


1622 X. CHEN AND L. CHENG

defined a nonempty bounded closed convex set of Rn has a fixed point. A remarkable
generalization of the Brouwer theorem is called the Schauder theorem, which says
that the Brouwer theorem holds again if we substitute a compact convex set of a
Banach space for the bounded closed convex set of Rn. A most general setting of the
Brouwer theorem is Tychonoff’s theorem [56]: A more general class of topological
linear spaces in which the Schauder theorem holds is the class of locally convex
spaces. In 1955, V. Klee [37] showed that if a nonempty bounded closed convex
set C of a Banach space X satisfies that every continuous self-mapping has a fixed
point, then C is compact. (In 1985, Lin Pee-Kee and Y. Sternfeld [41] further
proved that we can substitute the class of Lipschitz mappings for that of continuous
mappings in the Klee theorem.) Therefore, compactness plays an essential role in
the Schauder theorem. In 1955, using the Kuratowski MNC, G. Darbo [25] extended
the Schauder fixed point theorem to noncompact operators named set-contractive
operators (see, [53] for a remarkable generalization). Since then, the study of MNCs
and of their applications has become an active research area, and various MNCs have
appeared. Among many other MNCs, the Hausdorff MNC β is another commonly
used MNC (introduced by I. Gohberg, L.S. Gol’denśshtéın and A.S.Markus [33] in
1957). It is defined for B ∈ B(M) by

(1.2) β(B) = inf{r > 0 : B ⊂ ∪x∈FB(x, r) for some finite F ⊂M},
where B(x, r) denotes the closed ball centered at x with radius r.

It is easy to observe that if µ is either the Kuratowski MNC α or the Hausdorff
MNC β, then it satisfies the following three conditions.

(1) B ∈ B(M), µ(B) = 0 ⇐⇒ B is relatively compact;
(2) A,B ∈ B(M) with A ⊃ B =⇒ µ(A) ≥ µ(B);
(3) A,B ∈ B(M) =⇒ µ(A ∪B) = µ(A) ∨ µ(B).

If, in addition, M is a Banach space, then
(4) B ∈ B(M) =⇒ µ(co(B)) = µ(B);
(5) B ∈ B(M) =⇒ µ(kB) = |k|µ(B), ∀ scalar k;
(6) A,B ∈ B(M) =⇒ µ(A+B) ≤ µ(A) + µ(B).
Since every metric space is isometric to a subset of a Banach space (see, for

instance, [14, Lemma 1.1]), without loss of generality, we can assume that the metric
space M in question is a Banach space in the sequel.

Definition 1.1 (MNC with positive homogeneity). Let X be a Banach space, and
µ : B(X) → R+ be a nonnegative-valued function.

i) [11] µ is said to be a regular MNC on the space X provided it satisfies the six
properties (1)-(6).

ii) [44] µ is called a homogeneous MNC on X provided it satisfies the five prop-
erties (1), (2) and (4)-(6).

iii) [2] We say that µ is a sublinear MNC on X provided it satisfies the five
properties (1), (2), (4),(6) and

(7) B ∈ B(X) =⇒ µ(kB) = kµ(B), ∀ k ≥ 0.
Thus, a regular MNC is a homogeneous MNC, and a homogeneous MNC is a

sublinear one.

It is easy to check that both the Kuratowski measure α and the Hausdorff measure
β are regular measures.
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A more general definition of MNC is the following one, which we call “convex
MNC”.

Definition 1.2 (Convex MNC). Let X be a Banach space, and µ : B(X) → R+

be a nonnegative-valued function.
µ is said to be a convex MNC on X provided it satisfies the four properties (1),

(2), (4) and
(8) A,B ∈ B(X) =⇒ µ(λA+ (1− λ)B) ≤ λµ(A) + (1− λ)µ(B), ∀ λ ∈ [0, 1].

Every convex MNC µ satisfies the three properties (9-11) below (see, for instance,
[21]).

(9) µ(B ∪ {x0}) = µ(B), x0 ∈ X, B ∈ B(X).
(10) µ(B) = µ(B), B ∈ B(X).
(11) (Generalized Cantor intersection) For every sequence (Bn) ⊂ B(X) of

nonempty bounded sets of X with limn µ(Bn) = 0, we have

(1.3) Bn+1 ⊂ Bn, ∀ n ∈ N, lim
n
µ(Bn) = 0 =⇒

⋂
n

Bn ̸= ∅.

Remark 1.3. From the definitions of various kinds of MNCs above, we have already
seen that for every MNC µ defined on a Banach space X, the following conditions
are always satisfied.

B ∈ B(X) =⇒ µ(co(B)) = µ(B),

and
µ(B) = µ(B).

Thus, we often blur the distinction between B(X) and C (X), the cone of all
nonempty bounded closed convex sets of X; and we also use K (X) to denote
both the cone of all nonempty relatively compact sets and the cone of all nonempty
compact convex sets of X.

1.1. Order preserving embedding from C (X) to C(K). For a Banach space
X, let C (X) be the cone of all nonempty bounded closed convex sets of X endowed
with the following set addition and scalar multiplication:

(1.4) A⊕B = A+B ≡ {a+ b : a ∈ A, b ∈ B}, kA = {ka : a ∈ A}
(where A,B ∈ C (X) and k is a scalar), and endowed with the Hausdorff metric dH
defined for A,B ∈ C (X) by

(1.5) dH(A,B) = inf{r > 0 : A ⊂ B + rBX , B ⊂ A+ rBX},
where BX denotes the closed unit ball of X.

In Section 2, we will introduce a triple order preserving theorem from C (X) to
C(K) established in [23], where C(K) is a Banach function space for some compact
Hausdorff space K, which will play an important role in the sequel.

1.2. On representation of MNCs. There are a large number of publications
related to constructions of various types of MNCs, and to representation of the
Hausdorff MNC β on classical Banach spaces such as the space of continuous func-
tions C(K), the sequence spaces ℓp (1 ≤ p ≤ ∞) and c0, the integrable function
spaces Lp (1 ≤ p ≤ ∞). See, for example, [5–8, 10, 28] and [45]. However, general
construction and representation of an arbitrary MNC on an abstract Banach space
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had never been considered before 2018. The main difficulty of such representation
is how to turn a function µ defined on the super space B(X) into a function defined
on a usual metric space in order preserving. We will introduce some representation
theorems and construction theorems of convex MNCs in Section 3 and of sublinear
MNCs in Section 4 which are presented in [21] and [23] respectively.

1.3. On inequivalent MNCs.

Definition 1.4. Let X be a Banach space, and µ, ν : B(X) → R+ be two MNCs
on X. They are called equivalent provided there exist a, b > 0 such that

(1.6) aµ(B) ≤ ν(B) ≤ bµ(B), ∀ B ∈ B(X).

The following natural question was first asked by K. Goebel in 1978 by noticing
all known examples before then are equivalent (see, [11]).

Problem 1.5. Do there exist inequivalent regular measures of noncompactness in
every infinite dimensional Banach space?

In 1992, J. Banaś and A. Martinón [11] proved that for every infinite dimensional
Banach space X, there are always inequivalent regular measures of noncompactness
on ℓp(X) for 1 ≤ p ≤ ∞, although their result was not widely known. However,
Problem 1.5 remained open. (See, for example, [13, Remark 3.6].)

In 2011 ( [43, 44]), J. Mallet-Paret and R. Nussbaum showed that for many of
the classical Banach spaces which arise in analysis there always exist inequivalent
measures of noncompactness. They further proposed the following “fundamental
question”:

Problem 1.6. For what infinite dimensional Banach spaces X do there exist in-
equivalent homogenous measures of noncompactness β1 and β2 on X?

In Section 5, we will see that the answer to this question is affirmative [1]: Every
infinite dimensional Banach space admits a regular MNC not equivalent to the
Hausdorff measure. This gives Problem 1.5 (hence, Problem 1.6) an affirmative
answer.

1.4. On countable determination of the Kuratowski MNC. In the theory of
MNC, the following “countable determination question” is a long-standing problem
(see, for example, [5, §1.4.3, p.19]).

Problem 1.7. Given an MNC µ on a complete metric space M , is the following
statement true?

(1.7) ∀B ∈ B(M), ∃ countable subset B0 ⊂ B so that µ(B0) = µ(B).

This question is doubtlessly fundamental and important. For example, if the
metric space M in question is a Banach space X consisting of measurable functions
(say, an Lp-space), and if B = {fn} ∈ B(X) is a countable subset ofM , then all the
functions supB ≡ supn fn, inf B ≡ supn fn, lim supn fn and lim infn fn are in X.
Besides, it is usually easier to deal with a sequence than to handle an uncountable
subset. See, for example, [3,16]. B.N. Sadovskii ( [51,53]) first studied the countable
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determination question, and gave a negative answer to it for the Hausdorff measure
β. Indeed, he defined a sequential measure β̃ with respect to β by

(1.8) β̃(B) = sup{β(C) : C is a countable subset of B}, B ∈ B(M),

and showed the following (sharp) inequalities.

(1.9)
1

2
β(B) ≤ β̃(B) ≤ β(B), B ∈ B(M).

But there is a bounded subset B in a Banach space X such that β̃(B) = 1
2 < 1 =

β(B) (see, also, [5, §.1.4]). However, the following question remained open.

Problem 1.8. For the Kuratowski MNC α on a metric space M , is the following
assertion true?

(1.10) ∀B ∈ B(M), ∃ countable subset B0 ⊂ B so that α(B0) = α(B).

An affirmative answer to this question is presented in [20]. In Section 6, we will
give a sketch proof of the result.

