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inequality of note is the trivial upper bound Fn ≤
√
d · n. This provides the

motivation for the present work.
In order to prove that lim supn→∞Fn = ∞, [3] uses a strategy introduced by Mc-

Mullen [7] and Burago and Kleiner [1] which allows for the translation of discrete
Lipschitz problems to the continuous setting. The aforementioned authors devel-
oped this strategy in order to answer a long standing open question of Gromov [5],
namely whether every two separated nets in Euclidean space are bilipschitz equiv-
alent. McMullen [7] and Burago and Kleiner [1] introduce methods of encoding
measurable density functions ρ : [0, 1]d → (0,∞) as separable nets in Rd and use
these to prove that Gromov’s question about separated nets is equivalent to the
question of whether every bounded density ρ : [0, 1]d → (0,∞) admits a bilipschitz
solution f : [0, 1]d → Rd to the pushforward equation

(1.2) f♯ρL|[0,1]d = L|f([0,1]d).

McMullen [7] and Burago and Kleiner [1] then resolve Gromov’s question nega-
tively by constructing ρ for which (1.2) has no bilipschitz solutions. For the neg-
ative answer to Feige’s question, Kaluža, Kopecká and the author constructed ρ
so that (1.2) additionally has no solutions in the larger class of Lipschitz map-
pings f : [0, 1]d → Rd. Moreover, in a recent paper [2], Kaluža and the author
find densities ρ for which (1.2) has no solutions in the class of homeomorphisms
f : [0, 1]d → Rd for which both f and f−1 have modulus of continuity bounded

above by ω(t) = t log
(
1
t

)φ0(d), where φ0(d) → 0 as d → ∞.
Assuming a connection between the question of the asymptotic growth of the

sequence (Fn) and the continuous question of existence of solutions f to (1.2) with
prescribed modulus of continuity ω, the latter result may hint towards an asymptotic
lower bound of the form

(1.3) Fn ≥ (log n)φ0(d)

on the Feige sequence (Fn). More precisely, it seems natural to conjecture that the
inequality Fn ≥ nω

(
1
n

)
holds asymptotically for moduli of continuity ω for which

ω-continuous solutions f to (1.2) may be excluded.

In this note we identify certain types of sets S ∈
(Zd

nd

)
for which we are able to

provide a non-trivial asymptotic upper bound on Fn(S). Furthermore, we show that
these sets occur with high probability, in a sense to be made precise shortly. We
hope that this could be a step towards establishing bounds on the Feige sequence

(Fn). Note that the latter requires bounding Fn(S) for a general set S ∈
(Zd

nd

)
.

To determine the n-th Feige number Fn, observe that it suffices to consider only

sets S ∈
(Zd

nd

)
which lie inside the finite cubic grid

{
1, . . . , nd

}d
of side length nd.

Put differently, the supremum in (1.1) remains unchanged if the integer lattice Zd

is replaced by the finite grid
{
1, . . . , nd

}d
. This holds because any set S ∈

(Zd

nd

)
may

be mapped via a 1-Lipschitz, injective mapping to a subset of
{
1, . . . , nd

}d
: simply

take out empty hyperplanes, contract and translate. Thus, to establish asymptotic
bounds on the Feige sequence (Fn) it suffices to provide asymptotic bounds on

Fn(S) for sets S ∈
({1,...,nd}d

nd

)
.
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Restricting our attention to configurations of nd points inside a finite cubic grid,
instead of inside the entire integer lattice, naturally invites a probabilistic approach.
We can think of each possible configuration of the nd points in the finite cubic grid
as occurring with equal probability. Taking large cubic grids, such as the grid{
1, . . . , nd

}d
discussed above, we would expect to see configurations of nd points

being very spread out with high probability, leading to Fn being uniformly bounded
independent of n with high probability. Thus, it makes sense to consider the problem

in all smaller cubic grids of side length ⌊cn⌋ for all c > 1. Inside grids {1, . . . , ⌊cnn⌋}d
given by a sequence of numbers cn > 1 which does not converge to 1 too quickly, we
will prove an upper bound on Fn which holds asymptotically almost surely. Note
that for all sequences (cn) with 1 < inf cn ≤ sup cn < ∞, the methods of [3] establish

that there are sequences (Sn) ∈
∏∞

n=1

({1,...,⌊cn·n⌋}d
nd

)
for which lim supn→∞ Fn(Sn) =

∞. There is less known in the case of sequences (cn) converging to 1. It is not

known for which sequences cn ↘ 1 the sequence space
∏∞

n=1

({1,...,⌊cn·n⌋}d
nd

)
contains

a sequence (Sn) such that lim supn→∞ Fn(Sn) = ∞.
The notion of ‘asymptotically almost surely’ refers to the uniform probability

measures on the spaces
({1,...,⌊cn·n⌋}d

nd

)
for n ∈ N. In the present work we only

consider one type of probability space, namely that given by a finite set equipped
with the uniform probability measure. If X is a finite, non-empty set, we consider
the uniform probability measure on (X, 2X) defined by

(1.4) PX(A) =
|A|
|X|

, A ⊆ X,

where |−| denotes the cardinality. Since it will always be clear from the context
which probability space we are working in, we will always just write P (without a
subscript) to denote the uniform probability measure.

