (2), .., Pe, ()}
It follows that ¢. € —A since A is closed under maxima. Moreover, each z € X

belongs to By, (x;) for some i € {1,...,n}, hence

f(x) < ¢e(z) < f(z)+€ forallze X.
Combining this with (4.5), we get

/¢Edy>/fdl/>/fdu_|_1>/¢€du_€_|_1

In other words, there is a function ¢ € A, namely ¢ = —¢, such that [ ~ Ydp >
Jx ¥dv, which contradicts the fact that <4 v.
We now show that

(4.6) S=8 A=C and T~ f = f for all f e C(X).
Indeed, S C &, since T~ f < f, hence T < T, S = D(T) C D(T) =8 and ff < f
On the other hand, if ¢ € C, then ¢(z) < [ ¢du for every (0, u) € S, hence

C C A, from which follows that 7~ f > f and & C S. Therefore, A = C, the latter
being the cone of T -superharmonic functions, and (4.6) is established.
(2) To show that S is minimal, assume B is a balayage cone in C'(X) such that

R = {(1,v) € P(X) x P(X); i <5 v},
and § C R. For every ¢ € B, we then have ¢(z) < [y ¢ dp for every (dz, 1) €Scs,
hence B C A, from which follows that S = S c R. O
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Remark 4.2. There are actually several other transfer sets between S and S.
Indeed, let

Tif =T fVvf, Tof:=lim, 10f, andTsf:=1lim, | TIf.
They are all positively 1-homogenous Kantorovich operators such that
(4.7) T f<Tf<Tof <Tf<Tf =],

Indeed, the relation between T, 7} and T3 is immediate. Also, for any f € C(X),
we have

T f(z) = sup / f(y)do(y) < sup / fy)do(y) =T f(z) = f(2),
(0z,0)€S (6:0,0 ES
hence Tlf < f, and therefore T, f < f, mf < f, and T"Hf < T"f < f, since
Tf= f is idempotent. It follows that T and T3 are well defined, are Kantorovich
operators, and are both below Tf = f . Finally, note that 77" f < 17" f , hence the
inequalities in (4.7) hold.
For:=1,2,3, let

Si = {(n,v) € P(X) x P(X); v < Tiftp},
where Ti#u(f) = [y Tifdp. It is clear that they are all transfer sets with

SC& CScS;5c 8,

where S; amounts to adding the diagonal to S, while S = {(u,v) € P(X) x
P(X);v < i}, with the familiar sublinear functional ji(f) = pu(f) from Choquet
theory.

Finally, we note why the process does not necessarily stop at T>. Indeed, by
setting Uso f := lim,, T 17" f, we can use that 77 is a functional capacity to deduce
that 71 (Uso f) = Uso f and UsooUso f = Uso f. It is clear that Uy f < f. On the other
hand, since Usof = U(Usof) =T~ (Usof) V Uso f, it follows that T~ (Uso f) < Uso f-

The process would stop if Uy, f were upper semi-continuous, since then Uy f €
—C, and since Uy f > f, it would follow that Us f > f and therefore Uy f = f
ThlS happens for instance if T~ satisfies for any f € C(X), z,y € X,

(4.8) T f(z) =T fy) < w(d(z,y)),
where d is the metric on X and w is the modulus of uniform continuity of f. This

occurs for example in the case where X is the closure of an open bounded domain
O in C" (resp., R™), and the Kantorovich operators are of the form

veR”?

2m
T~ f(x) := sup { f(x+ewv);m;x+AvCO},
0 ™

(resp.,
T~ f(z) = sup { / f(x+ry)dm(y); z +rB} C O},
r>0 B
where A = {z € C,|z| < 1} is the open unit disc in C, , B is the open unit ball in
R™ centered at 0, and m is normalized Lebesgue measure on R™. Condition (4.8)
is verified in either case, and we have lim,, T T"f = f , where in the first case the
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envelope f corresponds to teh cone of plurisubharmonic functions on O, while in the
second it corresponds to the cone of subharmonic functions on O. In other words,

T =Ty and Ty = T3 = T. However, it is not always the case and we had to add the
upper semi-continuous regularization to be able to define T f = U f.

Corollary 4.3. Let S be a subset of P(X) x P(X). Then the following are equiv-
alent:

(1) S is a transitive backward transfer set containing the diagonal {(u, p);u €

P(X)}.

(2) S is a backward transfer set with a Kantorovich operator T satisfying T? =
T>1.

3) S = {(n,v) € P(X) x P(X); u <4 v}, where A is a balayage cone in
LSC(X).

Proof. That 3) implies 1) follows from Proposition 1.5 with the two facts that the
diagonal is now contained in S and that the latter is transitive, following readily
from the true balayage relation with respect to a cone in LSC(X).

To show that 1) implies 2), we consider for all (u,v) € P(X) x P(X), the func-
tional

To(p,v) = mf{T (p,0) + T(o,v);0 € P(X)}.
It is a backward linear transfer with Kantorovich operator T2 = T'oT by Proposition
2.11. Since T is transitive, it is clear that D(72) C D(T). On the other hand, since
To(p,v) < T(u,p) + T(p,v) and D(T) contains the diagonal, we have D(T) C
D(Tz). Since both 7 and 73 are valued in {0,+o0}, it follows that 7 = 73 and
consequently, T = T2.

To show that 2) implies 3), we use Theorem 4.1 to write S C S, where S =
{(n,v) € P(X) x P(X); p <4 v}, and A = {g € LSC(X); g(z) < [xgdv
for all (6,,v) € S}.  Moreover, Tf(z) < f. Since Tf(z) = T2f(z) =
sup(s, oyes Jx Tf(y)do(y), it follows that Tf € —A, and since Tf > f, we con-
clude that T'f > f In other words, T'f = f and S = S. O

The following is now immediate.

Corollary 4.4. Let T : C(Y) — C(X) be a Markov operator (i.e., T positive linear
continuous and T1 = 1), and consider the set

S:={(uwv) e P(X) x P(Y); v =T"(n)},
where T* : M(X) — M(Y) is the adjoint operator. Then,

(1) S is a backward linear transfer, whose Kantorovich operator is T itself.