1.5. On an integral inequality related to a Cauchy problem. Many mathe-
maticians have made great efforts to expect the following type of integral inequalities
with various assumptions:

(1.11) µ
{∫ a

0
xn(ω)dω : n ∈ N

}
≤

∫ a

0
µ
{
xn(ω) : n ∈ N

}
dω,

where {xn} is a sequence of continuous X-valued functions in C([0, a], X) endowed
with the sup-norm ∥ ·∥C([0,a],X) defined for x ∈ C([0, a], X) by ∥x∥ = ∥x∥C([0,a],X) =
supt∈[0,a] ∥x(t)∥, and µ is the Hausdorff MNC, or, the Kuratowski MNC. Such type
of integral inequalities arise from the following initial value problem in Banach
spaces.

(1.12)

{
x′(t) = f(t, x), a ≥ t > 0;
x(0) = x0

Clearly, the problem 1.12 has a solution x ∈ C([0, a], X) if and only if x is a fixed
point of the following Picard-Lindelöf operator A defined for x ∈ C([0, a], X) by

(1.13) Ax(t) = x0 +

∫ t

0
f(s, x(s))ds.

The classical Peano’s theorem states if f : R+⊕Rn → Rn is a continuous function,
then the problem 1.12 has a local solution. For an infinite dimensional Banach
space X, under the condition due to Picard and Lindeloff that f is Lipschitz, i.e.,
∥f(t, x) − f(t, y)∥ ≤ L∥x − y∥ holds for all x, y ∈ X (where L > 0 is a constant),
then the problem 1.12 has a unique local solution, and it is extendable to a global
solution. But there are a series of counterexamples showing that in an infinite
dimensional Banach space X, the Picard-Lindeloff condition (i.e., the Lipschitz
assumption on f) can not be dropped. The first one is in Dieudonné [27], where he
showed that for X = c0 (the Banach space of null sequences) there is a continuous
function f : R ⊕ c0 → c0 so that the problem 1.12 admits no local solution. Since
then, many other counterexamples in various infinite dimensional Banach spaces
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has been constructed. See, for example, [40], [17], [57], [29]. Cellina [18] showed
that such a counterexample exists in every nonreflexive Banach space. Especially,
Godunov [31] gave a complete negative answer to the problem 1.12 for every infinite
dimensional Banach space X.

Theorem 1.9 (Godunov). Let X be an infinite dimensional Banach space. Then
there exists a continuous function f : R ⊕X → X and an initial value x(t0) = x0
such that the problem 1.12 has no local solution.

Godunov [30] further constructed a continuous function f : R ⊕ H → H in a
Hilbert space H, such that the problem 1.12 has no solution on any open interval
of R. For more information, we refer the reader to Hájek and Vivi [34].

Among many extra conditions which are sufficient for the solvability of the prob-
lem 1.12, one of the most important types is under hypotheses in terms of MNCs.
The procedure can be roughly described as follows. Assume that the function
f : R+×X → X in the problem 1.12 is continuous and condensing with respect some
MNC µ defined on X, that is, for each nonempty bounded subset B ⊂ C([0, a], X),
we have for all t ∈ [0, a], µ

(
f(t, B(t)

)
< µ

(
B(t)

)
whenever µ

(
B(t)

)
> 0 , where

B(t) = {x(t) : x ∈ B} ⊂ X. Then we claim that Picard-Lindelöf operator A de-
fined in (1.13) is also condensing. Once this claim is met, there is not much left to
do to prove the existence of solutions for (1.12). And it boils down to proving the
inequality (1.11).

Ambrosetti [4, (1967)] is the first one to use the Kuratowski MNC α to the
solvability. He proved the existence theorem under the assumptions that f is uni-
formly continuous and Lipschitz with respect to the Kuratowski MNC α. Some
further contributions have been made by a number of mathematicians. See, for
example, Sadovskii [52, (1968)], Goebel and Rzymowdski [32, (1971)], Rzymowski
[49,50, (1971)], Szufla [54, (1968)] and [55, (1971)], Cellina [19, (1972)], Banaś and
Goebel [10, (1980)], Mönch [46, (1980)], Mönch and G.-F. von Harten [47, (1982)],
Heinz [35, (1983)], Kunze and Schlüchtermann [38, (1998)]. Nevertheless, it still
comes as a surprise that the estimate (1.11) has been proved only under some very
restrictive assumptions in the existing literatures. While a number of counterexam-
ples constructed by Heinz [35] show that it is quite complicated and poses significant
difficulties to present appropriate hypotheses to guarantee (1.11). In 1970, Goebel
and Rzymowdski [32] first showed that (1.11) holds for the Hausdorff MNC β, with
the assumptions that {xn} ⊂ C([0, a], X) is bounded and equi-continuous. In 1980,
Banaś and Goebel [10] further proved (1.11) holds again under the same assump-
tions but one can substitute a sublinear MNC µ for β. Mönch [46, 1980], Mönch and
G.-F. von Harten [47, 1982] proved (1.11) with the assumptions a) µ = β, b) X is a
weakly compactly generated space (in particular, a separable Banach space) and c)
{xn} ⊂ C([0, a];X) and there is ψ ∈ L1([0, a]) such that supn ∥xn(t)∥ ≤ ψ(t) a.e. In
1998, Kunze and Schlüchtermann [38] showed that (1.11) holds for a Grothendieck
measure µ assuming that X is strongly generated by a Grothendieck class. But for
an arbitrary Banach space, one has to insert the factor 2 in the right-hand side of
(1.14), i. e.,

α
{∫ t

0
xn(s)ds : n ≥ 1

}
≤ 2

∫ t

0
α
{
xn(s) : n ≥ 1

}
ds.



A REVIEW ON SEVERAL QUESTIONS RELATED TO MNC 1627

See, for instance, [16].
It is shown in [21] that for every nonempty subset G ⊂ L1([0, a], X) of integrable

X-valued functions with ψ(t) ≡ supg∈G ∥g(t)∥ integrable on [0, a] such that the
mapping JG : [0, a] → Cb(Ω) defined for t ∈ [0, a] by

(1.14) JG(t)(ω) = sup
g∈G

⟨ω, g(t)⟩ ≡ σG(t)(ω), ω ∈ Ω ≡ BX∗ ,

has separable range in Cb(Ω), then for every convex MNC (or convex measure
of non-weak compactness, convex measure of non-superweak compactness, convex
measure of non-Radon-Nikodým property etc.) µ defined on X, we have

(1.15) µ
{∫ τ

0
G(s)ds

}
≤ 1

τ

∫ τ

0
µ
{
τG(s)

}
ds, ∀0 < τ ≤ a.

In particular, if µ is a sublinear MNC, or, τ ≤ 1, then

(1.16) µ
{∫ τ

0
G(s)ds

}
≤

∫ τ

0
µ
{
G(s)

}
ds.

It is also shown in [21] that the mapping JG(·) : [0, a] → Cb(Ω) is always weakly
measurable, and if G satisfies one of the following conditions

i) G ⊆ C(I,X) is a nonempty equi-continuous subset;
ii) G ⊆ R(I,X) is a nonempty separable equi-regulated subset;
iii) G ⊆ L1(I,X) is a nonempty uniformly measurable set,

then it is strongly measurable. Consequently, (1.16) holds.
In Section 7, we will introduce a sketch proof of the result mentioned above.

1.6. On fullness of MNCs. The notion of MNC has been generalized in vari-
ous ways. Assume that µ is a nonnegative real-valued function defined on B(X).
Roughly speaking, the notion of MNC has been generalized in two directions. One
is to claim that ker(µ) ⊃ K (X). For example, if we choose ker(µ) = W (X),
the family of all nonempty weakly relatively compact subsets of X, then the func-
tion µ is called a measure of non-weak compactness [15]. The other way is to
claim ∅ ̸= ker(µ) ⊂ K (X) [10]. For example, let µ(B) = diam(B), the diameter
of B. Then ker(µ) = all singletons of X. The notion of convex non-full MNC
was introduced by Banaś and Goebel in 1980 [10] but they call it again MNC. A
nonnegative-valued function µ : B(X) → R+ is said to be a convex non-full MNC
provided it satisfies that (1’) ∅ ̸= kerµ ⊂ K (X), and the properties (2), (4), (8) in
Definition 1.2, and, in addition, the generalized Cantor intersection property (11).

We should mention that the generalized Cantor intersection property is one of
the most important properties in applications of MNC to fixed point theory. We
have already known that every convex MNC admits the property naturally (See,
for instance, [21, Theorem 3.4]). But we do not know whether it is independent of
other conditions in the definition of non-full MNC. If the answer to this question is
affirmative, then the following question is arising naturally: What conditions can
guarantee a convex non-full MNC to dominate a convex MNC?

In Section 8, we will introduce some results including a positive answer to the
former question in a recent paper [9].
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2. Order preserving embedding of C (X)

For a Banach space X, let C (X) (resp. B(X), K (X)) be the collection of all
non-empty bounded closed convex (resp. nonempty bounded, nonempty convex
compact) sets of X endowed with the Hausdorff metric dH , which is defined for
A,B ∈ 2X (the power set of X) by

(2.1)
dH(A,B) =max{sup

a∈A
inf
b∈B

∥a− b∥, sup
b∈B

inf
a∈A

∥a− b∥}

= inf{r > 0 : A ⊂ B + rBX , B ⊂ A+ rBX}.

If there is no confusion, we simply denote them by C , B and K , respectively.
In this section, we introduce an order preserving embedding of C (X) into C(K)

for some compact Hausdorff space K presented in [23].
We use Ω to denote the closed unit ball BX∗ of the dual X∗, and Cb(Ω), the

Banach space of all real-valued bounded norm-continuous functions on Ω endowed
with the sup-norm. Let J : C (X) → Cb(Ω) be defined for C ∈ C (X) by

(2.2) J(C)(ω) = σC(ω) ≡ sup
c∈C

⟨ω, c⟩, ω ∈ Ω.