We are now ready to state the main result:

Theorem 1.1. Let d ∈ N with d ≥ 2 and q ∈ R with q ≥ 1 and q > 3
d . For

each n ∈ N let cn ≥
(
1 + 2d+7

logn

)1/d
, Ωn :=

({1,...,⌊cn·n⌋}d
nd

)
and consider the probability

space (Ωn, 2
Ωn ,P = PΩn) defined by (1.4) and the random variable Fn : Ωn → (0,∞)

defined by

Fn(S) = min
{
Lip(f) : f : S → {1, . . . , n}d surjective

}
, S ∈ Ωn.

Then there exists a constant Γ = Γ(d) > 0 such that

P [Fn ≤ Γ(log n)q] ≥ 1− ΓnΓ exp

(
−(log n)qd−2

Γ

)
for all n ∈ N.

In particular, we have that

lim
n→∞

P [Fn ≤ Γ(log n)q] = 1.

Theorem 1.1 tentatively supports the conjecture of a polylogarithmic upper bound
on the Feige sequence (Fn). This is interesting because it coincides in form with
the conjectured lower bound (1.3), coming from the completely independent results
of [2].
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2. Preliminaries, Convention and Notation.

Let us quickly summarise some basic notation which may not be completely
standard. The dimension d of the Euclidean space Rd in which we work will be
considered fixed throughout the whole paper. Thus, many objects defined in the
paper should be thought of as having a suppressed subindex d; for example Fn =
Fn,d. For a set A and k ∈ N we let

(
A
k

)
denote the set of all subsets of A with precisely

k elements. Given t ≥ 0 we write ⌊t⌋ for the integer part of t and [t] for the set
of integers {1, 2, . . . , ⌊t⌋}. Since powers of 2 arise frequently in the calculations we
take, for convenience, the logarithm function log with base 2. We will also write
exp(x) to denote 2x.

Convention 2.1. Let X be a finite set, N ∈ N, † stand for an abstract property
and α ≥ 0. In Sections 4 and 5, we write that a random set S ∈

(
X
N

)
satisfies

P[S has property †] ≤ α

as shorthand for the statement

P
({

S ∈
(
X

N

)
: S has property †

})
≤ α

in the probability space
((

X
N

)
, 2(

X
N),P = P(XN)

)
given by (1.4).

The symbol L will denote the Lebesgue measure. Furthermore, given a measur-
able function ρ : [0, 1]d → [0,∞) we denote by ρL the measure on [0, 1]d defined by
ρL(A) =

∫
A ρ dL. If µ is a measure on [0, 1]d and f : [0, 1]d → Rd is a mapping, we

will denote by f♯µ the measure on f([0, 1]d) defined by f♯µ(A) = µ(f−1(A)). The

closure of a set E will be written as E.
Given a measure µ on [0, 1]d, we call a collection T of µ-measurable subsets

of [0, 1]d a µ-partition of [0, 1]d if µ
(
[0, 1]d \

⋃
T
)
= 0 and µ(T ∩ T ′) = 0 for all

T, T ′ ∈ T with T ̸= T ′. For each k ∈ N we let

(2.1) Tk =

{
d∏

i=1

(
pi
k
,
pi + 1

k

]
: p1, . . . , pd ∈ {0, 1, . . . , k − 1}

}
,

Note that each Tk is, in particular, an L-partition of [0, 1]d.
The next lemma is our main mechanism for relating measures to the question of

best Lipschitz constants for mappings of finite sets.

Lemma 2.2. Let µ, ν be Borel probability measures on the unit cube [0, 1]d. Let
n ∈ N, T be a finite µ-partition of [0, 1]d, c > 1 and

X ⊆ 1

cn
Zd ∩

⋃
T , Y ⊆ 1

n
Zd ∩ [0, 1]d
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be finite sets such that

µ(T ) ≥ 1

nd
|X ∩ T | , for every T ∈ T , and

(2.2)

ν(E) ≤ 1

nd

∣∣∣∣{y ∈ Y : d∞(y,E) ≤ 1

n

}∣∣∣∣ for every ν-measurable E ⊆ [0, 1]d,

(2.3)

where d∞ denotes the distance induced by the norm ∥−∥∞. Let f : [0, 1]d → [0, 1]d

be a Lipschitz mapping with f♯µ = ν. Then there exist a constant Λ = Λ(d) > 0
and an injective mapping g : X → Y with

Lip(g) ≤ Λmax {1,Lip(f)} c
(
n ·max

T∈T
diamT + 1

)
.

Proof. For a point x ∈ X we denote by T (x) a choice of set T ∈ T which contains
x. We further define a set valued mapping R : X → 2Y by

R(x) =

{
y ∈ Y : d∞(y, f(T (x))) ≤ 1

n

}
.

In what follows we obtain an injective mapping g : X → Y with the property that

(2.4) g(x) ∈ R(x), x ∈ X.