(2) S cannot be a true balayage set with respect to a cone A in C(X), unless
X =Y and T is the identity.

(3) S is a restricted balayage set for the cone A= {(f,g9) € LSC(X UX); f <
Tg}.

(4) The smallest true balayage set containing T is the one corresponding to the
cone of superharmonic functions, i.e., C = {f € LSC(X); f < Tf}.

Corollary 4.5. Let T be a standard backward linear transfer on P(X) x P(X) and
let T be the corresponding Kantorovich operator. Then,
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(1) There ezists a true balayage cone A in C(X) such that

—

D(T) € D(T:) € D(Tr) = {(n,v) € P(X) x P(X); p <a v},
where D(T,) is the domain of the recession operator T, of T

(2) D(T,) is the smallest true balayage set containing D(T).
(3) If D(T) is a transitive transfer set containing the diagonal, then D(T) =

D(T;) = D(T;) and the true balayage with respect to A is equivalent to the
restricted balayage associated with T, .

Proof. By Theorem 3.4, D(7,) is the smallest transfer set containing D(T), with
the recession operator 7, being the corresponding Kantorovich operator for 7.

—

The transfer set D(7,) is the balayage set associated to D(7,) by Theorem 4.1.
If D(T) is a transitive transfer set, then by the minimality properties of both

D(7,) and IT(E), we obtain that D(T) = D(T;) = 17/(77) By the uniqueness of
the Kantorovich operator associated to a transfer set, we have T."g = g.

Finally, consider the cone C C LSC(X U X) such that D(7;) = {(p,v) € P(X) x
P(X); i <c v}, and that p <¢ v if and only if [, T, gdu > [y gdv for every
g € C(X). We claim that p <4 v if and only if u <¢ v, which means that
the restricted balayage is equivalent to the true balayage. Indeed, if u <4 v, i.e.
Jx wdv < [ @dp for all functions ¢ in —A, then for all g € C(X),

/ gdv < / gdv < / gdp = / 1, gdp,
X X X X

hence p1 <¢ v. On the other hand, if y <¢ v then [y gdu = [ T gdp > [ gdv
for every g € C(X), the inequality holds for all ¢ € —A in which case g = §. This
implies p <4 v. O

5. REPRESENTATION OF LINEAR TRANSFERS AS OPTIMAL BALAYAGE TRANSPORT
WITH COST

In this section we show that every backward linear transfer can be represented as
the minimal cost of an optimal balayage transport of measures, by combining our
previous results with the following properties of optimal weak transports established
in [20] and [1]. We shall sketch a proof of the latter fact using results in [4] since we
can then exhibit another interesting representation of a linear transfer as a somewhat
classical mass transport of measures but on the enlarged state space X x P(Y).

Theorem 5.1. Let c: X x P(Y) — RU {+o0} be a bounded below, lower semi-
continuous functional such that for each x € X, 0 — c(x,0) is proper and convez.
Consider the value functional of an optimal weak transport, i.e, for a pair (u,v) €

PX) x P(Y),
6.1 Vi) = int{ | clome) duta)im € K(n.0)),

where (7)), is the disintegration of ™ with respect to p, Then,

(1) Ve is a standard backward linear transfer with corresponding Kantorovich
operator given by T~ g(x) := sup{ [, gdo — c¢(x,0); 0 € P(Y)}.
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(2) Conversely, if T is a standard backward linear transfer, then T = V., where
V. is the optimal weak transport associated with the cost function c(x, o) =
T(0z,0).
Moreover, for any (u,v) in D(T), there exists a transport m € K(u,v) such that
(03, 7z) € D(T) for p-almost x € X and

(5'2) T(,LL, V) = /X T(éa:a 7T:1:) d#(x)

Furthermore, D(T) is a backward transfer set if and only if
(5.3D(T) ={(p,v) e P(X) x P(Y);3r € K(1,v), T (0, 7z) < +00 p—a.s}.

A~

Lemma 5.2. Under the above hypothesis on the cost ¢, we have Vo(u,v) = Ve(p,v),
where

(5.4) V)= it [ eap)dPe.p),
PeA(p.v) JXxP(Y)

(55)  Alwv)i={PePX xPY)) | projxP = 1, blprojper) (P) = v}

and b is the barycentric map on probability measures.

Proof. Recall that for a probability measure P € P(P(Y)), its barycenter b(P) is
the unique probability in P(Y’) determined by

(5.6) b(P)(g) = /P , POIPD) Yo ),

For any m € K(u,v), we let (m)zex be its disintegration with respect to pu,
and consider the measurable map k.: X — X x P(Y) defined by z — (z,7;).
Let now J(m) := (kz)x(p), which yields a map from P(X xY) to P(X x P(Y))
such that for 7 € K(u,v), we have J(m) € A(p,v) and [y c(z, m)pu(de) =

fX><77(Y) c(z,p)J(m)(dz,dp), hence

Ve(p,v) =  inf / c(x,my)pu(dx) >  inf / c(x,p)P(dz,dp) = Vo, v).
T€ K(p,v) J X PeA(p.v) JXxP(Y)

For the converse, associate to any probability measure P € P(X x P(Y)), its
intensity, which is the unique measure I(P) € P(X X Y) such that

(5.7)
/ F () [(P)(da, dy) = / / f(z.y)p(dy)P(dz,dp) Vf € C(X x ).
XxY XxP(Y)JY

Now letting P € A(p,v), we easily see that I(P) € K(u,v) and I(P), =
fp(y) p P.(dp) for p-a.e z. Using convexity we get that

/XXP(Y) c(x,P)P(d:c,dp)I/XA(Y) c(x, p)Py(dp)p(dx) Z/XC(%I(P)I)M(dl‘)

> inf /C$,7’[‘x dx).
ot (z, 7o) pu(dex)

It follows that V(u,v) = V(u, v). O
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Lemma 5.3. Let c: X X P(Y) = RU {+o0} be as above, then

(1) The map ™ — [y c(x,m,) du(z) is weak*-lower semi-continuous and convex
on K(u,v).