The Banach lattices X and Y are said to be order isometric if there exists a linear
isometry T from X onto Y which is also an order isomorphism.

With the symbols as above, we summarise the triple order preserving embedding
procedure (presented in [23]) as follows.

Theorem 2.1 (Triple order preserving embedding theorem). (1) [23, Theorem
2.3 i)] Given a Banach space X, the collection C consisting of all nonempty
closed bounded convex sets of X endowed with the set addition A ⊕ B =
A+B, the usual scalar multiplication of sets λC = {λc : c ∈ C}, and with
the norm ∥| · ∥| defined by ∥|C∥| = supc∈C ∥c∥ is a complete normed convex
cone.

(2) [23, Theorem 2.3 ii)] If we endow with the Hausdorff metric dH on C ,
order C by set inclusion, and order Cb(Ω) by the usual order of real-valued
functions, then the mapping J : C → Cb(Ω) defined for C ∈ C and ω ∈ Ω
by

J(C)(ω) = σC(ω) = sup
c∈C

⟨ω, c⟩,

is a positively linear order isometry, where Cb(Ω) denotes the Banach space
of all bounded norm continuous functions on Ω endowed with the sup-norm.

(3) [23, Theorem 3.2 i)] Both EC = JC − JC and EK = JK − JK are
sublattices of Cb(Ω) and EK is a lattice ideal of EC , where K ⊂ C is the
subcone of C consisting of all nonempty compact convex subsets of X;

(4) [23, Theorem 3.2 ii)] The quotient space QEC = EC/EK is an abstract
M space, hence, order isometric to a sublattice of C(K) for some compact
Haudorff space K;

(5) [23, Theorem 3.2 iii)] The subcone TQJC is contained in the positive cone
of C(K), where T : QEC → C(K) is an order isometry.
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3. Representation of convex MNCs

In this section, we will introduce a representation theorem of convex MNCs due
to [21].

Recall that B(X) is the cone of all nonempty bounded subsets of a Banach space
X, and C (X) (resp., K (X)) denotes the cone of all nonempty bounded closed
(resp., compact) convex subsets of X endowed the operations addition ⊕ and scalar
multiplication of sets, and endowed with the Hausdorff metric dH . The Banach
spaces Cb(Ω), EC , EK and C(K), the mappings J,Q, T and T = TQJ are the same
as those of Theorem 2.1. Let V = TC (X). Then V is a closed subcone of the
positive cone C(K)+ of C(K).

Now, we state the representation theorem as follows.

Theorem 3.1. Suppose that X is a Banach space. Then there is a Banach func-
tion space C(K) endowed with the sup-norm for some compact Hausdorff space
K such that for every convex MNC µ on X, there is a function 𝟋 on the cone
V ≡ T(B(X)) ⊂ C(K)+ satisfying

i) µ(B) = 𝟋(TB), for all B ∈ B(X);
ii) 𝟋 is nonnegative-valued convex and monotone on V ;
iii) 𝟋 is bounded by br = 𝟋(rTBX) on V

⋂
(rBC(K)), for all r ≥ 0;

iv) 𝟋 is cr-Lipschitian on V
⋂
(rBC(K)), for all r ≥ 0, where cr = 𝟋

(
(1 +

r)TBX

)
= µ

(
(1 + r)BX

)
;

v) In particular, if µ is a sublinear MNC, then we can take cr = µ(BX) in iv).

Before starting to give a sketch proof of Theorem 3.1, we require a sequence of
lemmas.

Lemma 3.2. Let X be a Banach space, and f, g ∈ V ≡ TC (X). Then f ≤ g if
and only if there exist A,B ∈ C (X) with f = TA, g = TB such that for all ε > 0
there is Kε ∈ K (X) satisfying

(3.1) A ⊂ B +Kε + εBX .

Corollary 3.3. Let X be a Banach space, and f, g ∈ V ≡ TC (X). Then f = g if
and only if there exist A,B ∈ C (X) with f = TA, g = TB such that for all ε > 0
there is K1,K2 ∈ K (X) satisfying

(3.2) B ⊂ A+K1 + εBX , and A ⊂ B +K2 + εBX .

Lemma 3.4. Let f, g ∈ V with ∥f − g∥ = r. Then |f − g| ≤ rT(BX).

Recall (Definition 1.2) that for a Banach space X, µ : B(X) → R+ is said to be
a convex MNC provided it satisfies the following four properties.

(P1) [Noncompactness] B ∈ B(X), µ(B) = 0 ⇐⇒ B is relatively compact;
(P2) [Monotonicity] A,B ∈ B(X) with A ⊃ B =⇒ µ(A) ≥ µ(B);
(P3) [Convexification invariance] B ∈ B(X) =⇒ µ(co(B)) = µ(B);
(P4) [Convexity] µ(λA+(1−λ)B) ≤ λµ(A)+(1−λ)µ(B), ∀A,B ∈ B(X) and 0 ≤

λ ≤ 1.

Every convex MNC admits the following basic properties.
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Lemma 3.5. Let X be a Banach space, and µ : B(X) → R+ be a convex MNC.
Then

i) [Density determination] µ(B) = µ(B), ∀B ∈ B(X);
ii) [Translation invariance] µ(B + C) = µ(B), ∀B ∈ B(X), C ∈ K (X);
iii) [Negligibility] µ(B ∪ C) = µ(B), ∀ B ∈ B(X), C ∈ K (X);
iv) [Generalized Cantor intersection] ∅ ̸= Bn+1 ⊂ Bn ∈ B(X), n ∈ N;

µ(Bn) → 0 =⇒ ⋂
n

Bn ̸= ∅.

For B ∈ B(X), we will simply denote TB by fB in the sequel.

Lemma 3.6. Let µ be a convex MNC on a Banach space X. Then

i) 𝟋(fB) = µ(B), B ∈ B(X) defines a monotone convex function on V ;
ii) For each r > 0, 𝟋 is bounded by br ≡ µ(rBX) on V ∩ (rBC(K));
iii) For each f ∈ V ,

(3.3) p(g) = lim
t→0+

𝟋(f + tg)−𝟋(f)

t
, g ∈ V

defines a non-negative sublinear functional p on V satisfying

(3.4) p(g) ≤ 𝟋(f + g)−𝟋(f), ∀g ∈ V.

Lemma 3.7. Let µ be a convex MNC on a Banach space X, and 𝟋 be defined as
Lemma 3.6. Then 𝟋 is continuous on V .

For a subcone C of a Banach space Z, we say a linear functional z∗ ∈ Z∗ is a
positive functional on C if it is non-negative valued on C, or, equivalently, z∗|XC

is a positive functional of the subspace XC ≡ C − C with respect to the “positive”
cone C in the usual sense.

Lemma 3.8. Let V0 ⊂ V be a subcone of V with fBX
∈ V0, and let EV0 = V0 − V0.

Then for every functional x∗ ∈ E∗
V0

which is positive on V0, we have

(3.5) ∥x∗∥EV0
= ⟨x∗, fBX

⟩.

Lemma 3.9. Suppose that V0 ⊂ V is a subcone of V , and u ∈ V0 is in the relative
interior int(V0) of V0. Let the function 𝟋 be defined on V as Lemma 3.6. If u is a
Gâteaux differentiability point of 𝟋|V0 (the restriction of 𝟋 to V0). Then its relative
Gâteaux derivative x∗ = dG𝟋|V0(u) is a positive functional on V0.

Lemma 3.10. Suppose that g is a continuous convex function on a closed convex
subset D of a Banach space X with int(D) ̸= ∅. Then the following mean-value
theorem holds.

i) ∀x, y ∈ int(D), there exist ξ ∈ [x, y] ≡ {λx + (1 − λ)y : λ ∈ [0, 1]} and
x∗ξ ∈ ∂g(ξ) such that

(3.6) g(y)− g(x) = ⟨x∗ξ , y − x⟩.

ii) ∀x∗ ∈ ∂g(x), y∗ ∈ ∂g(y), we have

(3.7) ⟨y∗, y − x⟩ ≥ g(y)− g(x) ≥ ⟨x∗, y − x⟩.
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Lemma 3.11. Suppose that X is a Banach space, µ is a convex MNC on X, and
that V0 ⊂ V is a closed subcone of V with fBX

∈ V0 such that EV0 = V0 − V0 is
a finite dimensional subspace. Let the function 𝟋 on V be defined as Lemma 3.6.
Then

i) for each r > 0, 𝟋 is cr-Lipschitzian on V0,r ≡ V0 ∩ rBC(K), where cr =

𝟋((1 + r)fBX
) = µ

(
(1 + r)BX

)
;

ii) if, in addition, µ is a homogeneous MNC, then cr = 𝟋(fBX
) = µ(BX).

Now, we are ready to prove Theorem 3.1 as follows.

Proof of Theorem 3.1. Given a convex MNC µ on X, let

𝟋(TB) = µ(B), ∀B ∈ B(X).

Then by Lemma 3.6, i), ii) and iii) follow. Next, we will show iv). Given r ≥ 0,
f, g ∈ V with ∥f∥, ∥g∥ ≤ r, let V0 ⊂ V be the subcone generated by {f, g,T(BX)}.
By Lemma 3.11 i), 𝟋 is cr-Lipschitian on V0

⋂
rBC(K). Therefore,∣∣𝟋(f)−𝟋(g)

∣∣ ≤ cr∥f − g∥.