We may then complete the proof in the following way. For distinct points x, x′ ∈ X
we observe that∥∥g(x′)− g(x)

∥∥
2
≤
∥∥g(x′)− f(x′)

∥∥
2
+
∥∥f(x′)− f(x)

∥∥
2
+ ∥f(x)− g(x)∥2

Now, from condition (2.4) we have

∥g − f |X∥∞ ≤ max
T∈T

diam f(T ) +

√
d

n

≤ Lip(f)
√
dmax

T∈T
diamT +

√
d

n

≤
√
dmax {1,Lip(f)}

(
max
T∈T

diamT +
1

n

)
.

Hence, using ∥x′ − x∥2 ≥
1
cn , we obtain∥∥g(x′)− g(x)

∥∥
2
≤ 2

√
dmax {1,Lip(f)}

(
max
T∈T

diamT +
1

n

)
+ Lip(f)

∥∥x′ − x
∥∥
2

≤ 3
√
dmax {1,Lip(f)} c

(
n ·max

T∈T
diamT + 1

)∥∥x′ − x
∥∥
2
.

It only remains to verify the existence of the mapping g. To do this we will
adopt a similar strategy to that employed in [7, Theorem 4.1]. By Hall’s Marriage
Theorem it suffices to verify that |A| ≤ |R(A)| for any set A ⊆ X.

Let A ⊆ X, T1, . . . , Tp be an enumeration of {T (x) : x ∈ A} and E :=
⋃

j∈[p] f(Tj).

Then {
y ∈ Y : d∞(y, E) ≤ 1

n

}
=

{
y ∈ Y : d∞(y,E) ≤ 1

n

}
= R(A).
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Moreover, E =
⋃

j∈[p] f(Tj) is ν-measurable because it is closed and ν is Borel.

Therefore, by (2.3),

(2.5) ν

⋃
j∈[p]

f(Tj)

 ≤ 1

nd
· |R(A)| .

On the other hand, using f♯µ = ν and (2.2) we may derive

(2.6) ν

⋃
j∈[p]

f(Tj)

 ≥
∑
j∈[p]

µ(Tj) ≥ 1

nd

∑
j∈[p]

|X ∩ Tj | ≥ 1

nd
· |A| .

Combining (2.5) and (2.6) we get

|A| ≤ |R(A)| ,

as required. □

3. Well-distributed sets.

In this section we derive an upper bound on the best Lipschitz constant Fn(S)

for sets S ∈
([cn]d

nd

)
which are ‘well-distributed’ in the sense that the points are quite

evenly spread, relative to the grid partition coming from Tm.

Lemma 3.1. Let m,n, l ∈ N with m = 2l ≤ n, 0 < θ < a < b < 1
θ , c > 1 and

S ⊆ Zd ∩ [0, cn]d be a finite set with |S| = nd and

and

md
≤ |S ∩ (cn · T )| ≤ bnd

md

for all T ∈ Tm, where Tm is defined by (2.1). Then there exists a bijection g : S →
[n]d and constants Λ := Λ(d), ∆ := ∆(d, θ) with

Lip(g) ≤ Λexp (log n− l(1−∆(b− a))) .

Let us begin working towards a proof of Lemma 3.1. The bound will be estab-
lished by applying Lemma 2.2 in the case that ν is the Lebesgue measure on [0, 1]d

and µ has the form µ = ρL, where ρ is of the form considered in the next lemma.

Lemma 3.2. Let l ∈ N, θ ∈ (0, 1), Tk be defined by (2.1) for each k ∈ N, and
ρ : [0, 1]d → (0,∞) be a function such that ρ|T is constant for each T ∈ T2l,∫
[0,1]d ρ dL = 1 and θ ≤ min ρ ≤ max ρ ≤ 1

θ . Then there exists a Lipschitz homeo-

morphism f : [0, 1]d → Rd and a constant ∆ = ∆(d, θ) > 0 such that

f♯ρL = L|[0,1]d ,

and

Lip(f) ≤ (1 + ∆(max ρ−min ρ))l.

The proof of Lemma 3.2 is due to Rivieré and Ye [8]. However, there the argument
is used to prove a more general statement and Lemma 3.2 is not stated or proved
explicitly. The proof is based on the following lemma.
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Lemma 3.3 ( [8, Lemma 1]). Let D = [0, 1]d, A = [0, 1]d−1 ×
[
0, 12
]
and B =

[0, 1]d−1 ×
[
1
2 , 1
]
. Let α, β ≥ 0 be such that α + β = 1 and let η > 0 be such that

η ≤ α ≤ 1 − η. Then there exists a Lipschitz homeomorphism Φ: [0, 1]d → [0, 1]d

and a constant ∆ = ∆(d, η) such that

(i) Φ|∂[0,1]d = id∂[0,1]d,

(ii) Jac(Φ)(x) =

{
2α if x ∈ A,

2β if x ∈ B,
for a.e. x ∈ [0, 1]d,

(iii) Lip(Φ− id) ≤ ∆ |1− 2α|.

Since we only require the argument of Rivieré and Ye [8] for a particular special
case, the following restricted version of the argument is more convenient for the
reader.

Proof of Lemma 3.2. For each i ∈ N ∪ {0} and k = (k1, . . . , kd) ∈ ({0} ∪ [2i − 1])d

we let

C(k, i) :=
∏

1≤j≤d

[
kj
2i
,
kj + 1

2i

]
.