(2) For p € P(X), the map v — V.(u,v) is conver and weak*-lower semi-
continuous on P(Y').

Proof. (1) To show lower semicontinuity of the map m — [ c(z, 7;) du(z), let 7% —
7 in K(p,v) and set P¥ = J(x%). We may assume that liminfy, [y c(z,7%)dy =
limy, [y c(z, 7%)dp by selecting a subsequence. Since P(X x P(Y)) is compact, let
P be an accumulation point of {P*}; and consider a subsequence converging to P.

Observe that
[ claabidn= [ cw.p) PHda.dp).
X XxP(Y)
Since P — fXXp(Y) ¢(x,p) P(dx, dp) is lower semi-continuous, we have
lim inf/ c(x, p) P*(dx, dp) > / c(xz,p) P(dx, dp).
XxP(Y) XxP(Y)

The X-marginal of P equals the X-marginal of =, which is u. Letting P,(dp) be
a disintegration of P with respect to p, we get from the convexity of ¢(z,-) that

limkinf/xc(:cm’;) d,uZ/ /P(Y c(x,p) Pp(dp)dp > /Xc<a;,/7)(y)p(dy)Pm(dp)>du.

Now we note that 7, (dy) = fp P,(dp) for p-a.e. x. Indeed, if f € C(X xY),
then
|t > [ty
XxY XxY
Moreover, the function F(z,p) := [y f(x,y)p(dy) is also continuous on X x P(Y),

hence [ F dPkF — [ FdP. We then deduce

| tewmtndy = [ rap=[ [ P,
XxY XxP(Y) XxP(Y)JY
hence 7, (dy) = fp )P (dy) P.(dp) for p-almost every x. We finally obtain

liminf/ c(x,ﬁ];)d,uZ/ c(x, my)du.
ko Jx X

The convexity follows from the convexity of ¢ in the second variable.

(2) To prove the convexity of v — V,(u,v), fix v1,v5 € P(Y) and find for a fixed
e >0, 7 € K(u,v1) and 7 € K(u,v2) such that [y c(z, h) du(z) < Ve(p,vi) +
e for i = 1,2. Define 7 € P(X x Y) via dn(z,y) := (Mdrl(y) + (1= N)dr2(y))du(x).
With vy := Avg + (1 — A)ve, we have m € K(u, vy), and therefore, by convexity of ¢
in the second variable, we have

Ve(p,vy) < /X c(x,7y) du(x / Ae(x (x) + /X(l — Ne(z, 7)) du(x)
< NVe(py 1) + (L = N)Ve(p, v2) + €.
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We now show that v — V.(u,v) is weak™ lower semi-continuous. Using Lemma
5.2, it suffices to show that v — f)c(,u, v) is weak® lower semi-continuous. For
that, let v, — v and for € > 0, select for each n, P" € A(u,v,) such that
fXXP(Y) c(x, p)P™(dz, dp) < V(u, vp)+e. Now use the compactness of P(X x P(Y))
to find a further subsequence (which we again relabel to n) so that P* — P for
some P, which is necessarily in A(u,r) since the intensity function is continuous.
It follows that

V(u,v) < / e(z, p)P(dz, dp)
XxP(Y)

<lim inf/ c(x, p)P"(dz, dp)
XxP(Y)

n—oo
< liminf V(u, vn) + €,
n—oo
which concludes the proof of lower semi-continuity. O

Proof of Theorem 5.1: To show that V := V. is a backward linear transfer,
note first that the above lemma yields that v — V.(p, v) is convex and lower semi-
continuous. We now show that for every pu € P(X), its Legendre transform is
g = [x T~ gdp, where

Tg(e) = suwp { [ gdo—c(z,0)}.
ceP(Y) JY

Indeed, if 1 € D1(V,), then for g € C(Y),

—o0 < V;(g9)= sup {[ gdv—V(uv)}
veP(Y) JY

— s swp { [ gl duly) - / (2, m) dpu(z))
veP(Y)mek(py) JY X

(5.5) - [ / g(y)dm(y)—c(a:,wx)} du(x)}

WGK(:MV) X

(5.9) S/ sup { [ gdo —c(z,0)}du(z)
X oeP(Y) JY

= / T gdu.
X

On the other hand, the lower semi-continuity of ¢ yields that for each x the supre-
mum in (5.9) is achieved by some 7, in a measurable way so that

T g(z) = /Yg(y)dwx(y) —c(x, ;) for every x € X.

Define 7 € P(X x Y) via dr(z,y) := dmy(y)du(z). Denoting v := Projy 4w, we
have m € K(u, ). Hence, by using (5.8), we get that

iz [ [ | stwan.t) dute) - [ c<x,m>] n(o) = [ T g(w)iuta),
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and V(g = [ T~ g(z)du(x), hence V, is a backward linear transfer and

Ve(p,v) = sup { [ gdv —/ T gdu} for all (u,v) € P(X) x P(Y).
geC(x) JX X

If now p ¢ Dy(V.), that is if V.(u, v) = 400 for every v € P(Y'), then we claim that

Jx T~ gdp = —oo for all g € C(Y). Indeed if not, we have for some g € C(Y),

~o0< [ T gta)duta) = [ sup( [ gdo = Vilbeo)}d
//{g )doz(y) = Ve(dz, 02) Ydu(x),

where © — 0, is a measurable selection of where o — sup,{ [y gdo — V¢(dz,0) is
attained on 73( ). Let now v := [ aw du(x) and note that by the definition of V,,
we have Vo(p,v) < [y Ve(0z, 02)dp(x), hence

/XTg(:v)du(x)—/ /V O, 02 )dp(z) < / 9(y)dv(y) — Ve(p,v).

It follows that V. (,u, v) < 400, hence pr € Dy(V,), which is a contradiction. This
means that Vi(g) = [T~ gdu for every p € P(X) and V. is a linear backward
transfer.