Consequently, iv) follows.
v) follows from Lemma 3.11 ii). □

4. Construction of sublinear MNCs

In this section, we will introduce some construction and representation theorem
related to sublinear MNCs (See, Definition 1.1). All symbols will be the same as in
the previous sections.

Theorem 4.1 ([23, Theorem 5.5]). Let X be a Banach space, and C(K) be the
function space with respect to X defined in Theorem 2.1. Then for every bounded
subset F ⊂ C(K)∗ of positive functionals satisfying that for each 0 ̸= u ∈ TQJC
there exists φ ∈ F so that ⟨φ, u⟩ > 0, the following formula defines a homogenous
MNC µ on X:

(4.1) µ(B) = ∥T [QJco(B)]∥F for all B ∈ B,

where ∥u∥F = supφ∈F∪−F ⟨φ, u⟩ for all u ∈ C(K).
In particular, the Hausdorff MNC β can be reformulated as follows.

(4.2) β(B) = ∥TQJ [coB]∥C(K), for all B ∈ B.

Theorem 4.2 ([23, Theorem 5.4]). Let X be a Banach space. For every bounded
subset F ⊂ C(K)∗ of

∪k∈K{R+δk} = {rδk : r ≥ 0, k ∈ K}

satisfying that for each 0 ̸= u ∈ TQJC there exists φ ∈ F so that ⟨φ, u⟩ > 0, the
following formula defines a regular MNC µ on X.

(4.3) µ(B) = ∥T [QJco(B)]∥F for all B ∈ B,

where δk is the evaluation functional at k ∈ K, ∥u∥F = supφ∈F∪−F ⟨φ, u⟩ for all
u ∈ C(K).
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For a convex function f defined on a convex subset C of X, ∂f is the subdiffer-
ential mapping of f defined for x ∈ C by

∂f(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ ⟨x∗, y − x⟩, for all y ∈ C}.
We again use σA to denote the support function of A ⊂ X, i.e.

σA(x
∗) = sup

x∈A
⟨x∗, x⟩, x∗ ∈ X∗.

Next, we introduce a representation theorem of sublinear (hence, regular and
homogeneous) MNC.

Theorem 4.3 ([2, Theorem 2.1]). Suppose that µ is a sublinear MNC defined on
a Banach space X. Then there is a bounded set S ⊂ C(K)∗ of positive functionals
such that

(4.4) µ(B) = σS∪−S(fB), for all B ∈ B(X),

where fB = TQJ(co(B)) ∈ C(K), B ∈ B(X).

5. On inequivalent regular MNCs

In this section we will show that every infinite dimensional Banach space admits
a regular MNC not equivalent to the Hausdorff MNC β defined as (1.2). Since the
Hausdorff MNC β is a regular MNC, it gives Problem 1.5 a positive answer.

Lemma 5.1 ([1, Lemma 3.5]). For a Banach space X, with the symbols as the same
in Theorem 2.1, assume that the positive cone V ≡ TQJ(C ) of the space C(K)
contains a basic sequence. Then X has a homogenous measure of non-compactness
not equivalent to the Hausdorff measure, where EC = JC − JC , EK = JK − JK
and J : C → Cb(Ω) are also defined as Theorem 2.1, and Q : EC → EC /EK

denotes the quotient mapping.

Lemma 5.2 ( [1, Lemma 3.6]). Suppose that Z is a Banach space admitting an
infinite (respectively, unconditional) decomposition. Then there is a (respectively,
an unconditional) normalized basic sequence of EC contained in the cone JC .

Lemma 5.3 ([1, Corollary 3.7]). Every Banach space containing a closed subspace
admitting an infinite decomposition (in particular, any space containing an uncondi-
tional basic sequence, or, any infinite product of infinite dimensional Banach spaces)
has inequivalent homogenous measures of noncompactness.

Theorem 5.4. Every infinite dimensional Banach space admits a regular MNC not
equivalent to the Hausdorff MNC.

Proof. Let X be an infinite dimensional Banach space. All symbols will be the same
as mentioned previously.

Suppose that X is a Schur space, that is, the norm sequential convergence coin-
cides with the weakly sequential convergence on X. Then it contains ℓ1. Since the
standard unit vector basis (en) of ℓ1 is unconditional, we finish the proof by Lemma
5.3.

Suppose that X is not a Schur space. Then it contains a normalized weakly null
sequence (yn). Thus, there is a basic subsequence (xn) (⊂ (yn)) of X. Without
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loss of generality, we can assume that ∆ ≡ (xn) is a monotone basic sequence.
(Otherwise, we can renorm X so that ∆ is a monotone basic sequence.) Let X0 =
span(∆). We denote the sequence of the coefficient functionals corresponding to
∆ by ∆∗ ≡ (φn) ⊂ X∗

0 . Then ∥φn∥ ≤ 2 and φn → 0 in the w∗-topology of X∗
0 .

(∆n)
∞
n=1 is an infintie σ-partition of ∆, i.e. it satisfies the following conditions: (1)

∪∞
n=1∆n = ∆; (2) ∆n ∩ ∆m = ∅ whenever n ̸= m; and (3) each ∆n is an infinite

subset of ∆. Let (∆∗
n) be the partition of ∆∗ corresponding to (∆n). For each

n ∈ N, put Cn = co(∆n). Then it is easy to observe that
a) for each j ∈ N, Cj is weakly compact, Cm ∩ Cn = {0} whenever m ̸= n, and
b) for each selection zn ∈ Cn (n = 1, 2, . . . ) we have zn → 0 in the weak topology

of X.
We denote by C(K)+ (resp. C(K)∗+) the positive cone of C(K) (resp. C(K)∗).

Let

(5.1) fn = TQJ(Cn)(∈ C(K)),

(5.2) D = co(BC(K) ∩ C(K)+ ∪ {nfn : n ∈ N}),

and let

(5.3) D◦ = {φ ∈ C(K)∗+ : ⟨φ, d⟩ ≤ 1, for all d ∈ D}.

We claim that D and D0 have the following properties:
(i) D contains no nontrivial subcones of V ≡ TQJ(C );
(ii) D0 positively separates points of V , i.e. for every 0 ̸= x ∈ V , there is φ ∈ D0

such that ⟨φ, x⟩ > 0.

Proof of (i) Suppose that g ∈ V with g = TQJ(B) for some closed bounded
nonempty convex set B in X satisfies ng ∈ D for all n ∈ N. Then by definitions of
fm, D and D0, there exists a sequence of (gn) ⊂ V with

gn = bn +

mn∑
j=1

αn,jjfj ∈ co[BC(K) ∩ C(K)+ ∪ {mfm : m ∈ N}]

such that ∥ng− gn∥ → 0; where bn ∈ BC(K) ∩C(K)+, mn ∈ N, and αn,j ∈ R+ with∑mn
j=1 αn,j ≤ 1. Thus

V ∋ (1/n)gn =
bn
n

+ (1/n)

mn∑
j=1

αn,jjfj → g

(as n → ∞). By Theorem 2.1 (2)-(5), this is equivalent to that for every ε > 0,
there exist a finite set F ⊂ X and N ∈ N such that for all n ≥ N

(5.4) B ⊂ (1/n)

mn∑
j=1

αn,jjCj + εBX + F and (1/n)

mn∑
j=1

αn,jjCj ⊂ B + εBX + F.

Since (1/n)αn,jj → 0 for j = 1, 2, . . . as n → ∞, by b) for every selection wn ∈
(1/n)

∑mn
j=1 αn,jjCj , n = 1, 2, . . . we have wn → 0 in the weak topology of X.

Consequently, B ⊂ εBX + F . Since ε is arbitrary, B is compact. Consequently,
g = 0.
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Proof of (ii) Since D does not contain nontrivial cone of V , then we have D1 ≡
co(D ∪ −C(K)+) does not contain nontrivial subcone of V . Given f ̸= 0 in V .
nf /∈ D for some n ∈ N. By the separation theorem of convex sets, there is a
functional φ ∈ C(K)∗ such that

∞ > M ≡ ⟨φ, nf⟩ > sup{⟨φ, d⟩ : d ∈ D1} ≥ 0

This entails that φ ∈ C(K)∗+ and bounded above by M on D. Let ψ = 1
Mφ. Then

ψ ∈ D◦ with ⟨ψ, f⟩ > 0. Therefore, by Theorem 4.1 (below),

µ(B) = sup
e∈D◦∪−D◦

⟨e, fB⟩, fB = TQJ(co(B)), B ∈ B(X)

defines a homogenous measure of noncompactness on X. Since µ(Cn) ≤ 1
n → 0,

and since β(Cn) ≥ 1/2 for all n ∈ N, µ is not equivalent to the Hausdorff measure
β. Consequently, there is a regular measure of noncompactness ν such that it is
equivalent to µ [44]. Thus, the regular measure ν is not equivalent to the Hausdorff
measure β. □
Remark 5.5. The proof above is taken from [1, 62 (10) (2019), 2053-2056].

6. Countable determination of α

In this section, we will give a sketch proof of “ For every nonempty bounded subset
B of a metric space, there is a countable subset B0 of B so that the Kuratowski
MNC α satisfies α(B0) = α(B)”. The results of this section are due to [20].

We will assume that X is a Banach space, and X∗ its dual. BX denotes the
closed unit ball of X. For a subset A ⊂ X, co(A) (resp. A, aff(A)) stands for the
convex hull (resp. the closure, the affine hull) of A.