Observe that the sets C(k, i) for k ∈ ({0} ∪ [2i − 1])d are, up until sets of Lebesgue
measure zero, the same as the sets in T2i . In particular we have that the restriction
of ρ to each C(k, l) is a.e. constant.

For each i ∈ N ∪ {0}, we define a homeomorphism Φi : [0, 1]
d → [0, 1]d by pre-

scribing it on each cube C(k, i), k = (k1, . . . , kd) ∈ ({0} ∪ [2i − 1])d.
Fix i ∈ N ∪ {0} and k = (k1, . . . , kd) ∈ ({0} ∪ [2i − 1])d. For each p ∈ [d] and

ε = (ε1, . . . , εd) ∈ {0, 1}d let

Ap
i (ε) =

p−1∏
j=1

[
kj
2i
,
kj + 1

2i

]
×
[
kp
2i
,
2kp + 1

2i+1

]
×

d∏
j=p+1

[
kj
2i

+
εj
2i+1

,
kj
2i

+
εj + 1

2i+1

]
,

Bp
i (ε) =

p−1∏
j=1

[
kj
2i
,
kj + 1

2i

]
×
[
2kp + 1

2i+1
,
kp + 1

2i

]
×

d∏
j=p+1

[
kj
2i

+
εj
2i+1

,
kj
2i

+
εj + 1

2i+1

]
,

αp
i (ε) =

∫
Ap

i (ε)
ρ dL∫

Ap
i (ε)∪B

p
i (ε)

ρ dL
, βp

i (ε) =

∫
Bp

i (ε)
ρ dL∫

Ap
i (ε)∪B

p
i (ε)

ρ dL
.

Note that, for each fixed p, the sets Ap
i (ε), B

p
i (ε) indexed by ε = (ε1, . . . , εd) ∈

{0, 1}d determine a partition of C(k, i). More precisely, after ignoring repetitions,
these sets have pairwise disjoint interiors and their union is C(k, i).

For each j ∈ [d] we define a homeomorphism Φj
i : C(k, i) → C(k, i) as follows:

For each ε = (ε1, . . . , εd) ∈ {0, 1}d define Φj
i |Aj

i (ε)∪B
j
i (ε)

as the homeomorphism

given by the conclusion of Lemma 3.3 applied with D = Aj
i (ε) ∪Bj

i (ε), A = Aj
i (ε),

B = Bj
i (ε), α = αj

i (ε) and β = βj
i (ε). Note that here we have to use Lemma 3.3
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in combination with suitable affine transformations. Further, the parameter η in

Lemma 3.3 may be taken as η = θ2

1+θ2
and we have

|1− 2αp
i (ε)| ≤

1

2θ
(max ρ−min ρ), p ∈ [d], ε ∈ {0, 1}d .

Hence, this application of Lemma 3.3 provides a Lipschitz homeomorphism

Φj
i : A

j
i (ε) ∪Bj

i (ε) → Aj
i (ε) ∪Bj

i (ε)

with properties (i)–(iii), where, for a constant ∆ = ∆(d, θ) > 0, (iii) translates to

Lip(Φj
i − id) ≤ ∆(max ρ−min ρ), j ∈ [d],

implying

(3.1) Lip(Φj
i ) ≤ 1 + ∆(max ρ−min ρ), j ∈ [d].

Due to property (i), we can glue all of these homeomorphisms together to obtain

a homeomorphism Φj
i : C(k, i) → C(k, i) preserving (3.1). Property (i) then allows

us to again glue all of these homeomorphisms constructed on each C(k, i) together

to obtain a homeomorphism Φj
i : [0, 1]

d → [0, 1]d preserving (3.1).
Finally set

Φi := Φd
i ◦ Φd−1

i ◦ . . . ◦ Φ1
i for i ∈ [l − 1] ∪ {0},

fq := Φ0 ◦ Φ1 ◦ Φ2 ◦ . . .Φq for q ∈ [l − 1], and f := fl−1.

It can be checked that whenever C(k′, i+ 1) ⊆ C(k, i), we have

Jac(Φi)|C(k′,i+1) ≡
2d
∫
C(k′,i+1) ρ dL∫
C(k,i) ρ dL

.

Moreover, for each i and C(k, i) we have that Φi|C(k,i) is a homeomorphism C(k, i) →
C(k, i). Thus, we may use the chain rule for Jacobians to compute

Jac(f)(x) =
2ld
∫
C(k,l) ρ dL∫

[0,1]d ρ dL
=

1

C(k, l)

∫
C(k,l)

ρ dL = ρ(x)

for all k and a.e. x ∈ C(k, l),

where for the last equality we use that ρ|C(k,l) is a.e. constant for each C(k, l). Hence

Jac(f)(x) = ρ(x) for a.e. x ∈ [0, 1]d and accordingly f♯ρL = L|[0,1]d . Moreover, we
have

Lip(f) ≤
l−1∏
q=0

Lip(Φq) ≤
l−1∏
q=0

d∏
j=1

Lip(Φj
q)