(2) For the reverse implication, assume 7 is a standard backward linear transfer
with backward Kantorovich operator 7~, and define ¢(z,0) := T (dz,0). Then c is
bounded below, lower semi-continuous such that o — ¢(x, o) is proper and convex.
By the first part, V. is a standard backward transfer with Kantorovich operator
T~g(z) = sup,epy){ Jy 9do — c(x,0)} for every x € X, which is the same for 7.
Hence, for all (i, v) € P(X) x P(Y), we have

T(u,v)= sup { | gdv— / T gdp} =V.(u,v) and T = V..
geC(Y) X

The attainment in the disintegration (5.2) follows from the lower semi-continuity of
7 = [ T (0x, ™z )dp, which implies that the infimum in (5.1) is attained. Note now
that

D(T) =DWV.) = {(p,v); Im € K(p,v) with (z,7,) € D(T)and T (6, 7,) € L' (1)},
and by Theorem 1.5,

D(T) c D(Ty) = {(p,v); Im € K(p,v) with (65, 7z) € D(T;) p— a.s}.
If now D(T) is a backward transfer, then D(V,) = D(T) = D(7T,), which establishes
(5.3).
Proof of Theorem 1.11. To prove that B. 4 is a backward linear transfer, we con-
sider the zero-cost balayage transfer associated to the balayage cone A, that is

_ 0 if (Sx '<A g,
ca(z,0) = { 400 otherwise.

‘We can then write

(5.10) Bea(p,v) == inf{/X {e(z,m2) + calw, mp) } du(z);m € K(p,v)}
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Note that the cost é(x,0) = ¢(x,0) + ca(z,0) is a proper, bounded below, lower
semi-continuous functional that is convex in the second variable. and therefore
Theorem 5.1 applies to yield that B, 4 is a backward linear transfer on P(X)xP(Y)
with backward Kantorovich operator

T g(z) = sup{/y gdo —c(z,0); 0 € P(Y), 6, <4 0}.

(ii) Suppose now T is a backward linear transfer, then by Theorem 5.1, we can write

T(p,v) = inf{/X T (0g, mg) dps(x);m € K(p,v)}.

By Theorem 3.4, D(7) is contained in a balayge set S = {(u,v) € P(X) x
P(Y);u <4 v}, where A is a cone on X LY. This means that if (u,v) € D(T),
then there exists m € K (u,v) whose disintegration (d,,7,) € S. Now let ¢(x,0) =
T (05, 0) and consider the optimal restricted balayage transfer

Boaliv) = inf{ [ e(z, mz) dp(z);m € Ka(p,v)} if p<av
e AU B = 400 otherwise,

Note that B 4 can be written as in (5.10) and therefore 7 < B, 4.
On the other hand, we claim that B, 4 < 7. Indeed, it is clearly the case when
(u,v) ¢ D(T). If however (u,v) € D(T), then u <4 v and since

Kr(p,v) = {7 € K(u,v); (x,m) € D(T), /X'T(x,ﬂx)d,u(x) < +oo} C Ka(p,v),

we have

T(u) = int{ | e(oms) du(a)im € Kr(,v) = Beaie),

and we are done.
If now D(T) is a transfer set, then D(7) = D(7;) = {(p,v) € P(X)xP(Y);p <4

v}, and
J T(u,v) = inf{/X c(x,mp) dp(x);m € Kalp,v)}.

The remaining case is similar. O

6. THE KANTOROVICH ENVELOPE AND THE CHOQUET-KANTOROVICH CAPACITY

In this section, we show how the duality between Kantorovich operators and
linear transfers give this subclass of Choquet functional capacities a great flexibility
for constructing new ones.

The above observations motivate the search for Kantorovich operators as lower
envelopes of arbitrary (standard) maps from C(Y') to USC(X). This will be done
in the sequel. We shall make frequent use of the following lemma.

Lemma 6.1. Let M be a weak*-compact set of P(Y') and consider the following
functional on C(Y')

(6.1) Pf .= sup{/ fdo;o € P(Y),0 € M}.
Y
Then, P is a positively 1-homogenous subadditive functional from C(Y) to R and

(6.2) Pf= sup{/y fdoyo € P(Y),0 <P on Cy(Y)}.
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Proof. The claimed Kantorovich properties of P are obvious. Since P is also sub-
additive, then by the Hahn-Banach theorem, we have for any f € C(K),

Pf= sup{/yfda; ceM(Y),o0<PonCL(Y)}

If now f € C(Y), there exists 0 € M(Y), o0 < P such that

P(f+1)= sup{/y(f—i— Ddr; e M(Y), 1< P} = /deO'-l-O'(Y).
It follows that

1+Pf_P(f+1)—/fda+a(Y)§Pf+a(Y)ng+P1§Pf+1,
Y

hence o(Y) = 1 and fY fdo = Pf. Moreover, since ¢ < P, we have for any open
set 0,1 —-0(0)=0(Y\O) <P(Y\O), hence 0 <1—P(Y\O) <c(0) and o is
therefore a probability measure. Claim (6.2) follows. O

Definition 6.2. Say that a map 7 : C(Y) — USC(X) is standard if for every
x € X, there is v € P(Y') such that

(6.3) sup { [ gdv—Tg(z)} < +oo.
geC(Y) Y

Theorem 6.3. Let T : C(Y) — USC(X) be a standard map. Then,
(1) The map T defined for every g € C(Y') by the expression

(6.4) Tg(x):= Ues;%)y) heiél(fy){/y(g —h)do + Th(z)}

1s a Kantorovich operator such that T <T.
(2) For every g € C(Y), we have

(6.5) Tg(x) =sup{Sg(z); S Kantorovich operator S < T},
and T = T if and only if T is a Kantorovich operator.

