Yokohama Publishers
ISSN 2189-3764 ONLINE JOURNAL
© Copyright 2023

CONVERGENCE OF REMOTE PROJECTIONS ONTO CONVEX SETS

PETR A. BORODIN* AND EVA KOPECKÁ

Abstract

Let $\left\{C_{\alpha}\right\}_{\alpha \in \Omega}$ be a family of closed and convex sets in a Hilbert space H, having a nonempty intersection C. We consider a sequence $\left\{x_{n}\right\}$ of remote projections onto them. This means, $x_{0} \in H$, and x_{n+1} is the projection of x_{n} onto such a set $C_{\alpha(n)}$ that the ratio of the distances from x_{n} to this set and to any other set from the family is at least $t_{n} \in[0,1]$. We study properties of the weakness parameters t_{n} and of the sets C_{α} which ensure the norm or weak convergence of the sequence $\left\{x_{n}\right\}$ to a point in C. We show that condition (T) is necessary and sufficient for the norm convergence of x_{n} to a point in C for any starting element and any family of closed, convex, and symmetric sets C_{α}. This generalizes a result of Temlyakov who introduced (T) in the context of greedy approximation theory. We give examples explaining to what extent the symmetry condition on the sets C_{α} can be dropped. Condition (T) is stronger than $\sum t_{n}^{2}=\infty$ and weaker than $\sum t_{n} / n=\infty$. The condition $\sum t_{n}^{2}=\infty$ turns out to be necessary and sufficient for the sequence $\left\{x_{n}\right\}$ to have a partial weak limit in C for any family of closed and convex sets C_{α} and any starting element.

1. Introduction

In the entire paper H is a real Hilbert space; its scalar product we denote by $\langle\cdot, \cdot\rangle$ and the corresponding norm by $|\cdot|$.

Let $\left\{C_{\alpha}\right\}_{\alpha \in \Omega}$ be a family of closed and convex sets in $H,|\Omega| \geq 2$, so that $C=$ $\bigcap_{\alpha \in \Omega} C_{\alpha} \neq \emptyset$. Let P_{α} denote the metric projection onto C_{α}. Sometimes we also denote the metric projection onto a closed convex set A by P_{A}.

A fixed sequence $\{\alpha(n)\} \subset \Omega$ and a starting element $x_{0} \in H$ generate the sequence $x_{n+1}=P_{\alpha(n)} x_{n}, n=0,1,2, \ldots$, of consecutive projections that can be examined for convergence.

In the case when C_{α} are closed linear subspaces of H and Ω is a finite set the convergence properties of the sequence $\left\{x_{n}\right\}$ are well understood. If the sequence of indices $\{\alpha(n)\}$ is cyclic, that is, $\Omega=\{0,1, \ldots, K-1\}$ and $\alpha(n) \equiv n(\bmod K)$, then $\left\{x_{n}\right\}$ converges in norm to a point of C [19], [11]. The rate of convergence depending on the position of the subspaces and of the initial point can be estimated (see [6], [20], and the bibliography there). Already for three closed linear subspaces divergence might occur if no extra information about the sequence of indices, or

[^0]about the geometry of the subspaces is known (see [16], [17], and [15]). The sequence $\left\{x_{n}\right\}$, however, always converges weakly to a point in C if Ω is finite, each $\alpha \in \Omega$ occurs infinitely many times in the sequence $\{\alpha(n)\}$ and the sets C_{α} are closed linear subspaces [1].

In the lack of linearity, when the sets C_{α} are just closed and convex, the situation is different. Already for $|\Omega|=2$ the sequence $\left\{x_{n}\right\}$ might diverge in norm ([12], see also [14] and [18]). Weak convergence is known only under additional conditions [7]: when $|\Omega| \leq 3[9]$, or when $|\Omega|<\infty$ and the indices $\{\alpha(n)\}$ are cyclic [8], or when $|\Omega|<\infty$ and the sets are "somewhat symmetric" [9], or when Ω is arbitrary but each successive projection takes place on the farthest set [8]. In this article we develop the last plot.