≤ (1 + ∆(max ρ−min ρ))ld ≤ (1 + ∆(max ρ−min ρ))l,

where we allow the constant ∆ = ∆(d, θ) to increase in the last occurence. □

Proof of Lemma 3.1. Define ρ : [0, 1]d → (0,∞) by

ρ|T ≡ md

nd
· |S ∩ (cn · T )| , T ∈ Tm, ρ|[0,1]d\∪ Tm ≡ 0.
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Thus, ρ is constant on each T ∈ Tm and a ≤ ρ ≤ b. By Lemma 3.2 there exists a
Lipschitz homeomorphism f : [0, 1]d → [0, 1]d and a constant ∆ = ∆(d, θ) such that
f♯ρL = L|[0,1]d and Lip(f) ≤ (1 + ∆(b − a))l. We may now apply Lemma 2.2 to

µ = ρL, ν = L|[0,1]d , n, T = Tm, c, X = 1
cnS, Y = 1

n [n]
d and f to get a bijective

mapping g̃ : 1
cn · S → 1

n [n]
d and a constant Λ = Λ(d) with

Lip(g̃) ≤ Λmax {Lip(f), 1} c n
m

≤ Λc2logn−l(1 + ∆(b− a))l

= Λc exp (log n− l(1− log(1 + ∆(b− a)))) ≤ Λc exp (log n− l(1−∆(b− a))) .

Finally, we define g : S → [n]d by

g(x) = n · g̃
( x

cn

)
, x ∈ S.

□

4. Random sets.

In this section we show that for C > 1 and large n, a random set S ∈
([C1/dn]d

nd

)
is well-distributed in the sense of Section 3 with high probability. The statements
in this section will be written according to Convention 2.1.

Calculating probabilities in the space
([C1/dn]d

nd

)
will inevitably lead to expressions

involving large binomial coefficients. To estimate these numbers, we will use the
following standard lemma which follows easily from Stirling’s approximation of the
factorial.

In what follows H denotes the binary entropy function

H(t) = −t log t− (1− t) log(1− t), t ∈ [0, 1].

Later on we will use certain important properties of the binary entropy function H,
namely that it is strictly convex, differentiable and that its derivative is given by

H ′(t) = − log

(
t

1− t

)
, t ∈ (0, 1).

Lemma 4.1. There is an absolute constant Λ > 0 such that for every p ∈ NΛ−1
√

p
2πq(p−q) · 2

pH
(

q
p

)
≤
(
p
q

)
≤ Λ

√
p

2πq(p−q) · 2
pH

(
q
p

)
if q ∈ [p− 1] \ {0} ,

Λ−12
pH

(
q
p

)
≤
(
p
q

)
≤ Λ2

pH
(

q
p

)
if q ∈ {0, p} .

Note that the inequalities of Lemma 4.1 for the case q ∈ {0, p} are trivial, because(
p
0

)
=
(
p
p

)
= 1. We write them here because we wish to treat the case q ∈ {0, p}

together with the case q ∈ [p− 1] later on.

Proof of Lemma 4.1. By Stirling’s Approximation of n! (see for example [9]), the
quantities

α := inf
n∈N

n!√
2πn

(
n
e

)n > 0,
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and

β := sup
n∈N

n!√
2πn

(
n
e

)n < ∞,

are absolute constants. Let p ∈ N and q ∈ [p− 1] \ {0}. Then,(
p

q

)
=

p!

q!(p− q)!
≤ β

α2
·
√

p

2πq(p− q)
· pp

qq(p− q)p−q
=

β

α2
·
√

p

2πq(p− q)
· 2pH

(
q
p

)
,

and similarly (
p

q

)
≥ α

β2
·
√

p

2πq(p− q)
· 2pH

(
q
p

)
.

Now let p ∈ N and q ∈ {0, p}. Then, H
(
q
p

)
= 0 and(

p

q

)
= 1 = 2

pH
(

q
p

)
.

Therefore, we may take Λ =
max{β,β2}
min{α,α2} . □

Lemma 4.2. Let I ⊆ R be an open interval, f : I → (0,∞) be a differentiable,
concave and strictly increasing function and let s, t ∈ I with s < t and let λ ∈ (0, 1).
Then

f((1− λ)s+ λt) ≤ f ′(s)

f ′(t)
· ((1− λ)f(s) + λf(t))) .

Proof. If the inequality holds for the function g(u) := f(u)−f(s) in place of f then
it also holds for f . This is readily verified using the concavity and positivity of f .
Thus, we may assume that f(s) = 0. This allows us to write

f((1− λ)s+ λt)

(1− λ)f(s) + λf(t)
=

∫ (1−λ)s+λt
s f ′(u) du

λ
∫ t
s f

′(u) du
≤ f ′(s)

f ′(t)
.

□

Lemma 4.3. Let δ ∈ [0, 12), N ∈ N, M > 1, 1
2 < a < 1− δ, 1 + 2δ < b < 2, X be a

finite set with |X| > bN and Y ⊆ X be a set with

(4.1)
(1− δ) |X|

M
≤ |Y | ≤ (1 + δ) |X|

M
.