6.1. Finite representability of subsets in Banach spaces. Recall that a Ba-
nach space X is said to be finitely representable in another Banach space Y provided
that for all ε > 0 and for every finite dimensional subspace F ⊂ X there exist a
(finite dimensional) subspace G ⊂ Y and a linear isomorphism T : F → G so
that ∥T∥ · ∥T−1∥ < 1 + ε. The following notion is a generalization of the classi-
cal finite representability of Banach spaces to general subsets, which is introduced
by Cheng et al. [24] and [22]. It is done by substituting “simplexes” for the “fi-
nite dimensional subspaces”. (An n-simplex in a linear space X is a convex set
S satisfying that there exist n + 1 affinely independent vectors xj ∈ X, j =
0, 1, . . . , n, i.e. x1 − x0, x2 − x0, . . . , xn − x0 are linearly independent, such that
S = co(x0, x1, . . . , xn), the convex hull of (xj)

n
j=0.)

Definition 6.1. Suppose that X and Y are Banach spaces, and A ⊂ X, B ⊂ Y
are two subsets.

i) Given ε > 0, the set A is said to be ε-finitely representable in the set B, if for
all n ∈ N and for every n-simplex Sn = co(x0, x1, . . . , xn) with the vertices
(xj)

n
j=0 ⊂ A, there exist an n-simplex S′

n = co(y0, y1, . . . , yn) with vertices

(yj)
n
j=0 ⊂ B and an affine isomorphism T : aff(xj) → aff(yj) satisfying that

T (xj)
n
j=0 = (yj)

n
j=0 (or, equivalently, TSn = S′

n) and that

(6.1) (1− ε)∥x− y∥ ≤ ∥Tx− Ty∥ ≤ (1 + ε)∥x− y∥, ∀ x, y ∈ Sn.
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ii) If, in addition, for all ε > 0, A is ε-finitely representable in B, then we say
that A is finitely representable in the set B.

It is easy to observe that X is finitely representable in Y if and only if the unit ball
BX of X is finitely representable in the unit ball BY of Y . Before introducing the
concept of strong finite representability, we also require some more notions below.

Definition 6.2. Let H be a convex set in a Banach space X. Then

i) H is said to be a convex polyhedron provided there exist z1, z2, . . . , zk ∈
X for some k ∈ N such that H = co(z1, z2, . . . , zk); In this case, the set
extr(H)(⊂ (z1, z2, . . . , zm)) of all extreme points of H is called the vertex
set of H, and denoted by vert(H)(= extr(H)).

ii) A convex polyhedron H is called an n-dimensional convex polyhedron if its
affine hull aff(H) is an n-dimensional affine subspace ofX, i.e. dim[aff(H)] =
n.

iii) We say that an n-dimensional convex polyhedron H is an (n,m)-polyhedron
for some non-negative integer m if

vert(H) = (x0, x1, . . . , xn, xn+1, . . . , xn+m).

Since the vertex set vert(H) of the (n,m)-polyhedron H always contains a
maximal affinely independent subset of n+ 1 elements, we write an (n,m)-
polyhedron H as

(6.2) H = co(x0, x1, . . . , xn, xn+1, . . . , xn+m),

where (x0, x1, . . . , xn) is a maximal affinely independent subset of vert(H).
In this case, we have

(6.3) aff(H) = aff(x0, x1, . . . , xn).

Remark 6.3. Unless stated otherwise, by an (n,m)-polyhedron

H = H(x0, x1, . . . , xn, xn+1, . . . , xn+m),

we always mean that

vert(H) = (x0, x1, . . . , xn, xn+1, . . . , xn+m)

with H = co(x0, x1, . . . , xn+m), that S ≡ co(x0, x1, . . . , xn) is an n-simplex, and
that aff(S) = aff(H).

Lemma 6.4. Suppose that H1 = H(x0, x1, . . . , xn, xn+1, . . . , xn+m) and H2 = H(y0,
y1, . . . , yn, yn+1, . . . , yn+m) are two (n,m)-polyhedrons in a Banach space X. Let

δ1 = min{∥xi − xj∥ : 0 ≤ i ̸= j ≤ n+m} > 0,

δ2 = min{∥yi − yj∥ : 0 ≤ i ̸= j ≤ n+m} > 0,

and let

(6.4) 0 < 2ε < δ = min{δ1, δ2}.

Then

(6.5) dH(vert(H1), vert(H2)) < ε
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if and only if there is a permutation π : {0, 1, . . . , n+m} → {0, 1, . . . , n+m} such
that

(6.6) ∥xj − yπ(j)∥ < ε, j = 0, 1, . . . , n+m,

where dH is the Hausdorff metric on B(X).

Definition 6.5. Suppose that X and Y are Banach spaces, and A ⊂ X, B ⊂ Y
are two subsets.

i) Given ε > 0, the set A is said to be ε-strongly finitely representable in the
set B, if for every pair n,m of non-negative integers, and for every (n,m)-
polyhedron H ⊂ X with vert(H) ⊂ A, there exist an (n,m)-polyhedron
H ′ ⊂ Y with vert(H ′) ⊂ B and an affine isomorphism T : aff(H) → aff(H ′)
such that

(6.7) (1− ε)∥x− y∥ ≤ ∥Tx− Ty∥ ≤ (1 + ε)∥x− y∥, ∀ x, y ∈ aff(H),

and

(6.8) dH

(
vert(T (H)), vert(H ′)

)
< ε,

where dH is the Hausdorff metric on B(Y ), the set of all nonempty bounded
subsets of Y .

ii) A is said to be strongly finitely representable in B, if A is ε-strongly finitely
representable in B for all ε > 0.

iii) In particular, if A itself is finite, and if A is strongly finitely representable
in B, then we simply say that A is strongly representable in B.

Lemma 6.6. Assume that A ⊂ X is strongly finitely representable in B ⊂ Y . Then
for all ε > 0 and for every (n,m)-polyhedron

H = H(x0, x1, . . . , xn+m) with vert(H) ⊂ A,

there exist an (n,m)-polyhedron

H ′ = H ′(y0, y1, . . . , yn+m) with vert(H ′) ⊂ B

and an affine isomorphism T : aff(H) → aff(H ′) such that

(6.9) (1− ε)∥x− y∥ ≤ ∥Tx− Ty∥ ≤ (1 + ε)∥x− y∥, ∀ x, y ∈ aff(H),

(6.10) T (S) = S′, and dH

(
vert(T (H)), vert(H ′)

)
< ε,

where dH is the Hausdorff metric on B(Y ), and S (resp. S′) is the n-simplex
co(x0, x1, . . . , xn) (resp. co(y0, y1, . . . , yn)).

Corollary 6.7. Suppose that A,B are two subsets of a Banach space X. If A is
strongly finitely representable in B, then it is finitely representable in B.

Proposition 6.8. Suppose that X and Y are Banach spaces. Then X is strongly
finitely representable in Y if (and only if) X is finitely representable in Y .
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6.2. Ultraproducts of subsets in Banach spaces. A filter F on a nonempty
set I is a family of subsets of I satisfying that a) ∅ /∈ F ; b) for all n ∈ N, (Fj)

n
j=1 ⊂

F =⇒ ∩jFj ∈ F ; and c) A ∈ F , and A ⊂ B ⊂ I =⇒ B ∈ F . A filter F is called
a free filter if

⋂
{F ∈ F} = ∅. We say that a filter F is an ultrafilter if it satisfies

that either S ∈ F or I \ S ∈ F for any S ⊂ I. We will always use U to denote an
ultrafilter on a set I.

Let Xi, i ∈ I be Banach spaces, Ai ⊂ Xi, i ∈ I, and let
∏

I Ai be the Cartesian
product of these sets, i.e. the set of all families (ai)i∈I with ai ∈ Ai. Two families
(ai), (bi) are said to be equivalent with respect to the ultrafilter U , if for every ε > 0

{i ∈ I : ∥ai − bi∥ < ε} ∈ U .
This defines an equivalence relation on

∏
I Ai.

Definition 6.9. The set of all equivalence classes of
∏

I Ai with respect to the
ultrafilter U is called the ultraproduct of the subsets (Ai)i∈I denoted by (Ai)U . In
particular, if Ai ≡ A for all i ∈ I, we simply denote (Ai)U by (A)U , and call it the
ultrapower of A.

Proposition 6.10. Let Ei, i ∈ I be a family of Banach spaces, and Ai, Bi ⊂
Ei, i ∈ I. Then for every ultrafilter U on I,

(Ai ∪Bi)U = (Ai)U ∪ (Bi)U ;

(Ai ∩Bi)U = (Ai)U ∩ (Bi)U ;

(Ai \Bi)U = (Ai)U \ (Bi)U .

6.3. A lemma about strongly finite representability and ultraproducts.
It was shown in [22, Prop.2.4] that for two Banach spaces X and Y , and for two
bounded subsets A ⊂ X and B ⊂ Y , if A is finitely representable in B, then for
every affinely independent subset A0 of A, there exist a free ultrafilter U on some
index set I and an affine isometry T : aff(A0) → (aff(B))U with T (A0) ⊂ (B)U .
If A is strongly finitely representable in B, then we can further show the following
result.

Lemma 6.11. Suppose that A is a subset of a Banach space X, B is a convex subset
of a Banach space Y . If A is strongly finitely representable in B, then there exist a
free ultrafilter U on some index set I and an affine isometry T : aff(A) → (aff(B))U
such that T (A) ⊂ (B)U .

6.4. Strongly finite representability of sets in their countable subsets. In
this subsection, we will show that every subset of a Banach space is strongly finitely
representable in a countable subset of it. For the proof of this result, we will need
a sequence of lemmas.

For m elements aj : j = 1, 2, . . . ,m of a set A, (a1, a2, . . . , am) is either to denote
the subset {aj : j = 1, 2, . . . ,m}, or, the “vector” (a1, a2, . . . , am) in the Cartesian
product Am. We often blur the distinction if it arises no confusion.

Given 1 ≤ p ≤ ∞, let ∥ · ∥p be the ℓp-norm defined on Rn, i.e.