(3) If T is positively 1-homogenous, then T is also positively 1-homogenous and

(6.6) T () = sup{/ fdoio € P(Y),0 < T" on Cu(Y))}.
Y
(4) If X =Y and T > I, where I is the identity operator, then T > I. Similarly,
if T > T2, then T > T2.
We shall say that T is the Kantorovich envelope of T

Proof. 1) Consider the following cost functional ¢ : X x P(Y) — RU {400},

c(z,0):= sup {/gda—Tg(a:)},
geC(y) Y

and note that ¢ is weak*-lower continuous on X x P(Y') and is bounded below since
T(0) € USC(X), hence bounded above. Moreover, for every x € X, ¢(z, -) is convex



LINEAR TRANSFERS AS MINIMAL COSTS OF DILATIONS OF MEASURES 1713

and by condition (6.3) it is proper. Theorem 5.1 then yields that the weak optimal
transport

T(n.v) i=inf{ | cla,me) duim € K )}

is a standard backward linear transfer, with a corresponding backward Kantorovich
operator

Tg(z)= sup {[| gdo—c(z,0)} = sup inf {/ (9 —h)do +Th(x)}}.
oeP(Y) JY oceP(Y)heC(Y) Jy
Note that for any g € C(Y),

Tg(z) = sup inf /gda—/ hdo + Th(z
oeP(Y)heC(Y

< inf su da/hdU+Th T
Jntsw ([ g ()}

— inf — W) +Th
helg(y){sup(g ) +Th(x)}

< Tyg(z).

2) If now S is another backward Kantorovich operator such that S < T, then use
Sion’s min-max principle [24], that h — Sh(x) is convex and lower semi-continuous
on C(Y) and that S(h + ¢) = Sh + ¢ whenever c is a constant, to write

Tg(z)= sup inf {/ gda—/ hdo + Th(z
oeP(Y)heC(Y

> inf {/gda—/hda+5h

seply) heO(Y)

= inf su da—/hda+5hx
ot s ([ ()}

= inf{sup(g — h) + Sh(z)}
= nf{S[sup(g — h) + hJ(2)}
> Sg(z).
Consider now the operators
Soof(x) = sup{Sf(z); S Kantorovich S <T} and Ssf(z)= @(m),

where here § is the upper semi-continuous envelope of g. It is clear that T < .S <
Soo < T, and that T = S, since 5700 is a Kantorovich operator.

3) Finally, if T is positively 1-homogenous, then formula (6.4) yields immediately
that T is positively 1-homogenous. In this case,

T*g:=Tg(x) =T,g(x) = sup{/ fdoyo € P(Y),T(2,0) < +oo}.
Y
Use now Lemma 6.1 to write for every z € X,

Tg(x) = sup{/ gdo;o € P(Y),0 <T*} < sup{/ gdo;o € P(Y),0 <T*}.
Y Y
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On the other hand,

T = inf do — | hdo + Th(x
0= g2, it

> sup inf {/ gda—/hda+Th )}

o€P(Y),0<T= heC(Y)
> Sup{/ gdo;o € P(Y),0 <T*},
Y

which establishes (6.6).

4) If T > I, then T > I since the identity operator I is clearly a Kantorovich
operator. Now suppose T2 < T. Since T? is a Kantorovich operator, it suffices to
note that T2 < T2 < T, hence T <T. O

Dually, we have implicitly shown the existence of an upper linear transfer envelope
associated to any standard bounded below, weak* lower semi-continuous functional
on P(X) x P(Y). Indeed, we have the following.

Proposition 6.4. Let T : P(X) x P(Y) — RU {+oo} be a standard, convez,
bounded below and weak™ lower semi-continuous functional, and let T be the op-
timal weak transport associated to the cost c(x,0) := T (0z,0), that is T (u,v) =
inf{ [ c(z,my) dp; ™ € K(p,v)}. T is then a standard backward linear transfer sat-

isfying T < T. Moreover, if S is any standard backward linear transfer such that
TS, thenT <S8

Proof. Note that by the first part of Theorem 5.1, 7 is a backward linear transfer
with backward Kantorovich operator T~ g(x) = sup,epyy{fy gdo — c(z,0)}. To
show that 7 < T, note that since T is jointly convex and lower semi-continuous,
then for each g € C(Y), the functional

pw— (T)*(g) = sup {[ gdo—T(u,0)}
ceP(Y) JY

is upper semi-continuous and concave. It follows from Jensen’s inequality that
T(0) = [ ) (@)duta) = [ T7g(w)into)

hence T (u,v) = (T,)** (v) < supgecv) { Jy 9dv — [x T~ gdu} = T(u,v).
7 is the smallest backward linear transfer greater than 7T, since if S is a backward
linear transfer and 7 < S, then 7 < §, and § = S by Theorem 6.3. O

Remark 6.5. Suppose 7 is any convex, bounded below, and weak* lower semi-
continuous functional on P(X) x P(Y) that is finite on the set of Dirac measures
{(62,0y); z € X,y € Y}. One can then define a cost function c(z,y) = T (0z,dy),
and the associated optimal transport 7.(u, ). To compare T with 7., note that

Ts.(9) = Sup{/Y gdv — T (0z,v); v € P(Y)} > sup{g(y) — c(z,y);y € Y} =T, g(x)

and so T (u,v) < T(p,v) < Te(p,v). In many cases, it is not possible to define a
proper cost c(z,y) = T (dz,0y), i.e. ¢ is identically +00. This is the case for many
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stochastic transport problems where, for example, transport via Brownian motion
makes it impossible for a Dirac measure to be transported to another Dirac measure;
see for instance [17]. O

The Choquet-Kantorovich envelope of a functional capacity
Given two real-valued set functions S, 7T on a compact space Y, we shall say that

S <k T if and only if S(K) < T(K) for any compact set K C Y.

For any set function P on Y, we follow Choquet and associate the functional

+oo
(6.7) P(f) = /O P(f > a) da,

on the set of non-negative functions f on Y. We call P the Choquet extension
of P. Note that

S <x T if and only if S(f) < T(f) for all f € USC,(Y).

