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The Kakeya conjecture is open for n ≥ 3, only partial results are known. For n = 3
the best lower bound for the Hausdorff dimension is 5/2+ε for some small constant
ε > 0 by a recent result of Katz and Zahl [6], the best known lower bound for general
n is (2 −

√
2)(n − 4) + 3, proved in 2002 by Katz and Tao [5]. Since in the plane

Kakeya conjecture was proved by Davies [2], the above argument gives that if n = 2
and A is a line then the answer to Problem 1.1 is 2. Recently, L. Venieri [8, Theorem
9.2] proved the following more general result.

Theorem 1.2. (Venieri) Let f : Rn−1 → R be a Lipschitz function and let A be
a subset of the graph of f with positive n − 1-dimensional Hausdorff measure. Let
B ⊂ Rn be a set such that for every x ∈ A the set B contains a line ℓx through x,
and at those x, where f has a tangent hyperplane Tx, ℓx ̸⊂ Tx. Then the Hausdorff
dimension of B is at least n+2

2 .

In fact, Venieri proved an even more general result for rectifiable sets and ap-
proximate tangent planes and in her result instead of l ⊂ B it is enough to assume
that B ∩ l contains a line segment. This is also related to the so called Nikodym
sets, which are Lebesuge measure zero subsets of Rn such that through every point
of Rn there exists a line through x whose intersection with the set contains a unit
segment. The Hausdorff dimension of the Nikodym sets are also conjectured to
be n and this conjecture would follow from the Kakeya conjecture by the above
mentioned argument.

In this paper we mainly work in the plane (n = 2). Then Theorem 1.2 gives the
sharp estimate dimB = 2 but it is not clear what happens if we also allow tangent
lines. One might expect that still we should get that the dimension of B be 2 unless
some individual lines cover too big a part of A. This will turn out to be wrong.
First we study the case when we use only tangent lines. We construct (Theorem 2.3)
a strictly convex function F : [0, 1] → R such that the union of its tangent lines
and one-sided tangent lines has Hausdorff dimension 1. Note that strict convexity
implies that every tangent line or one-sided tangent line intersects the graph of
F in a single point. Recall that although a convex function does not have to be
differentiable everywhere, it is differentiable almost everywhere and the one-sided
derivatives exist everywhere (if we also allow ±∞), so the one-sided tangent lines
exist everywhere, thus the tangent lines and one-sided tangent lines cover the whole
graph of F . We also prove (Theorem 2.4) that there exists no such construction if we
require differentiability everywhere: the union of the tangent lines of a differentiable
function has always Hausdorff dimension 2 unless the function is linear.

And what if we allow both tangent and non-tangent lines? We show (Theo-
rem 2.5) that in this case even continuous differentiability is not enough to exclude
very small covers: we construct a strictly convex C1 function such that its graph
can be covered with lines such that the union of the lines has Hausdorff dimension
1. Finally, we give necessary conditions about the smoothness of the curve that
guarantee that the union of the covering lines has Hausdorff dimension 2.

In this paper, for any given set S, we will use Hd(S) to denote the d-dimensional
Hausdorff measure of the set S, and we will use dim(S) to denote Hausdorff dimen-
sion of S.
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2. The results

In the following lemma, the phrase “tangent lines” refers to left tangent lines,
right tangent lines, or any line with slope between the two. The only thing required
is for any “tangent line” to lie below the curve other than at its point of intersection.
This criterion is fulfilled by regular tangent lines because of convexity.

Lemma 2.1. Let F : [0, 1] → R be a strictly convex function. Let X be a set of
lines tangent to F in the above mentioned sense. Then the set

∪
X has Hausdorff

dimension one if the set of the slopes of X has Hausdorff dimension zero.

Proof. Let Y be the code set of X, that is Y = {(a, b) | (y = ax + b) ∈ X}. Let
(a1, b1), (a2, b2) ∈ Y . Our first goal is to show that |b1 − b2| ≤ |a1 − a2|.