Then, there is an absolute constant Γ > 0 such that a random set S ∈
(
X
N

)
satisfies

(4.2) P
[
|S ∩ Y | ≤ aN

M

]
≤ Γ ·

√
|X| −N

|X|
(
1− 2

M

)
−N

· N
3/2

M
· exp

(
−(1− (a+ δ))2N(|X| −N)

ΓM(|X| − (a+ δ)N)

)
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and

(4.3) P
[
|S ∩ Y | ≥ bN

M

]
≤ Γ ·

√
|X| −N

|X|
(
1− 2

M

)
−N

·N3/2 · exp
(
−(b− 2δ − 1)2N(|X| − (b− 2δ)N)

ΓM(|X| −N)

)
.

Proof. The probabilities considered in (4.2) and (4.3) are bounded above by(
|X|
N

)−1∑
k

(
|Y |
k

)(
|X| − |Y |
N − k

)
,

where the sum is taken over 0 ≤ k ≤ aN
M for (4.2) and over bN

M ≤ k ≤ min {N, |Y |}
for (4.3). Our first aim is to establish an upper bound for the quantity

(4.4)

(
|X|
N

)−1(|Y |
k

)(
|X| − |Y |
N − k

)
for 0 ≤ k ≤ min {N, |Y |}.

Fix 0 ≤ k ≤ min {N, |Y |} and define

Vk :=

{√
|Y |

k(|Y |−k) if k /∈ {0, |Y |} ,
1 if k ∈ {0, |Y |} ,

Wk :=

{√
|X|−|Y |

(N−k)(|X|−|Y |−N+k) if N − k /∈ {0, |X| − |Y |} ,
1 if N − k ∈ {0, |X| − |Y |} .

Then, we may use Lemma 4.1 to bound the product in (4.4) above by

(4.5) Λ ·

(√
|X|

N(|X| −N)

)−1

VkWk · exp (− |Y | γk) ,

where Λ > 0 is an absolute constant and

(4.6) γk :=
|X|
|Y |

H

(
N

|X|

)
−H

(
k

|Y |

)
−
(
|X|
|Y |

− 1

)
H

(
N − k

|X| − |Y |

)
.

The product
(√

|X|
N(|X|−N)

)−1

VkWk in (4.5) may be bounded above by

√
|Y |

|Y | − 1
·

√
N

N − (N − 1)
·

√
|X| −N

|X| −N − |Y |
≤

√
2
√
N

√
|X| −N

|X| −N − |Y |
.

Therefore, we obtain an absolute constant Γ > 0 such that

(4.7)

(
|X|
N

)−1(|Y |
k

)(
|X| − |Y |
N − k

)
≤ Γ

√
N(|X| −N)

|X| −N − |Y |
· exp (− |Y | γk) .
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Our task is now to establish a lower bound on γk. To this end, we rewrite the
formula (4.6) for γk as

γk = H

(
N

|X|

)
−H

(
k

|Y |

)
−
(
|X|
|Y |

− 1

)(
H

(
N − k

|X| − |Y |

)
−H

(
N

|X|

))
= H

(
N

|X|

)
−H

(
k

|Y |

)
−
(

N

|X|
− k

|Y |

)
H ′(ξk)

for some ξk lying in the interval with endpoints N
|X| and

N−k
|X|−|Y | . From the bounds

on |Y |, a and b given by the hypothesis of the lemma, we have

k

|Y |
<

N

|X|
≤ ξk ≤ N − k

|X| − |Y |
if 0 ≤ k ≤ aN

M
,(4.8)

N − k

|X| − |Y |
≤ ξk ≤ N

|X|
<

k

|Y |
if

bN

M
≤ k ≤ min {N, |Y |}.(4.9)

Assume first, that 0 ≤ k ≤ aN
M . Then (4.8), together with that fact that H is

strictly concave, allows us to write

γk =

∫ N
|X|

k
|Y |

H ′(t)−H ′(ξk) dt ≥
∫ N

|X|

(a+δ)N
|X|

H ′(t)−H ′
(

N

|X|

)
dt

≥ H

(
N

|X|

)
−H

(
((a+ δ)N

|X|

)
− (1− (a+ δ))N

|X|
H ′
(

N

|X|

)
= − N

|X|
log

(
N

|X|

)
−
(
1− N

|X|

)
log

(
1− N

|X|

)
+

(a+ δ)N

|X|
log

(
(a+ δ)N

|X|

)
+

(
1− (a+ δ)N

|X|

)
log

(
1− (a+ δ)N

|X|

)
+

(1− (a+ δ))N

|X|
log

(
N
|X|

1− N
|X|

)

=

(
1− (a+ δ)N

|X|

)
log

(
|X| − (a+ δ)N

|X| −N

)
+

(a+ δ)N

|X|
log(a+ δ).

Finally, we apply Lemma 4.2 to I = (0,∞), f = log, s = a and t = |X|−(a+δ)N
|X|−N in

order to bound the latter expression below by
(4.10)

log′
(
|X|−(a+δ)N

|X|−N

)
log′(a+ δ)

log

(
1 +

(1− (a+ δ))2N

|X| −N

)
≥ (1− (a+ δ))2N(|X| −N)

2 |X| (|X| − (a+ δ)N)
,

where the latter inequality is derived by applying the inequality log(1 + x) ≥ x
1+x .