Definition 6.6. Say that a functional P : USC(Y) — R is saturated if for any
oePY),

(6.8) o<k P ifandonlyif o< P onUSCL(Y).

If P is a capacity, then Pisalsoa capacity that coincides with P on the character-
istic functions of sets. P can be seen as an extension of P to non-negative functions
in such a way that it is still monotone increasing, satisfies P f = lim, 1 P fn if
f = lim, T f,, and P f = lim, | P fn if f, fn are upper semi-continuous and
f =lim, | f,. We also note that P is positively 1-homogenous, and that it is
saturated.

Similarly to the Choquet functional extension P of P, we follows Dellacherie 9]
and introduce the following functional extension P of the set function P.

Definition 6.7. Say that a set function P is common if there is v € P(Y) such
that v <x P.

For such set functions, we define for f € USC(Y),
(6.9) Pf= sup{/ fdo;o0 € P(Y),0 <k P}.
%

Lemma 6.8. Let P be a non-negative common set function. Then,

(1) P is a saturated functional on USC(Y).

(2) If P originates from a saturated functional on USC(Y), then P < P on
USCL(Y).

(3) If P is given on USC(Y') by Pf = sup{ [, fdo;0 € M}, where M is weak*-
compact subset of P(Y), then P < P on USC.(Y), hence if P is also
saturated then P = P on USC(Y).

(4) We always have P = P on USC,(Y).

Proof. 1) That P is saturated is clear. 2) If now P is saturated, then P < P, since

Pf = sup{/Y fdo;o € P(Y),0 < P} = sup{/Y fdo;o € P(Y),0 < P}.
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3) If Pf = sup{ [, fdo;0 € M}, where M is weak*-compact subset of P(Y),
then Lemma 6.1 gives that

szsup{/yfda;UEP(Y),agP}§sup{/yfdo;a€73(Y),a§;CP}:I5f,

and therefore if P is also saturated, then P = P.

4) Since P is saturated, we always have ]-;’ < P by the first item. On the other
hand, the set M = {0 € P(Y);0 <k P} is equal to {oc € P(Y);0 < P}, where P
is the Choquet extension of P, hence it is weak*-compact. It follows from item 3)

that P < P, hence we have equality. O

Definition 6.9. Say that a map 7' : F(Y) — F(X) is common (resp., satu-
rated) if for every z € X, T" is common (resp., saturated).

Theorem 6.10. Let T' be a common functional capacity from Fy(Y) — Fi(X).
Then,

(1) The map T defined for every g € C(Y) by the expression
(6.10) Tf(:c)—fx(f)—sup{/ fdoyo € P(Y),0 <k T"}
Y

is a saturated positively 1-homogenous Kantorovich operator such that T <jx
T.

(2) If T is a positively 1-homogenous Kantorovich operator, then T < T on
C+(Y), and for any g € C(Y),

~—

(6.11
Tg(x) = sup{Sg(z); S is a positively 1-homogenous Kantorovich operator S < T'}.

(3) If T is saturated, then T < T.
(4) IfT s a saturated positively 1-homogenous Kantorovich operator, then T =
T on CL(Y).

(5) T is minimal among saturated positively 1-homogenous Kantorovich opera-
tors greater than T.

We shall say that T is the Dellacherie envelope of T.

Proof. 1) Note first that T as defined in (6.10) is clearly a saturated positively 1-
homogenous operator such that T' <) T'. To show that it is a Kantorovich operator,
it suffices to prove that the corresponding cost functional

_ [0 ifo <gT”
(6.12) &(z,0) = { 100 otherwise,

is lower semi-continuous. Note that ¢ is proper since 1" is common. Let now =, — z
in X and v, — v weak® in P(Y). For any compact set K C Y and any € > 0,
and since T is a capacity, there is an open set O2c O O O O, D K such that

T*(O2) — T*(K) < e. Since 0 — 0(O) is lower semi-continuous, and x — T%(O)
is upper semi-continuous, we have

o(K) < 0(0,) < liminf 0,,(0,) < liminf 7% (O,) < limsup T (0,) < T*(O) < T*(K)+e.

It follows that o <y T* and ¢ is therefore lower semi-continuous.
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2) If now S is positively 1-homogenous Kantorovich operator such that S <x T,
then since

Sg(z) = Spg(z) = sup{/ygda; Ts(xz,0) < +o0},

we can apply Lemma 6.1 and write

Sg(z) = Sup{/Y gdo; o < S8}
< sup{/ gdo; o < S*}
Y

< Sup{/ gdo; o <k T"}
Y

=Tg(x).
Formula (6.11) follows along the same line as the proof of (6.5)
3) follows from Lemma 6.8.
4) follows from 2) and 3).
5) Finally, if R is a saturated positively 1-homogenous Kantorovich operator such
that R > T, then clearly R = R > T. O

If now T': FL (Y) — F4(X) is a functional capacity, then

~ +0o0
Tia) =T = [T = o) do,

is a functional capacity that is positively 1-homogenous and saturated (i.e., for each
x € X, T% is a saturated capacity). The following notion of saturation is more
appropriate for functional capacities.

Definition 6.11. Say that a functional capacity T : F.(Y) — Fy(X) is K-
saturated if for any Kantorovich operator S : USC(Y) — USC(X) we have that
(6.13) S<kT ifandonlyif S<T onUSCL(Y).

Let us also say that a functional capacity T : F (Y) — F.(X) is compactly
standard if for every x € X, there is v € P(Y) such that

(6.14) sup {o(K)—Txr(z)} < +oo.

K compact

Theorem 6.12. Let T : F (YY) — F.(X) be a compactly standard functional
capacity. Then,

(1) The map T defined for every g € C(Y) by the expression

(6.15) To(w) = sup int { [ (g xo)do+ Txo(o)),
ceP(y)Oopen Jy

is a K-saturated Kantorovich operator such that T <xT.
(2) If T is a Kantorovich operator then T <T, and for any g € C(Y'), we have

(6.16) Tg(x) = sup{Sg(z); S Kantorovich operator with S < T'}.
(3) If T is K-saturated, then T < T.
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(4) If T is a K-saturated Kantorovich operator, then T = T.
(5) T is minimal among K -saturated Kantorovich operators greater than T'.