Let l1(x) = a1x + b1, and l2(x) = a2x + b2. At the tangent points we have
aixi + bi = F (xi), for i ∈ {1, 2}. We can clearly suppose that x1 ≤ x2. We claim
that there exists a point x∗ ∈ [x1, x2] ⊂ [0, 1] such that l1(x

∗) = l2(x
∗). This clearly

holds if x1 = x2, so we can suppose that x1 ̸= x2. Since F is strictly convex, we
have l1(x) < F (x) for all x ̸= x1. Thus, we have l1(x2) < F (x2) = l2(x2). Similarly
we obtain l1(x1) = F (x1) > l2(x1). By continuity of l1 − l2, we get that indeed
there must be a point x∗ ∈ [x1, x2] ⊆ [0, 1] such that l1(x

∗) = l2(x
∗) and so have

|b1 − b2| = x∗|a1 − a2| ≤ |a1 − a2|.
Thus Y is the graph of a Lipschitz function defined on a set of Hausdorff dimension

zero. Then Y has Hausdorff dimension zero. Let g : Y × R → R2 be the function
g((a, b), t) = (t, at+b). Note that dim(Y ×R) = dimY +1 = 1, g is locally Lipschitz
and maps Y × R to

∪
X. Thus,

∪
X has dimension one. □

The following lemma is a special case of a result of Molter and Rela [10] and also
of a different result of Falconer and Mattila [3].

Lemma 2.2. Let X be a set of lines in the plane. Then, the set
∪
X has Hausdorff

dimension 2 if the set of slopes of X has Hausdorff dimension at least 1.

Our first goal is to show there exists a strictly convex function such that the union
of the set of one-sided tangent lines has dimension 1. The idea is the following. We
construct a strictly increasing function whose image is zero dimensional. Then, its
integral together with the set of one-sided tangent lines will satisfy Lemma 2.1.
Thus, the union of the set of one-sided tangent lines will have Hausdorff dimension
one.

Theorem 2.3. There exists a strictly convex function F : [0, 1] → R such that the
union of the set of one-sided tangent lines E has Hausdorff dimension 1.

Proof. For all x ∈ [0, 1], we can write x =
∑∞

i=1 ωi/2
i, for ωi ∈ {0, 1} for all i ∈ N.

Let B = {k/2n | k, n ∈ N; k ≤ 2n}. Observe that points in B can be represented
by two different sums (one is a finite sum, the other is an infinite sum), we shall
always choose the finite sum. Consider the function f : [0, 1] → [0, 1], defined as

f

( ∞∑
i=1

ωi

2i

)
=

∞∑
i=1

ωi

2i2
, for any

∞∑
i=1

ωi

2i
∈ [0, 1].
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Since monotonically increasing functions are integrable, we have that f is integrable.
Let F : [0, 1] → R be defined as

F (x) =

∫ x

0
f(x) dx.

Since f is strictly increasing, we have that F is a strictly convex function. Notice
that f is continuous on [0, 1]\B, so F is differentiable on [0, 1]\B and F ′(x) = f(x)
on [0, 1] \B. Let E be the set of one-sided tangent lines of F .

Second we are going to show that the union of E has Hausdorff dimension 1.
Since B is countable it is enough to consider the tangent lines at the points of
[0, 1] \B. Notice that the set of slopes of these tangent lines is exactly f([0, 1] \B),
so it is a subset of the range of f . However, the range of f can be covered by 2n

closed intervals with diameter 2−n2
. Then, for all d > 0, we have

Hd
(
f([0, 1])

)
≤ lim

n→∞
2n

(
1

2n2

)d

= lim
n→∞

1

2d·n2−n
= 0.

Then, we have dim
(
f([0, 1])

)
= 0. By Lemma 2.1, since F is strictly convex, we get

that the union of the one-sided tangent lines at the points of [0, 1]\B has Hausdorff
dimension 1. Since B is countable, this completes the proof. □

In Theorem 2.3, the function F is differentiable almost everywhere. The following
result shows that there is no such differentiable construction.

Theorem 2.4. Let F : [0, 1] → R be a differentiable function with nonconstant
derivative. Then the union of the tangent lines of F has Hausdorff dimension 2.