(6.11) ∥x∥p = (
n∑

j=1

|x(j)|p)
1
p , x = (x(1), x(2), . . . , x(n)) ∈ Rn.
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Let K be the closed unit ball of the space ℓn∞ ≡ (Rn, ∥ · ∥∞),

Ω =
{
∥| · ∥| is a seminorm on Rn with ∥| · ∥| ≤ ∥ · ∥1

}
,

and C(K) be the Banach space of all continuous functions on K with the sup-norm
∥ · ∥∞.

Lemma 6.12. Assume that K and Ω are defined as above. Then Ω is a convex
compact set of C(K).

Lemma 6.13. For every n dimensional (real) normed space X, there exists a norm
∥| · ∥| on Rn satisfying

(6.12) ∥ · ∥∞ ≤ ∥| · |∥ ≤ ∥ · ∥1,
and there is a linear isometry T : X → (Rn, ∥| · |∥).

Lemma 6.14. Let p1, p2 ∈ C(K) be two norms on Rn with p1 ≥ ∥ · ∥∞, and let
ε > 0. If ∥p1 − p2∥C(K) ≤ ε, i.e.

(6.13)
∣∣p1(x)− p2(x)

∣∣ ≤ ε, ∀ x ∈ K,

then

(6.14) (1− ε)p1(x) ≤ p2(x) ≤ (1 + ε)p1(x), ∀ x ∈ Rn.

Lemma 6.15. With notations as above, for every subset A of a Banach space X,
we have

(6.15) Hn(A) =
∞⋃

m=0

Hn,m(A), and H(A) =
∞⋃
n=0

Hn(A).

Given two nonnegative integers m,n and r > 0, let Hn,m ≡ Hn,m(rBℓn∞), i.e. the
set of all (n,m)-polyhedrons H contained in ℓn∞ ≡ (Rn, ∥ · ∥∞) of the form

H = co(x0, x1, . . . , xn, u1, . . . , um)

with its vertexes

vert(H) = (x0, x1, . . . , xn, u1, . . . , um) ⊂ rBℓn∞ ≡ {rx : x ∈ Bℓn∞}
such that (x0, x1, . . . , xn) is a maximal affinely independent subset of vert(H). Since
dH-convergence of a sequence (vert(Hj)) for (Hj) ⊂ Hn,m is equivalent to the con-
vergence of the corresponding vertex vector sequence

{(x0,j , x1,j , . . . , xn,j , u1,j , . . . , um,j)} in ℓn(n+1+m)
∞

within some permutations (Lemma 6.4), the following result follows easily.

Lemma 6.16. For each pair m,n of nonnegative integers, (vert(Hn,m), dH) is rel-
atively compact in (B(ℓn∞), dH), where vert(Hn,m) = {vert(H) : H ∈ Hn,m}.

Lemma 6.17. Suppose that A is a bounded subset of a Banach space X. Let
r = supa∈A ∥a∥. Then for any fixed n,m ∈ N,

Tn,m,0(A) ≡ {vert(TH(H)) ⊂ ℓn∞ : H ∈ Hn,m,0(A)}
(resp. Tn,m,1(A) ≡ {vert(TH(H)) ⊂ ℓn+1

∞ : H ∈ Hn,m,1(A)})
is a bounded subset of (B(ℓn∞), dH) (resp. (B(ℓn+1

∞ ), dH)) and bounded by 2r. Con-
sequently, by Lemma 6.16, Tn,m(A) = Tn,m,0(A) ∪ Tn,m,1(A) is relatively compact.
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Lemma 6.18. Suppose that A is a bounded subset of a Banach space X. Then the
products Pn,m,0(A) ≡ Tn,m,0(A) × Ωn and Pn,m,1(A) ≡ Tn,m,1(A) × Ωn+1 are again
relatively compact.

Lemma 6.19. Assume that A be a bounded subset of a Banach space X. Given
U0 = (vert(T0H0), | · |0), Uj = (vert(TjHj), | · |j) ∈ Pn,m,0(A) (resp. Pn,m,1(A) )
j = 1, 2, . . . , if Uj → U0 in Pn,m,0(A) (resp. Pn,m,1(A)), then vert(H0) is strongly
(finitely) representable in

⋃∞
j=1 vert(Hj).

Now, we are ready to state the main result of this subsection.

Theorem 6.20. Suppose that A is a nonempty subset of a Banach space X. Then
there exists a countable subset A0 such that A is strongly finitely representable in
A0.

Corollary 6.21. Suppose that X and Y are Banach spaces, and that A ⊂ X and
B ⊂ Y are two subsets.

i) If A is finitely representable in B, then there is a countable subset B0 of B
such that A is finitely representable in B0.

ii) If A is strongly finitely representable in B, then there is a countable subset
B0 of B such that A is strongly finitely representable in B0.

Corollary 6.22. Suppose that X and Y are Banach spaces. If X is finitely rep-
resentable in Y , then there is a separable subspace Y0 such that X is finitely rep-
resentable in Y0. Consequently, every Banach space is finitely representable in a
separable subspace of it.

6.5. Countable determination of the Kuratowski measure. In this subsec-
tion, we will show the main result of the paper: the Kuratowski measure α defined
on any metric space X satisfies that for every bounded set B ⊂ X, there is a
countable subset B0 such that α(B0) = α(B).

Lemma 6.23. Let αM be the Kuratowski measure defined on a metric space M .
Then there exist a Banach space X and an isometric mapping T : M → X so that
α|T (M) (the restriction of the Kuratowski measure α on X to T (M)) coincides with
αM , i.e.

α(T (B)) = αM (B), for all B ∈ B(M).

Assume that M is a metric space and U is an ultrafilter. For distinction, we use
αM to denote the Kuratowski measure on M , and αU to denote the Kuratowski
measure on the ultrapower (M)U of M .

Lemma 6.24 ([36, Corollary. 2.3]). For any subset B of a metric space M , and
for any ultrafilter U , we have

(6.16) αM (B) = αU [(B)U ].

Now, we are ready to prove the main theorem of this section.

Theorem 6.25. Suppose that X is a metric space. Then for every bounded subset
B ⊂ X, there is a countable subset B0 of B such that α(B0) = α(B).
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Proof. By Lemma 6.23, we can assume that X is a Banach space. Given B ∈ B(X),
by Theorem 6.20, there exists a countable subset B0 of B such that B is strongly
finitely representable in B0. Applying Lemma 6.11, we can obtain a free ultrafilter
U , and an affine isometry T : aff(B) → [aff(B0)]U such that T (B) ⊂ (coB0)U . It
follows from Lemma ?? that

α(B) = αU [T (B)] ≤ αU [(coB0)U ] = α(coB0) = α(B0).(6.17)

On the other hand, non-deceasing monotonicity of the Kuratowski measure α in the
order of set inclusion entails that α(B) ≥ α(B0). Therefore, α(B0) = α(B). □

7. A basic integral inequality

In this section, we will introduce some results concerning the integral inequality
(1.11) related to the Cauchy problem (1.12), which are due to [21]. The letter X
again denotes a real Banach space, and I is the interval [0, a] ⊂ R+ with a > 0. We
use (I,Σ,m) to denote the Lebesgue measure space. For a set A, χA stands for the
characteristic function of A. Unless stated otherwise, all notions and symbols will be
the same as previously defined. We use Lp(I,X) (1 ≤ p ≤ ∞) to denote the space of
all X-valued measurable functions defined on I such that |f |p is Lebesgue-Bochner

integrable endowed with the Lp-norm ∥f∥ = (
∫
I |f |

pdµ)1/p. L0(I,X) stands for the
space of all X-valued strongly measurable functions.

We are going to convert whether the integral inequality (1.11) is true to whether
the mapping JG : I → Cb(Ω) defined blow is (Lebesgue-Bochner) measurable, where
Ω = BX∗ and Cb(Ω) denotes again the Banach space of all continuous bounded
functions on Ω endowed with the sup-norm. For a Banach space X, the Banach
spaces EC , EK and C(K), the mappings J,Q, T and T = TQJ , the positive cone
V = TC are the same as in Section 2.

We first recall some definitions and known results.

Definition 7.1. Let G ⊂ L0(I,X) be a nonempty subset satisfying sup ∥G(t)∥ ≡
supg∈G ∥g(t)∥ <∞ a.e. The mapping JG : I → Cb(Ω) is defined for t ∈ I by

(7.1) JG(t)(x∗) = sup
g∈G

⟨x∗, g(t)⟩, x∗ ∈ Ω.

Note that JG(t) = J(G(t)), where G(t) = {g(t) : g ∈ G}. If it arises no confusion,
we simply write J for JG.

We recall some notions and basic properties related to X-valued functions defined
on the interval I (from Definition 7.2 to Lemma 7.6), which can be found in J.
Diestel [26].

Definition 7.2. Let f : I → X be a function.

i) f is said to be a simple function provided there exist a finite Σ-partition
{Ej}nj=1 and n vectors {xj}nj=1 ⊂ X such that f =

∑n
j=1 xjχEj . The integral

of f is defined by
∫
I fdm =

∑
j xjm(Ej).

ii) f is called (strongly) measurable if there is a sequence {fn} of simple func-
tions such that fn(s) → f(s) for almost all s ∈ I. If, in addition, the limit
limn

∫
I fndm exists, then we say that f is (Lebesgue-Bochner) integrable

and
∫
I fdm ≡ limn

∫
I fndm is called the integral of f on I.
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iii) We say that f is weakly measurable if for each x∗ ∈ X∗ the numerical
function ⟨x∗, f⟩ is (Σ-) measurable.