For any starting element $x_{0} \in H$, we consider the sequence of remote projections

$$
\begin{equation*}
x_{n+1}=P_{\alpha(n)} x_{n}, \quad n=0,1,2, \ldots \tag{0.1}
\end{equation*}
$$

where $\alpha(n) \in \Omega$ is chosen so that

$$
\operatorname{dist}\left(x_{n}, C_{\alpha(n)}\right) \geq t_{n} \sup _{\alpha} \operatorname{dist}\left(x_{n}, C_{\alpha}\right)
$$

and $t_{n} \in[0,1]$ are prescribed weakness parameters. If there is at least one $n \in$ \mathbb{N} with $t_{n}=1$, that is, when the nth projection is the remotest, we require the maximum $\max _{\alpha} \operatorname{dist}\left(x, C_{\alpha}\right)$ to be attained for each $x \in H$. Note that any sequence of consecutive projections onto the family $\left\{C_{\alpha}\right\}$ can be regarded as a sequence of remote projections with some, possibly very small, t_{n} 's.

We prove a convergence result for the remote projections (0.1). If all the convex sets C_{α} are closed subspaces of codimension one, this convergence theorem is already known within the greedy approximation theory [24].

We recall the corresponding definitions. A subset D of the unit sphere $S(H)=$ $\{s \in H:|s|=1\}$ is called a dictionary if $\overline{\operatorname{span}} D=H$. For any dictionary $D \subset$ $S(H)$, any sequence $\left\{t_{n}\right\}$ in $[0,1]$ of weakness parameters, and any $x_{0} \in H$, the Weak Greedy Algorithm (WGA) generates a sequence x_{n} defined inductively by

$$
\begin{equation*}
x_{n+1}=x_{n}-\left\langle x_{n}, g_{n}\right\rangle g_{n}, \quad n=0,1,2, \ldots \tag{0.2}
\end{equation*}
$$

where the element $g_{n} \in D$ is such that

$$
\left|\left\langle x_{n}, g_{n}\right\rangle\right| \geq t_{n} \sup \left\{\left|\left\langle x_{n}, g\right\rangle\right|: g \in D\right\}
$$

The weakness parameters were introduced by Temlyakov in [22]. In the case when $t_{n} \equiv 1$ of the Pure Greedy Algorithm, or even if $t_{n}=1$ for at least one n, we require the maximum max $\left\{\left|\left\langle x_{n}, g\right\rangle\right|: g \in D\right\}$ to be attained for each $x \in H$. We say that the WGA converges if $\left|x_{n}\right| \rightarrow 0$.

Clearly, the WGA coincides with the process of remote projecting onto the family of hyperplanes $\left\{g^{\perp}: g \in D\right\}$ orthogonal to the dictionary elements. Since D is spanning, the origin is the only point in the intersection of these hyperplanes. The other way round it works as well.

Remark 1. Let $\left\{C_{\alpha}\right\}$ be a family of closed linear subspaces with $\bigcap_{\alpha} C_{\alpha}=\{0\}$. Then $\bigcup_{\alpha} C_{\alpha}^{\perp}$ is spanning and the remote projections (0.1) correspond to the WGA with respect to the dictionary $\bigcup_{\alpha} C_{\alpha}^{\perp} \cap S(H)$ with the same sequence $\left\{t_{n}\right\}$ of weakness parameters.

According to Temlyakov [23] the condition

$$
\begin{equation*}
\forall\left\{a_{\nu}\right\} \in \ell_{2} \text { with } a_{\nu} \geq 0: \liminf _{m \rightarrow \infty} \frac{a_{m}}{t_{m}} \sum_{\nu=1}^{m} a_{\nu}=0 \tag{T}
\end{equation*}
$$

on the sequence $\left\{t_{m}\right\}$ is necessary and sufficient for the convergence of all realizations of the WGA with the weakness sequence $\left\{t_{m}\right\}$ for each $x_{0} \in H$ and all dictionaries $D \subset S(H)$.

The condition (T) is rather subtle. For instance,

$$
\sum \frac{t_{m}}{m}=\infty \Rightarrow(\mathrm{T}) \Rightarrow \sum t_{m}^{2}=\infty
$$

but none of the implications can be reversed.
In Section 1 we generalize the convergence theorem of [23] to the case of remote projections onto a family of closed convex sets C_{α} that are uniformly quasisymmetric with respect to their common point; see Theorem 1 below. Our proof partially leans on Temlyakov's paper [23] and on the proof of Jones' theorem on the convergence of the Pure Greedy Algorithm in Hilbert space [13], [24, Ch. 2]. The quasi-symmetry condition is essential in view of Hundal's example [12], [14]. In Corollary 1.1 we show that cyclic projections onto finitely many closed, convex and quasi-symmetric sets converge in norm. This generalizes a result from [2].

In Section 2 we discuss different versions of the quasi-symmetry condition, and show that the uniform quasi-symmetry is essential in Theorem 1.