Proof. Since F ′ is non-constant, there exist a, b ∈ [0, 1] such that F ′(a) ̸= F ′(b).
Without loss of generality, suppose F ′(a) < F ′(b). By Darboux’s Theorem, for all
c ∈ [F ′(a), F ′(b)], there exists x ∈ [a, b] (or x ∈ [b, a] if a > b) such that F ′(x) = c.
Since the derivative is the directions of the tangent lines, we obtained that the set
of directions of tangent lines has dimension 1. Then, by Lemma 2.2, the union of
the tangent lines of F has Hausdorff dimension 2. □

In Theorems 2.3 and 2.4, we only used tangent lines (or one-sided tangents).
Differentiable almost everywhere is the nicest condition of a such function whose
union of tangent lines (one-sided tangent lines) has Hausdorff dimension 1. The
following theorem shows that if we use some non-tangent lines we can make a C1

function which fits the criteria.

Theorem 2.5. There exists a strictly convex C1 function F : [0, 1] → R and a set
of lines E such that graph(f) ⊂

∪
E, every line of E intersects graph(f) in a single

point and dim
∪
E = 1.

Proof. Let C be a zero Hausdorff-dimensional Cantor set, that is, a zero Hausdorff-
dimensional nonempty perfect nowhere dense set in the interval [0, 1]. First we
construct a Cantor type function ϕ : R → [0, 1] from C. Let J be the collection of
the connected components of R \C and let D be the set of finite binary numbers in
[0, 1]. It is well known and not hard to show that there exists an order preserving
bijection ψ : J → D, where we consider the natural ordering on J . On R \ C we
define ϕ as ϕ(x) = ψ(J) for x ∈ J ∈ J . The same way as in the case of the classical
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Cantor function one can easily show that ϕ can be extended to C such that ϕ is
continuous and non-decreasing.

Note that ϕ maps all points other than a set of dimension 0 to a set of dimension
0. We wish to construct a strictly increasing function which retains this property,
the integral of which will yield the desired function. To do so, first we will construct
a sequence of functions (fn)n∈N inductively. In addition to (fn)n∈N, an,i and bn,i
will be sequences of real numbers, and Cn will be a sequence of compact sets. All
will be constructed in parallel. Let C1 = C, and f1 = ϕ. Suppose Cn and fn are
given. For each n let (an,i, bn,i)i∈N be an enumeration of the maximal intervals in
[0, 1] \ Cn. It is not hard to check that we can also guarantee that

(2.1) (an,i1 , bn,i1) ⊂ (an−1,i2 , bn−1,i2) =⇒ i1 ≥ i2.

Let Cn+1 = Cn ∪
( ∪

i∈N
(bn,i − an,i) · C + an,i

)
. We define

fn+1(x) = fn(x) +
∑
i∈N

1

2n+i+2
· ϕ

(
x− an,i
bn,i − an,i

)
.

That is, we add a smaller copy of ϕ to each constant interval in fn+1. Let f(x) =
lim
n→∞

fn(x). As this is the uniform limit of continuous functions, it must also be

continuous. Clearly, f is non-decreasing. Note that, by construction, for any 0 ≤
x < y ≤ 1 there exist n and i such that x < an,i < bn,i < y, which implies that f is

strictly increasing. Let F (x) =
x∫
0

f(t) dt. Then F ′ = f , so F is a strictly convex C1

function. Let C∗ =
∪
n∈N

Cn.

Now, we construct E, the set of lines which covers the graph of F . For each
x0 ∈ [0, 1], there are two possibilities. If x0 ∈ C∗, add in the vertical line x = x0 to
the set E. If x0 ̸∈ C∗, add in the tangent line f(x0)(x− x0) + F (x0) to the set E.
We claim that dim f([0, 1] \ C∗) = 0. By (2.1), for every n, i ∈ N we have that

f(bn,i)− f(an,i) ≤
∑
m≥n

∑
j:(am,j ,bm,j)⊂(an,i,bn,i)

1

2m+j+2
≤

∑
m≥n

∑
j≥i

1

2m+j+2
≤ 1

2n+i
.