Lemma 7.3. A function f : I → X is (Lebesgue-Bochner) integrable if and only if
f is strongly measureable and

∫
I ∥f∥dm <∞.

Lemma 7.4 (Pettis’s measurability theorem). A function f : I → X is strongly
measurable if and only if

(1) f(I) ⊂ X is essentially separable, i.e., there exists a null set I0 ⊂ I such
that f(I\I0) is separable; and

(2) f is weakly measurable.

Lemma 7.5. Let F be a closed linear operator defined inside X and having values
in a Banach space Y . If both f : I → X and Ff are Bochner integrable, then

F
(∫

I
fds

)
=

∫
I
Ffds.

Lemma 7.6 (Jensen’s inequality). Assume f : [0, 1] → X is integrable, and p :
X → R is a continuous convex function. If p ◦ f is integrable, then

p
(∫ 1

0
fds

)
≤

∫ 1

0

(
p ◦ f

)
ds.

Lemma 7.7. Let X be a Banach space, I = [0, a], G ⊆ L1(I,X) be a nonempty
set, ψ ∈ L1(I,R+) such that supd∈G ∥g(t)∥ ≤ ψ(t) a.e. t ∈ I . Assume that
JG : I → Cb(Ω) is strongly measurable. Then TQJG : I → C(K) defined for t ∈ I

by TQJG(t) = TQJ
(
G(t)

)
is integrable on I and satisfies

(7.2) 0 ≤ TQJ
(∫ t

0
G(s)ds

)
≤

∫ t

0
TQJ

(
G(s)

)
ds.

Theorem 7.8. Let µ be a convex MNC on a Banach space X, I = [0, a], G ⊆
L1(I,X) be a nonempty bounded subset, and ψ ∈ L1(I,R+) such that supg∈G ∥g(t)∥ ≤
ψ(t) a.e. t ∈ I. Assume that JG : I → Cb(Ω) is strongly measurable. Then µ

(
G(t)

)
is measurable and

(7.3) µ
(∫ t

0
G(s)ds

)
≤ 1

t

∫ t

0
µ
(
tG(s)

)
ds, ∀0 < t ≤ a.

Corollary 7.9. Let µ be a convex MNC on a Banach space X, I = [0, a], G ⊆
L1(I,X) be a nonempty bounded subset, and ψ ∈ L1(I,R+) such that supg∈G ∥g(t)∥ ≤
ψ(t) a.e. t ∈ I. Assume that JG : I → Cb(Ω) is strongly measurable. Then the
following inequality holds

(7.4) µ
(∫ t

0
G(s)ds

)
≤

∫ t

0
µ
(
G(s)

)
ds, ∀0 < t ≤ a,

if one of the following conditions is satisfied.

i) 0 < t ≤ min{1, a};
ii) µ is a sublinear MNC.
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In the following, we will discuss measurability and weak measurability of the
mapping JG : I → Cb(Ω) for a bounded set G ⊂ L1(I,X). As a result, we show
that if G is separable in L1(I,X) and there is u ∈ Lp(I,X) for some 0 < p such
that supg∈G ∥g(t)∥ < u(t) a.e., then JG is weakly measurable. Making use of this
result, we further prove that JG is strongly measurable if G is one of the following
classical classes:

a) G ⊂ C(I,X) is an equi-continuous subset;
b) G is a separable equi-regulated subset of R(I,X) (the Banach space of

bounded functions on I satisfying that limt→t±0
u(t) exist for all u ∈ R(I,X) and t0 ∈

I) endowed with the sup-norm; and
c) G ⊂ L1(I,X) is uniformly measurable.

Lemma 7.10. Let T be a Hausdorff topological space, and Cb(T) be the Banach
space of all bounded continuous functions on T endowed with the sup-norm ∥f∥ =
supt∈T |f(t)| for f ∈ Cb(T). Then the closed unit ball BCb(T)∗ of the dual Cb(T)∗

satisfies
BCb(T)∗ = w∗-co{±δt : t ∈ T},

where δt ∈ Cb(T)∗ is the evaluation functional defined for f ∈ Cb(T) by ⟨δt, f⟩ =
f(t), and w∗-co(A) denotes the w∗-closed convex hull of A in Cb(T)∗.

Theorem 7.11. Let X be a Banach space, I = [0, a], G ⊆ L1(I,X) be a sep-
arable subset satisfying that there is u ∈ Lp(I,R+) for some p > 0 such that
supg∈G ∥g(t)∥ ≤ u(t) for almost all t ∈ I. Then JG : [0, a] → Cb(Ω) is weakly
measurable.

Theorem 7.12. Let G ⊂ C(I,X) be a nonempty equi-continuous subset. Then
JG : I → Cb(Ω) is continuous, hence, strongly measurable.

Corollary 7.13. Let X be a Banach space, µ be a convex MNC on X, I = [0, a], and
G ⊆ C(I,X) be a nonempty equi-continuous subset. Then the following inequality
holds

(7.5) µ
(∫ t

0
G(s)ds

)
≤ 1

t

∫ t

0
µ
(
tG(s)

)
ds, ∀0 < t ≤ a.

In particular,

(7.6) µ
(∫ t

0
G(s)ds

)
≤

∫ t

0
µ
(
G(s)

)
ds, ∀0 < t ≤ a.

if one of the following conditions is satisfied.

i) 0 < t ≤ min{1, a};
ii) µ is a sublinear MNC.

Remark 7.14. Corollary 7.13 is a generalization of K. Goebel et al. In 1970, K.
Goebel and W. Rzymowski [32] showed that the inequality (7.6) holds for equi-
continuous subsets G ⊂ C(I,X) and for the Hausdorff MNC β, i.e. when µ = β.
(See, also, [49].) In 1980, J. Banaś and K. Goebel [10] showed the inequality (7.6)
holds for equi-continuous subsets G ⊂ C(I,X) and for homogeneous MNC µ.

Before stating next result, we recall the notions of regulated functions and of
equi-regulated sets of such functions (see, for example, [48]).
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Definition 7.15. i) A function f : [a, b] → X is said to be regulated provided
for every t ∈ [a, b) the right-sided limit lims→t+ f(s) ≡ f(t+) exists and for
every t ∈ (a, b] the left-sided limit lims→t− f(s) ≡ f(t−) exists.

We denote by R([a, b], X) the Banach space of all regulated functions
defined on the interval [a, b] endowed with the sup-norm.

ii) A nonempty subset G ⊂ R(I,X) is called equi-regulated if

∀t ∈ (a, b], ∀ε > 0, ∃δ > 0, ∀g ∈ G, ∀t1, t2 ∈ (t− δ, t) ∩ [a, b], ∥g(t2)− g(t1)∥ ≤ ε,

∀t ∈ [a, b), ∀ε > 0, ∃δ > 0, ∀g ∈ G, ∀t1, t2 ∈ (t, t+ δ) ∩ [a, b], ∥g(t2)− g(t1)∥ ≤ ε.

Theorem 7.16. Let X be a Banach space and I = [0, a]. Assume that G ⊂ R(I,X)
is a separable equi-regulated set. Then the mapping JG : I → Cb(Ω) is strongly
measurable.

Corollary 7.17. Let X be a Banach space, µ be a convex MNC on X, I = [0, a],
and G ⊆ R(I,X) be a nonempty separable equi-regulated subset. Then the following
inequality holds

(7.7) µ
(∫ t

0
G(s)ds

)
≤ 1

t

∫ t

0
µ
(
tG(s)

)
ds, ∀0 < t ≤ a.

In particular,

(7.8) µ
(∫ t

0
G(s)ds

)
≤

∫ t

0
µ
(
G(s)

)
ds, ∀0 < t ≤ a,

if one of the following conditions is satisfied.

i) 0 < t ≤ min{1, a};
ii) µ is a sublinear MNC.

Remark 7.18. Corollary 7.17 is a generalization of L. Olszowy and T. Zajac [48,
Th. 3.1] in 2020, where they showed that the inequality (7.8) holds for the Hausdorff
MNC (µ =)β.

For a finite measure space (Γ,Σ, η) and a Banach spaceX, we denote by L1(Γ, η,X)
the Banach space of all X-valued η-integrable functions f endowed with the L1-
norm ∥f∥ =

∫
Γ ∥f(γ)∥dη. In particular, if Γ = I = [a, b] ⊂ R and η is the Lebesgue

measure on R, then simply denote it by L1(I,X).
The following useful notion of uniform measurability of functions was introduced

by M. Kunze and G. Schlüchtermann [38, Def. 3.16].

Definition 7.19. A bounded set G ⊂ L1(Γ, η,X) is said to be uniformly η-
measurable provided for all ε > 0 and A ∈ Σ there exist Aε ∈ Σ and mutually
disjoint A1, . . . An ∈ Σ with ∪n

j=1Aj = Aε and with η(A \ Aε) < ε such that for
j = 1, 2, . . . , n we can choose γj ∈ Aj satisfying

(7.9) sup
g∈G

∥g(·)χAε −
n∑

j=1

g(γj)χAj∥L1 < ε.
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Given a subset G ⊂ L0(Γ, η,X) of X-valued η-measurable functions, we denote
by G(γ) = {g(γ) : g ∈ G}, γ ∈ Γ; and let JG : Γ → Cb(Ω) be again defined for γ ∈ Γ
by

(7.10) JG(γ)(x∗) = J
(
G(γ)

)
(x∗) = sup

g∈G
⟨x∗, g(γ)⟩ = σG(γ)(x

∗), x∗ ∈ Ω ≡ BX∗ .

Theorem 7.20. Let G ⊂ L0(Γ, η,X) be a subset with

(7.11) sup
g∈G

∥g(γ)∥ <∞, for almost all γ ∈ Γ.