Section 3 is devoted to the weak convergence of remote projections. In Theorem 2 we give a condition on $\left\{t_{n}\right\}$ sufficient for weak convergence to a point in C. As Corollary 2.1 we get a result of [9]: quasi-periodic projections onto finitely many closed and convex sets converge weakly to a point in their intersection. In Theorem 3 we give another condition on $\left\{t_{n}\right\}$ that is necessary and sufficient for all sequences of remote projections to have a partial weak limit in C. We construct an example showing certain sharpness of these theorems.

1. Norm convergence

In this section we show when remote projections onto a family of closed and convex sets converge. A symmetry assumption on the sets is needed; we define this weakened symmetry below. In Section 2 we will show to what extent this symmetry condition is necessary. We will also compare it to another weakened symmetry condition.

In what follows $B(a, r)$ denotes the closed ball with center a and radius $r>0$.
Definition 1. Let C and $C_{\alpha}, \alpha \in \Omega$, be closed convex sets in a Banach space X, all containing the origin.
(i) We call the set C quasi-symmetric, if $\forall r>0 \exists \theta=\theta(r) \in(0,1]: x \in C \cap B(0, r) \Rightarrow-\theta x \in C$.
(ii) We say that the family of sets $\left\{C_{\alpha}\right\}_{\alpha \in \Omega}$ is uniformly quasi-symmetric if $\forall r>0 \exists \theta=\theta(r) \in(0,1] \forall \alpha: x \in C_{\alpha} \cap B(0, r) \Rightarrow-\theta x \in C_{\alpha}$.
Moreover, we say that C is quasi-symmetric with respect to a point $a \in C$ if the set $(C-a)$ is quasi-symmetric. Similarly, the family of sets $\left\{C_{\alpha}\right\}_{\alpha \in \Omega}$ is uniformly
quasi-symmetric with respect to a point $a \in \bigcap_{\alpha \in \Omega} C_{\alpha}$ if the family $\left\{C_{\alpha}-a\right\}_{\alpha \in \Omega}$ is uniformly quasi-symmetric.

In the above definition we can equivalently write " $\exists r>0$ " instead of " $\forall r>0$ ". Indeed, $\theta(r)=\theta_{0} \min \left\{1, r_{0} / r\right\}$ works for a given $r>0$, if θ_{0} works for some $r_{0}>0$.

Theorem 1. For a sequence $\left\{t_{n}\right\}_{n=0}^{\infty} \subset[0,1]$, the following two statements are equivalent:
(i) The sequence $\left\{t_{n}\right\}$ satisfies the condition (T).
(ii) For any family $\left\{C_{\alpha}\right\}_{\alpha \in \Omega}$ of closed and convex sets in a Hilbert space H which is uniformly quasi-symmetric with respect to a point $a \in C=\bigcap_{\alpha \in \Omega} C_{\alpha}$ and for any starting element $x_{0} \in H$ the sequence $\left\{x_{n}\right\}$ of remote projections (0.1) converges in norm to a point in C.

Proof. We will prove here that (i) \Rightarrow (ii). The implication (ii) \Rightarrow (i) follows from [23] where Temlyakov shows that the condition (T) is necessary already when all C_{α} 's are hyperplanes.

1. We can assume that $a=0$. Let $x_{n}-x_{n+1}=y_{n}, \angle 0 x_{n+1} x_{n}=\pi / 2+\varepsilon_{n}$. We have $\varepsilon_{n} \in[0, \pi / 2]$; otherwise x_{n+1} is not the nearest point for x_{n} in the segment $\left[0, x_{n+1}\right]$ and hence also in $C_{\alpha(n)}$. Consequently, $\left|x_{n}\right|^{2} \geq\left|x_{n+1}\right|^{2}+\left|y_{n}\right|^{2}$, so that the norms $\left|x_{n}\right|$ decrease to some $R \geq 0$. We suppose $R>0$, otherwise $x_{n} \rightarrow 0$. Moreover,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|y_{n}\right|^{2} \leq \sum_{n=0}^{\infty}\left(\left|x_{n}\right|^{2}-\left|x_{n+1}\right|^{2}\right)<\infty \tag{1.1}
\end{equation*}
$$

Consequently, since $\left\{t_{m}\right\}$ satisfies (T), we can choose a subsequence $\Lambda \subset \mathbb{N}$ with the property

$$
\begin{equation*}
b_{m}:=\frac{\left|y_{m}\right|}{t_{m}} \sum_{\nu=0}^{m}\left|y_{\nu}\right| \rightarrow 0, \quad m \rightarrow \infty, m \in \Lambda \tag{1.2}
\end{equation*}
$$