Thus for any given n we can cover the set f([0, 1]\C∗) using [f(an,i), f(an,i)+
1

2n+i ]
for all i ∈ N. Hence for any d > 0 we have

Hd
(
f([0, 1] \ C∗)

)
≤ lim

n→∞

∑
i∈N

1

2d(n+i)
= lim

n→∞

1

2dn

∑
i∈N

1

2di
= 0.

Thus, we obtained dim f([0, 1] \C∗) = 0. Note that the set of slopes of the tangent
lines in E is f([0, 1] \ C∗). Therefore, by Lemma 2.1, the Hausdorff dimension of
the union of the set of tangent lines is 1. The union of the set of non-tangent lines,
being C∗ × R, also has dimension 1 since dimC∗ = 0, so we can conclude that
dim(

∪
E) = 1. □

The following results show that the constructed function in Theorem 2.5 cannot
be very smooth.
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Theorem 2.6. Let F be a differentiable real-valued Lipschitz function on I = [0, 1]
with a derivative which maps sets of full Lebesgue measure in I to sets of Hausdorff
dimension one. Then the union of any set of lines which covers the graph of F has
Hausdorff dimension 2.

Proof. Let T be the set of x-coordinates of the points on the graph of F covered
by tangent lines. Let U be the set of x-coordinates of the points covered by only
non-tangent lines. There are two cases.

Case 1: Suppose U has Lebesgue measure zero, so T has full Lebesgue measure in
I. Let M be the set of slopes of the tangent lines at the points of T . By definition,
we have that M is F ′(T ). Since F ′ maps sets of full measure to sets of Hausdorff
dimension 1, the set of slopes of the lines has Hausdorff dimension 1. By Lemma 2.2,
we thus have that the union of lines has Hausdorff dimension two.

Case 2: Suppose U has positive outer measure. Let A = graphF ↾U . Because
dimU = 1, the set A must have Hausdorff dimension at least one. Since A is a
subset of the graph of a Lipschitz function, its Hausdorff dimension clearly cannot
exceed 1, so we have dimA = 1. In this case, Theorem 1.2 tells us that the Hausdorff
dimension of the union of the set of lines is (2 + 2)/2 = 2. □

Recall that a function is said to have the Luzin N property if it maps sets of
Lebesgue measure zero to sets of Lebegue measure zero.

Corollary 2.7. Let F be a non-linear differentiable real-valued Lipschitz function
on I = [0, 1] such that F ′ has the Luzin N property. Then the union of any set of
lines which covers the graph of F has Hausdorff dimension 2.

Proof. By Theorem 2.6, it is enough to check that for any full Lebesgue measure set
A ⊂ I, the set F ′(A) has Hausdorff dimension 1. Since F ′ satisfies Luzin N property,
we have F ′(I \A) has Lebesgue measure zero. Notice that F is non-linear and F ′ is
non-constant, so Darboux’s theorem implies that F ′(I) is a non-degenerate interval.
Therefore F ′(A) has positive Lebesgue measure and so it has Hausdorff dimension
1. □

Since differentiable functions satisfy the Luzin N property and twice-differentiable
functions are locally Lipschitz, we get the following.

Corollary 2.8. Let F be a non-linear twice-differentiable real-valued function on
[0, 1]. The union of any set of lines which covers the graph of F has Hausdorff
dimension 2.

We can extend this result to curves in the plane, and even in higher dimension.
Recall that a parametrized differentiable curve is called regular if its derivative is
nowhere zero.

Corollary 2.9. Let n ≥ 2, I = [0, 1] and let γ : I → Rn be a twice-differentiable
regular curve such that γ(I) is not a subset of a line. Then, the union of any set of
lines which covers γ(I) has Hausdorff dimension at least 2.