If G is uniformly η-measurable, then JG : Γ → Cb(Ω) is strongly measurable.

Corollary 7.21. Let X be a Banach space, µ be a convex MNC on X, I = [0, a],
and G ⊆ L1(I,X) be a nonempty separable and uniformly measurable subset. Then
the following inequality holds

(7.12) µ
(∫ t

0
G(s)ds

)
≤ 1

t

∫ t

0
µ
(
tG(s)

)
ds, ∀0 < t ≤ a.

In particular,

(7.13) µ
(∫ t

0
G(s)ds

)
≤

∫ t

0
µ
(
G(s)

)
ds, ∀0 < t ≤ a,

if one of the following conditions is satisfied,

i) 0 < t ≤ min{1, a};
ii) µ is a sublinear MNC.

Remark 7.22. Corollary 7.21 is a generalization of Kunze and G. Schlüchtermann
[38, Corollary 3.19], where they showed that the inequality (7.13) holds for the
Hausdorff MNC β, i.e. µ = β.

8. On fullness of MNC

In this section, we will introduce some very recent results [9] related to fullness
of non-full convex MNC and the generalized Cantor intersection property. To begin
with this section, we recall the definition of non-full MNC which was introduced by
Banaś and Goebel [10], but they still call it MNC.

Definition 8.1. Let X be a Banach space. A function µ : B → R+ is said to be a
non-full MNC provided

(P1) [Noncompactness] kerµ ̸= ∅ and B ∈ B(X), µ(B) = 0 =⇒ B is relatively
compact;

(P2) [Monotonicity] A,B ∈ B(X) with A ⊃ B =⇒ µ(A) ≥ µ(B);
(P3) [Convexification invariance] B ∈ B(X) =⇒ µ(co(B)) = µ(B);
(P4) [Convexity] µ(λA+(1−λ)B) ≤ λµ(A)+(1−λ)µ(B), ∀A,B ∈ B(X) and 0 ≤

λ ≤ 1;
(P5) [Generalized Cantor intersection property] If {Bn} ⊂ B(X) with

Bn+1 ⊂ Bn for all n ∈ N, then

µ(Bn) → 0 =⇒
⋂
Bn ̸= ∅.
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Remark 8.2. µ is said to be a pre-MNC, provided it satisfies (P1)–(P4).
If µ satisfies (P2)–(P4) and ker(µ) ⊃ K (X), then we say it is a generalized MNC.

The generalized Cantor intersection property (P5) is one of the most important
properties in applications of MNC to fixed point theory. We have already known
that every convex MNC admits the property naturally (See, for instance, [21, Theo-
rem 3.4]). But we do not know whether it is independent of other conditions in the
definition of non-full convex MNC, that is, is a pre-MNC necessarily a non-full con-
vex MNC. If the answer to this question is affirmative, then the following question
is arising naturally: What conditions can guarantee that a non-full convex MNC to
dominate a convex MNC?

The following theorem states that the generalized Cantor intersection property
(P5) is independent of other conditions (P1)–(P4) in Definition 8.1.

Theorem 8.3. For every infinite dimensional Banach space X, there is a transla-
tion invariant homogenous pre-MNC µ on it so that µ does not admit the generalized
Cantor intersection property.

Should we mention here that the representation theorem (Theorem 3.1) is valid
again for every generalized MNC but not for a non-full convex MNC. Because
Theorem 3.1 is based on ker(µ) ⊃ K (X). However, paralleling to Theorem 3.1, we
have the following theorem.

Theorem 8.4. Suppose that X is a Banach space. Then for every pre-MNC µ on
X, there is a function Λ on the cone S(Ω) ≡ JC (X) ⊂ Cb(Ω) satisfying

i) µ(B) = Λ(JB), for all B ∈ B(X);
ii) Λ is nonnegative-valued convex and monotone increasing on S(Ω);
iii) Λ is bounded by br = Λ(rJBX) on S(Ω)

⋂
(rBCb(Ω)), for all r ≥ 0;

iv) Λ is cr-Lipschitzian on S(Ω)
⋂
(rBCb(Ω)), for all r ≥ 0, where cr = Λ

(
(1 +

r)JBX

)
= µ

(
(1 + r)BX

)
;

v) In particular, if µ is a sublinear pre-MNC, then we can take cr = µ(BX) in
iv).

For an extended real-valued function f : D → R ∪ {+∞} defined on a closed
convex set D of a Banach space X, its epigraph is defined by

epi(f) = {(x, r) ∈ D × R, f(x) ≤ r}.
The following properties are simple and well-known.

Proposition 8.5. Let D be a nonempty closed convex set of a Banach space X,
and f : D → R ∪ {+∞} be an extended real-valued function. Then

i) f is convex on D if and only if epi(f) is convex in X × R;
ii) f is lower semi-continuous on D if and only if epi(f) is closed in X × R.

Definition 8.6. Let D be a nonempty closed convex set of a Banach space X,
and f : D → R ∪ {+∞} be an extended real-valued function. f̄ is said to be the
(lower semi-continuous, resp.,) convexification of f provided it is convex and satisfies
f̄ ≤ f on D and it is the maximum among all (lower semi-continuous, resp.,) convex
functions g with g ≤ f on D.
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For an extended real-valued function f , we denote by fconv and successively,
f̄conv its convexification and lower semicontinuous convexification. Note that every
extended real-valued function uniquely determines its epigraph, and vice versa. By
the definition above, the following properties can be easily verified.

Proposition 8.7. Let D be a nonempty closed convex set of a Banach space X,
and f : D → R ∪ {+∞} be an extended real-valued function. Then

i) epi(fconv) = co[epi(f)];
ii) epi(f̄conv) = co[epi(f)];

iii) fconv(x) = inf
{∑n

j=1 λjf(xj) : n ∈ N, 1 ≤ j ≤ n, 0 ≤ λj ,
∑n

j=1 λj = 1, xj ∈

D,x =
∑n

j=1 λjxj

}
, x ∈ D;

iv) f̄conv(x) = inf
{
α : ∃{xn} ⊂ D,xn → x such that lim infn fconv(xn) =

α
}
, x ∈ D.

Proposition 8.8. Suppose that µ is a generalized MNC defined on a Banach space
X, and that Λ is the locally Lipschitz convex function associated with µ defined in
Theorem 8.4. Then for every nonempty compact convex set K ⊂ X,

Λ(C +K) = Λ(C), ∀ C ∈ C (X).

For a pre-MNC defined on a Banach space X, let Λ be the locally Lipschitz
convex function associated with µ defined in Theorem 8.4. We define

(8.1) Λ′(JC) =

{
0, C ∈ K (X),

Λ(JC), C ∈ B(X) \ K (X).

Lemma 8.9. Let Λ′ be defined by (8.1). Then its convexification Λ′
conv satisfies

that for all C ∈ C (X),

(8.2) Λ′
conv(JC) = inf{Λ(JD) : C = D +K,D ∈ C (X),K ∈ K (X)}.

Theorem 8.10. Suppose that µ is a pre-MNC defined on a Banach space X, and
that Λ′ is defined by (8.1). If Λ′

conv is monotone non-decreasing on S(Ω), then

i) Λ′
conv = Λ̄′

conv ≤ Λ.
ii) Λ′

conv is locally Lipschitz on S(Ω).
iii) The function ν defined by

ν(B) = Λ′
conv(JB), B ∈ B(X)

is the largest generalized MNC controlled by µ.

Theorem 8.11. Suppose that µ is a pre-MNC defined on a Banach space X, and
that Λ is the locally Lipschitz convex function associated with µ defined in Theorem
8.4. Then the function ν defined by

ν(B) = Λ′
conv(JB), B ∈ B(X)

is a convex MNC if only if Λ′
conv is monotone increasing and there is not a nonempty

closed bounded convex noncompact set C with the following decomposition

(8.3) C = Cn +Kn, n = 1, 2, . . . ,
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where Cn ∈ B(X),Kn ∈ K (X) such that

(8.4) lim
n→∞

Λ(JCn) = 0.

A pre-MNC is said to be translation invariant if µ(x0 + B) = µ(B) for all B ∈
B(X) and x0 ∈ X. For example, µ(B) = diam(B), ∀B ∈ B(X) is a translation
invariant MNC. The following theorem gives a necessary condition for a translation
invariant MNC to dominate a full MNC.

Theorem 8.12. Suppose that µ is a translation invariant MNC. Then there does
not exist a nonempty closed bounded convex noncompact set C with the following
decomposition

(8.5) C = Cn +Kn, n = 1, 2, . . . ,

where Cn ∈ B(X),Kn ∈ K (X) such that

(8.6) lim
n→∞

Λ(Cn) = 0.

Theorem 8.13. Suppose that µ is a translation invariant non-full MNC. Then µ
dominates a convex MNC if and only if the convex function Λ associated with µ
defined in Theorem 8.4 dominates a convex monotone increasing function Λ1 such
that there does not exist a nonempty closed bounded convex noncompact set C with
the following decomposition

(8.7) C = Cn +Kn, n = 1, 2, . . . ,

where Cn ∈ B(X),Kn ∈ K (X) such that

(8.8) lim
n→∞

Λ1(Cn) = 0.

Problem 8.14. We do not know whether the convexification Λ′
conv of the truncation

Λ′ defined by (8.1) is monotone increasing although Λ′ is monotone increasing.
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(1974), 59–60.

[32] K. Goebel and W. Rzymowski, An existence theorem for the equation x′ = f(t, x) in Banach
space, Bull. Acad. Polon. Sci. Sér. Sci. Math. 18 (1970), 367–370.



A REVIEW ON SEVERAL QUESTIONS RELATED TO MNC 1649
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