Similarly, if bN
M ≤ k ≤ min {N, |Y |}, we use (4.9) and the strict concavity of H to
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derive

γk =

∫ k
|Y |

N
|X|

H ′(ξk)−H ′(t) dt ≥
∫ (b−2δ)N

|X|

N
|X|

H ′
(

N

|X|

)
−H ′(t) dt

≥ (b− 2δ − 1)N

|X|
H ′
(

N

|X|

)
−
(
H

(
(b− 2δ)N

|X|

)
−H

(
N

|X|

))
≥ −(b− 2δ − 1)N

|X|
log

(
N
|X|

1− N
|X|

)
+

(b− 2δ)N

|X|
log

(
(b− 2δ)N

|X|

)
+

(
1− (b− 2δ)N

|X|

)
log

(
1− (b− 2δ)N

|X|

)
− N

|X|
log

(
N

|X|

)
−
(
1− N

|X|

)
log

(
1− N

|X|

)
=

(b− 2δ)N

|X|
log(b− 2δ) +

(
1− (b− 2δ)N

|X|

)
log

(
|X| − (b− 2δ)N

|X| −N

)
≥ log′(b− 2δ)

log′
(
|X|−(b−2δ)N

|X|−N

) · log
(
1 +

(b− 2δ − 1)2N

|X| −N

)

≥ (b− 2δ − 1)2N(|X| − (b− 2δ)N)

2 |X| (|X| −N)
.(4.11)

Finally, we substitute the lower bounds (4.10) and (4.11) for γk into (4.7), to ac-
quire upper bounds on the product in (4.4) in the cases 0 ≤ k ≤ aN

M and bN
M ≤ k ≤

min {N, |Y |} respectively. Moreover, in both cases these upper bounds are inde-
pendent of k. Thus, by summing the relevant upper bounds over 0 ≤ k ≤ aN

M and
bN
M ≤ k ≤ min {N, |Y |} respectively and additionally applying the bounds on |Y |
from (4.1), we establish (4.2) and (4.3). In case of possible future relevance, we point

out that the factor N3/2 in (4.3) may be replaced by N1/2 ·min {N, |Y |}. This comes
from keeping the term min {N, |Y |} when summing over bN

M ≤ k ≤ min {N, |Y |},
rather than bounding it above by N , as we do, for simplicity, to get (4.3). □

Lemma 4.4. Let d, n,m ∈ N and C, q ∈ R with

(4.12)
n

2(log n)q
≤ m ≤ 2n

(log n)q
, C ≥ 1 +

2d+7

log n
,

{
q ≥ 1 if C1/dn

m /∈ Z
q > 0 if C1/dn

m ∈ Z
.

Let Tm be defined by (2.1). Then there exists a constant Γ = Γ(d) > 0 such that a

random set S ∈
([C1/dn]d

nd

)
satisfies

(4.13) P

∃T ∈ Tm s.t.
∣∣∣S ∩

(
C1/dn · T

)∣∣∣ ≤
(
1− Γ

logn

)
nd

md


≤ ΓnΓ exp

(
−(log n)qd−2

Γ

)
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and

(4.14) P

∃T ∈ Tm s.t.
∣∣∣S ∩

(
C1/dn · T

)∣∣∣ ≥
(
1 + Γ

logn

)
nd

md


≤ ΓnΓ exp

(
−(log n)qd−2

Γ

)
.

Proof. In the present proof, Γ will always denote a (large) constant which may
depend only on d and whose value is allowed to increase in each occurence. So,
to give an example of the use of this convention, we would write the inequality
Γnd + dn ≤ Γnd for n ∈ N instead of writing Γnd + dn ≤ (Γ + d)nd. Moreover, we
point out that it suffices to verify the conclusions (4.13) and (4.14) of the lemma
with an additional assumption that n is larger than some threshold depending only
on d. The finitely many remaining n ∈ N can then be treated by adjusting the
constant Γ = Γ(d) if necessary. Therefore, in the present proof, every inequality
involving n should be read with an additional condition that n is sufficiently large,
where the sufficiently large condition depends only on d.

Fix T ∈ Tm and let X := [C1/dn]d and Y :=
(
C1/dn · T

)
∩X. Then,

Cnd

(
1− 2d

n

)
≤ |X| ≤ Cnd, and

Cnd

md

(
1− 2dm

n

)
≤ |Y | ≤ Cnd

md

(
1 +

2dm

n

)
.

These inequalities imply(
1− 2dm

n

)
|X|

md
≤ |Y | ≤

(
1 + 2d+2m

n

)
|X|

md
.

In the special case that C1/dn
m ∈ Z, we note that |Y | = Cnd

md = |X|
md .

Set N = nd, M := md and δ :=

{
2d+2m

n if C1/dn
m /∈ Z

0 if C1/dn
m ∈ Z

, so that (4.1) is satisfied

and

(4.15)
2d+1

(log n)q
≤ δ ≤ 2d+3

(log n)q
, if

C1/dn

m
/∈ Z.