We shall then say that T is the Choquet-Kantorovich envelope of T.

Lemma 6.13. Let T be a functional capacity from F(Y) to Fiy(X).

(1) If for some x € X and o € P(Y), é(x,0) := sup {o(K)-T*(K)} <
K compact CY
400, then

(6.17) c(z,0) = sup {o(0)— T*(0)}.
OopeninY
(2) If T is a standard functional capacity, then (x,0) — é(x,0) is lower semi-
continuous such that for each x € X, o — é(x,0) is conver and proper.
Moreover,

(6.18) é(x,0) < sup {[| fdo—Tf(x)}.
recy) Jy

Proof. 1) Note that
sup {0(0) —=T"(0)} < sup {o(0) -T"(0)} <  sup {o(K)—T"(K)}.

O open O open K compact inY
On the other hand, if ¢(xz,0) < +oo, then since T is a capacity, we have for
every K. compact such that ¢(z,0) — e < o(K.) — T*(K.) < &(x,0), an open set
O2¢ D O D O, D K, such that T%(Oq) — T*(K,) < €, hence

é(z,0) —2¢ < a(0) — T*(0q¢) < 0(0.) — T*(O,) < sup {o(0) —T*(0)},
O open
which implies (6.17).

2) It follows that ¢ is lower semi-continuous since o — o(O) is lower semi-
continuous for every open set, and x — T%(0) is upper semi-continuous since 7T
maps USC(Y) to USC(X) and O is compact. Also, 0 — ¢(x,0) is clearly convex.

Now again, since T is a functional capacity, we have for every open O such that

é(z,0) —e < a(0:) —T*(O,) < &(x,0),

a continuous function fe > xp, such that T%(fc) —T%(Oc) < ¢, hence

E(x,a)—QeS/Yfeda—Tx(fe)g sup { [ fdo—Tf(x)},

fecy) Jy

which implies (6.18). O

Proof. (of Theorem 6.12) Consider the cost functional ¢ : X x P(Y) — RU {400},
c(w,0) = suwp {o(K)—T*(K)},

K compact

and note that condition (6.3) ensures that for every z € X, ¢&(z, - ) is proper. Propo-
sition 6.4 then yields that the weak transport 7 (w,v) := inf{ [y c(z, 7)) du; 7 €
K(p,v)} is a standard backward linear transfer, with a corresponding backward
Kantorovich operator

Tg(x)= sup {[ gdo—¢c(z,0)} = sup inf {/ (9 —xo0)do+Txp(x)}
ceP(Y) JY oceP(Y) Oopen) Jy
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We now claim that T is K-saturated. Indeed, if S is a Kantorovich operator such
that § < T, then again use Sion’s min-max theorem and the properties of S to
write for any g € USC(Y),

Tg(x) = s ){ Ygdo —¢e(z,0)}
oc

= sup inf {/gda—a K)+T*(K)}

ceP(Y) K compact

> s inf {/gda—a( )+ S7(K)}

ceP(Y) K compact

> inf {/gda—/fda+5f )}

0'673 fEC(Y

= inf sup { gda—/fda—i—Sf(m)}

fECY) gep(Y)

= inf {sup(g )+ Sf(x)}

fec(y)

= inf {S[sup(g )+ fl)}
feC(Y)  yey

> Sg(x).

Write now for any g € USC(Y),

Tg(x) = sup inf {/ gdo —o(K)+T*(K)}

oeP(Y) K compact

< inf {sup(g —xx) + T*(K)},
K compact vy
which yields that T%(A) < T%(A) for any compact set A in Y.
2) The proof of (6.16) follows the same lines as the proof of (6.5).
3) If T is K-saturated, then T < T since T < T.
4) follows by combining 2) and 3). 5) If R is a K-saturated Kantorovich operator
such that R > T, then clearly R = R>T. U

Definition 6.14. A capacity P on a compact space Y is said to be:
(1) Subadditive of order infinity if for every compact set K C Y, any n € N, and
any finite family of compact sets (K;)!", such that nxyx < X", xk,, then
(6.19) nP(K) < 7, P(K;).

(2) Strictly subadditive of order infinity if for every compact set K C Y, any
n €N, any k € NU {0}, and any finite family of compact sets (K;)"; such
that k +nxrx < X, xk;, then

(6.20) EP(Y)+nP(K) < ¥, P(K;).
(3) Strongly subadditive if for any two compact subsets A, B of Y,
(6.21) P(AUB)+ P(ANnB) < P(A) + P(B).

It is known that (6.21) = (6.20) = (6.19) and that
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e P is subadditive of order infinity if P(A) = sup{o(A);oc € M(Y),o0 <x P}
for any compact set A C' Y (Anger and Lembcke [3]) .
e P isstrictly subadditive of order infinity if P(A) = sup{c(A);0 € P(Y),0 <k
P} for any compact set A C Y (Anger and Lembcke [3]) .
e P is strongly subadditive capacity if and only if P is subadditive on C (Y)
(Choquet [11]).
If now T: F(Y) — F(X) is a functional capacity, then say that T is subadditive
of order infinity (resp., strictly subadditive of order infinity) (resp., strongly subad-
ditive), if for any x € X, T7 is a regular capacity that satisfies (6.19) (resp., (6.20)),
(resp., (6.21)).

Theorem 6.15. Let T : F(Y) — F1(X) be a functional capacity, then

(1) T is strictly subadditive of order infinity if and only if T =28 for some
saturated positively 1-homogenous Kantorovich operator S, in which case T
1s also strictly subadditive of order infinity.

(2) T is strongly subadditive if and only sz 1s a Kantorovich operator, in which
case T is also strongly subadditive.