Proof. We prove by induction. For n = 2, this follows from Corollary 2.8. Suppose
that n ≥ 3 and the result holds for n − 1. The goal is to project to an n − 1-
dimensional subspace and to apply the induction hypothesis.
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First we prove the existence of a unit vector v ∈ Sn−1 such that v is not parallel to
any value of γ′ and projvγ(I) is not a subset of a line, where projv is the orthogonal
projection to the complementary subspace of v. If γ(I) is contained in an n − 1-
dimensional affine subspace then the normal vector of this affine subspace clearly
works. Otherwise, any projection of γ(I) to an n− 1 dimensional subspace will not
be contained in a line, so it is enough to find a unit vector v which is not parallel to
any value of γ′. Since γ is a twice-differentiable regular curve, we have that γ′/|γ′| is
differentiable. Then γ′/|γ′| and −γ′/|γ′| are locally Lipschitz, and their images has
Hausdorff dimension 1. Since the set of unit vectors is Sn−1, which has Hausdorff
dimension n− 1 > 1, this implies that indeed there exists a vector v ∈ Sn−1 which
is not parallel to any value of γ′(t).

Note that since γ is a twice differentiable regular curve and v is not parallel to any
value of γ′, the projection projvγ is also a twice differentiable regular curve. If none
of the given lines that cover γ(I) are parallel to v then projecting the covering lines to
the complementary space of v, the induction hypothesis implies that the projection
of the union of the covering lines has Hausdorff dimension at least 2, which then
implies that union of the original covering lines has also Hausdorff dimension at
least 2.

Therefore, to complete the proof it is enough to show that without loss of gener-
ality we can suppose that none of the covering lines of γ(I) are parallel to v. Since
γ′/|γ′| : I → Sn−1 is continuous and I is compact, the ranges of γ′/|γ′| and −γ′/|γ′|
are also compact, so the direction between any two distinct points of γ(I) is sep-
arated from v. Thus for any vector u ∈ Sn−1 sufficiently close to v the projection
proju to the complementary space of u is Lipschitz on γ(I). Note that this implies
that for any such u and any subset E ⊂ γ(I) if L is the union of lines parallel
to u through the points of E then dimL = dim(projuE) + 1 = dimE + 1 (where
dim denotes Hausdorff dimension). Let E be the set of those points p of γ(I) that
are covered by lines ℓp parallel to v. If E has Hausdorff dimension at least 1 then
the union the lines ℓp through the points of E already has Hausdorff dimension at
least 2 so we are done. Otherwise, we fix a v′ ∈ Sn−1 \ {v} sufficiently close to
v and replace each line ℓp through p ∈ E by the line ℓ′p through p parallel to v′.
Since E has Hausdorff dimension less than 1 the union of the lines ℓ′p has Hausdorff
dimension less than 2, so by replacing each line ℓp by ℓ′p we can indeed suppose that
E is empty, which completes the proof. □

Remark 2.10. In Corollary 2.9 when n > 2 we cannot claim that the union of the
lines has Hausdorff dimension exactly 2 even if every point of the curve is covered
only by one line: let γ : [a, b] → Rn be an arbitrary curve that is contained in
a two-dimensional plane P ⊂ Rn, let Q ⊂ Rn be a cube disjoint to P and let
g : [a, b] → Q be a continuous onto map (an n-dimensional Peano curve). Then
if for every t ∈ [a, b] we take the line through γ(t) and g(t) then every point of
the curve γ is covered exactly once but the union of the lines covers Q, so it has
Hausdorff dimension n.

Remark 2.11. Note that in Corollary 2.9 the assumption that the curve is not
contained in a line guarantees that no covering line can be contained in the curve,
so here we consider variant 2 of Problem 1.1.
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Remark 2.12. In Theorems 2.4 and 2.6 and Corollaries 2.7, 2.8 and 2.9 if instead
of full lines we take only an arbitrary 1 Hausdorff dimensional subset of each line
then the union of these sets must also have Hausdorff dimension 2 (at least 2 in
Corollary 2.9). This follows immeditely from the result of Héra, Máthé and the first
author [4], which states that if we have any collection of lines in Rn such that the
union of the lines has Hausdorff dimension at most 2 and we take a 1 Hausdorff
dimensional subset of each line then their union has the same Hausdorff dimension
as the union of the full lines.

Another way to get these slightly stronger results is the following. All of the
above-mentioned results are based on Lemma 2.2. If we state the stronger version
of this lemma in which we take only the union of 1 Hausdorff dimensional subsets
of the lines, which is still a special case of the result of Molter and Rela [10], then
our arguments give the above-mentioned stronger results.
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