We apply Lemma 4.3 to δ, N , M , a := 1 − 2d+5

logn , b = 1 + 2d+5

logn , X and Y . After

applying the bounds or substituting the values for the parameters, the probability
inequalities (4.2) and (4.3) given by Lemma 4.3 become
(4.16)

P

∣∣∣S ∩
(
C1/dn · T

)∣∣∣ ≤
(
1− 2d+5

logn

)
nd

md

 ≤ Γnd/2(log n)qd exp

(
−(log n)qd−2

Γ

)
,
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and

(4.17) P

∣∣∣S ∩
(
C1/dn · T

)∣∣∣ ≥
(
1 + 2d+5

logn

)
nd

md

 ≤ Γn3d/2 exp

(
−(log n)qd−2

Γ

)
.

To aid in the verification of (4.16) and (4.17) we list the following utilised bounds
on terms from (4.2) and (4.3):

|X| −N

|X|
(
1− 2

M

)
−N

≤ 2,(4.18)

|X| −N

|X| − (a+ δ)N
≥ 1

2
,(4.19)

|X| − (b− 2δ)N

|X| −N
≥ 1

2
,(4.20)

We presently explain how to verify each of the bounds (4.18)–(4.20): For (4.18),
first note that

|X| −N

|X| (1− 2
M )−N

≤ (C − 1)

C
(
1− 2d

n

) (
1− 2

M

)
− 1

≤ C − 1

(C − 1)− C
(
2d

n + 2
M

) ,
and then observe that

2d

n
+

2

M
<

1

log n
<

C − 1

2C
.

For (4.19), observe that

|X| −N

|X| − (a+ δ)N
≥

C
(
1− 2d

n

)
− 1

C − (a+ δ)
,

and the inequality
C
(
1− 2d

n

)
−1

C−(a+δ) ≥ 1
2 is equivalent to

C ≥
1− (a+δ)

2
1
2 − 2d

n

= 1 +

2d+4

logn − δ
2 + 2d

n

1
2 − 2d

n

,

which evidently holds, in light of (4.12) and (4.15). The verification of (4.20) can
be done similarly to that of (4.19).

Having established (4.16) and (4.17), we obtain (4.13) and (4.14) by summing

(4.16) and (4.17) over T ∈ Tm and applying the bound |Tm| = md ≤ 2dnd

(logn)qd
. □

5. Proof of Main Result.

To finish this note, we give a proof of Theorem 1.1. For the reader’s convenience,
we repeat the statement here:

Theorem 1.1. Let d ∈ N with d ≥ 2 and q ∈ R with q ≥ 1 and q > 3
d . For

each n ∈ N let cn ≥
(
1 + 2d+7

logn

)1/d
, Ωn :=

({1,...,⌊cn·n⌋}d
nd

)
and consider the probability
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space (Ωn, 2
Ωn ,P = PΩn) defined by (1.4) and the random variable Fn : Ωn → (0,∞)

defined by

Fn(S) = min
{
Lip(f) : f : S → {1, . . . , n}d surjective

}
, S ∈ Ωn.

Then there exists a constant Γ = Γ(d) > 0 such that

P [Fn ≤ Γ(log n)q] ≥ 1− ΓnΓ exp

(
−(log n)qd−2

Γ

)
for all n ∈ N.

In particular, we have that

lim
n→∞

P [Fn ≤ Γ(log n)q] = 1.

Proof. In this proof we will adopt the same convention with the constant Γ as used in
the proof of Lemma 4.4, see the start of the proof of Lemma 4.4 for an explanation.

Set ln := ⌊log n − q log log n⌋ and mn := 2ln for all n ∈ N starting at a certain
threshold so that all expressions make sense. For the finitely many remaining n we
define mn in the same way, but set ln = 1.

We set Cn := cdn. The conditions of Lemma 4.4 are satisfied for d, n, m = mn,
C = Cn and q. Applying Lemma 4.4, we deduce that there is a constant Γ = Γ(d) >
0 such that

(5.1) P


(
1− Γ

logn

)
nd

md
n

≤
∣∣∣S ∩

(
C1/d
n n · T

)∣∣∣ ≤
(
1 + Γ

logn

)
nd

md
n

for all T ∈ Tm


≥ 1− ΓnΓ exp

(
−(log n)qd−2

Γ

)
,

for all n ∈ N and a random set S ∈ Ωn; see Convention 2.1. Let Λ = Λ(d) > 0
and ∆ = ∆(d, 12) be the constants given by the conclusion of Lemma 3.1. Then,
combining (5.1) and Lemma 3.1, we conclude that

P
[
Fn > Λexp

(
log n− ln

(
1− 2∆Γ

log n

))]
≤ ΓnΓ exp

(
−(log n)qd−2

Γ

)
,

for all n ∈ N. To finish the proof, it only remains to observe

exp

(
log n− ln

(
1− 2∆Γ

log n

))
≤ exp

(
log n− (log n− q log log n− 1) ·

(
1− 2∆Γ

log n

))
= exp

(
2∆Γ + (q log log n+ 1)

(
1− 2∆Γ

log n

))
≤ Γ(log n)q.

The ‘in particular’ conclusion of Theorem 1.1 requires

lim
n→∞

nΓ exp

(
−(log n)qd−2

Γ

)
= 0,

which is satisfied, since q > 3/d. □
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