Proof. 1) If T is strictly subadditive of order infinity then for any compact set A in
Y,

T*(A) =sup{o(A);c € P(Y),0 <x T},
which means that T and T exist, T < T by the maximality of the latter, and
T(xa) = T(xa) = T(x4) for any compact A, that is, 7' = T. Note that this implies

that T is strictly subadditive of order infinity since then,
T°(A) =T*(A) = sup{o(A);0 € P(Y),0 <x T%}
> sup{o(A);oc € P(Y),0 <x T"}
> sup{o(A);0 € P(Y),0 < T%}
=T7(4)
=T"(A).
Conversely, if 7 = S for some positively 1-homogenous Kantorovich operator S,

then by the maximality property of T, we have S < T. It follows that T = S < T <

T < T, and therefore we have equality, from which follows that for every compact
set A,

T%(A) = T%(A) = sup{o(A);0 € P(Y),0 <x T*},
which means that T is strictly subadditive of order infinity,

2) If now T is strongly subadditive, it is then strictly subadditive of order infinity
andT =T=T. Moreover, T is subadditive and therefore T is subadditive, and T
is then strongly subadditive. By a remark of Dellacherie [9], since T is a supremum
of measures over a weakly compact subset in P(Y'), T is strongly subadditive if and
only if T = T. It follows that T = T. Note that this implies that T is strongly
subadditive since T = T and the latter is subadditive.
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Conversely, assume T is a Kantorovich operator. Since it is also positively 1-
homogenous, it is subadditive and therefore T is then strongly subadditive by Cho-
quet’s criterium. O

REFERENCES

[1] J. J. Alibert, G. Bouchitté and T. Champion, A new class of costs for optimal transport
planning, European Journal of Applied Mathematics 30 (2019), 1229-1263.

[2] L. Alvarez, F. Guichard and P. L. Lions, Azioms and fundamental equations of image process-
ing, Arch. Rational Mech. Anal. 123 (1993), 199-257.

[3] B. Anger and J. Lembcke, Infinitely Subadditive Capacities as Upper Envelopes of Measures,
Z. Wahrscheinlichkeitstheorie verw. Gebiete 68 (1985), 403-414.

[4] J. Backhoff-Veraguas,M. Beiglbock and G. Pammer, Ezistence, duality, and cyclical mono-
tonicity for weak transport costs, Calculus of Variations and PDE 58 (2019), 1-28.

[5] M. Bowles and N. Ghoussoub, A Theory of Transfers: Duality and convolution, (April 16,
2018, Revised October 24, 2018) 41 pp. https://arxiv.org/abs/1804.08563

[6] M. Bowles and N. Ghoussoub, Mather Measures and Ergodic Properties of Kantorovich Op-
erators, (May 7, 2019, Revised June 20, 2019, 2nd revision on October 24, 2019) 109 pp.
https://arxiv.org/abs/1905.05793

[7] M. Bowles and N. Ghoussoub, Ergodic properties of Kantorovich operators, In preparation,
2023.

[8] C. Dellacherie and P. A. Meyer, Probabilités et Potentiel, Chapter X, Hermann, 1997.

[9] C. Dellacherie, Quelques commentaires sur les prolongements de capacités, Séminaire de prob-
abilités (Strasbourg), tome 5 (1971), 77-81.

[10] K. J. Ciosmak, Applications of Strassen’s theorem and Choquet theory to optimal transport
problems, to uniformly convexr functions and to uniformly smooth functions, Nonlinear Anal-
ysis, Volume 232, July 2023, 113267.

[11] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953/54), 131-295.

[12] G. Choquet, Lectures on Anaysis, W. A. Benjamin, Inc. 1968.

[13] S. Dweik, N. Ghoussoub, Y. Kim and A. Palmer, Stochastic Optimal Transport With Free End
Time, Ann. de U'Institut Henri Poincaré, Prob. & Stats, 57 (2021), 700-725.

[14] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,
Springer-Verlag, vol. 25, New York, 1993.

[15] I. Gentil, C. Leonard and L. Ripani, About the analogy between optimal transport and minimal
entropy, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6, Université
Paul Sabatier 26 (2017), 569-600.

[16] N. Ghoussoub, Y. Kim, T. Lim Structure of optimal martingale transport in general dimen-
sions, Ann. of Probability 47 (2019), 109-164.

[17] N. Ghoussoub, Y. Kim and A. Palmer, A solution to the Monge transport problem for Brow-
nian martingales, Ann. of Probability 49 (2021), 877-907.

[18] N. Ghoussoub, Y. Kim and A. Palmer, PDE methods for optimal Skorokhod embeddings, Calc.
of Variations and PDEs, Calc. Var. 58 (2019): 113.

[19] N. Ghoussoub, Y. Kim and A. Palmer, Optimal stopping of stochastic transport minimizing
submartingale costs, Trans. AMS 374 (2021), 6963-6989.

[20] C. Gozlan, P. Roberto, M. Samson and P. Tetali, Kantorovich duality for general transport
costs and applications, J. Func. Analysis 273 (2017), 3327-3405.

[21] P. Henry-Labordére, Model-free Hedging: A Martingale Optimal Transport Viewpoint, Chap-
man and Hall/CRC, 2017.

[22] K. Marton, A measure concentration inequality for contracting Markov chains, Geom. Funct.
Anal. 6 (1996), 556-571.

[23] T. Mikami and M. Thieullen, Duality theorem for the stochastic optimal control problem. Stoch.
Process. Appl. 116 (2006), 1815-1835

[24] M. Sion, On general minimaz theorems, Pacific J. Math. 8 (1958), 171-176.



1722 NASSIF GHOUSSOUB

[25] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist.
36 (1965), 423-439.

[26] M. Talagrand, Transportation cost for gaussian and other product measures, Geometric and
Functional Analysis 6 (1996), 587-600.

[27] C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics 58. American
Mathematical Society, Providence RI, 2003.

Manuscript received December 11 2022
revised March 3 2023

NAssIF GHOUSSOUB

Department of Mathematics, The University of British Columbia Vancouver BC Canada V6T 1Z2
E-mail address: nassif@math.ubc.ca