2. Now we prove that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|y_{n}\right| \sin \varepsilon_{n}<\infty \tag{1.3}
\end{equation*}
$$

By the law of cosines,

$$
\begin{aligned}
\left|x_{n}\right|^{2} & =\left|x_{n+1}\right|^{2}+\left|y_{n}\right|^{2}-2\left|x_{n+1}\right|\left|y_{n}\right| \cos \left(\frac{\pi}{2}+\varepsilon_{n}\right) \\
& =\left|x_{n+1}\right|^{2}+\left|y_{n}\right|^{2}+2\left|x_{n+1}\right|\left|y_{n}\right| \sin \varepsilon_{n}
\end{aligned}
$$

so that

$$
\left|y_{n}\right| \sin \varepsilon_{n}=\frac{\left|x_{n}\right|^{2}-\left|x_{n+1}\right|^{2}-\left|y_{n}\right|^{2}}{2\left|x_{n+1}\right|} \leq \frac{\left|x_{n}\right|^{2}-\left|x_{n+1}\right|^{2}}{2 R}
$$

and (1.3) follows.
3. The vector y_{ν} is externally normal to a hyperplane supporting the set $C_{\alpha(\nu)}$ at the point $x_{\nu+1}$. Hence,

$$
\begin{equation*}
\left\langle y_{\nu}, z-x_{\nu+1}\right\rangle \leq 0 \tag{1.4}
\end{equation*}
$$

for any $z \in C_{\alpha(\nu)}$, so that

$$
\begin{aligned}
\left\langle y_{\nu}, z\right\rangle & \leq\left\langle y_{\nu}, x_{\nu+1}\right\rangle=\left|y_{\nu}\right|\left|x_{\nu+1}\right| \cos \left(\frac{\pi}{2}-\varepsilon_{\nu}\right) \\
& =\left|y_{\nu}\right|\left|x_{\nu+1}\right| \sin \varepsilon_{\nu} \leq\left|y_{\nu}\right|\left|x_{0}\right| \sin \varepsilon_{\nu}
\end{aligned}
$$

Since $C_{\alpha(\nu)}$ is quasi-symmetric with respect to 0 , we get

$$
\begin{equation*}
\left|\left\langle y_{\nu}, z\right\rangle\right| \leq \theta^{-1}\left|y_{\nu}\right|\left|x_{0}\right| \sin \varepsilon_{\nu}, \quad z \in C_{\alpha(\nu)} \cap B\left(0,2\left|x_{0}\right|\right) \tag{1.5}
\end{equation*}
$$

where $\theta=\theta\left(2\left|x_{0}\right|\right)$ is from the definition of uniform quasi-symmetry.
4. Next, for any m and ν,

$$
\begin{aligned}
\left|y_{m}\right| & =\operatorname{dist}\left(x_{m}, C_{\alpha(m)}\right) \geq t_{m} \sup _{\alpha} \operatorname{dist}\left(x_{m}, C_{\alpha}\right) \geq t_{m} \operatorname{dist}\left(x_{m}, C_{\alpha(\nu)}\right) \\
& =t_{m} \min _{z \in C_{\alpha(\nu)}}\left|x_{m}-z\right|=t_{m} \min _{z \in C_{\alpha(\nu)} \cap B\left(0,2\left|x_{0}\right|\right)}\left|x_{m}-z\right| \\
& \left.\geq t_{m} \min _{z \in C_{\alpha(\nu)} \cap B\left(0,2\left|x_{0}\right|\right)}\left|\left\langle x_{m}-z, y_{\nu} /\right| y_{\nu}\right|\right\rangle \mid \\
& \left.\geq t_{m}\left(\left|\left\langle x_{m}, y_{\nu} /\right| y_{\nu}\right|\right\rangle\left|-\max _{z \in C_{\alpha(\nu)} \cap B\left(0,2\left|x_{0}\right|\right)}\right|\left\langle z, y_{\nu} /\right| y_{\nu}| \rangle \mid\right) \\
& \left.\geq t_{m}\left(\left|\left\langle x_{m}, y_{\nu} /\right| y_{\nu}\right|\right\rangle\left|-\theta^{-1}\right| x_{0} \mid \sin \varepsilon_{\nu}\right)
\end{aligned}
$$

we have used (1.5) in the last inequality. The above estimate implies that

$$
\begin{equation*}
\left|\left\langle x_{m}, y_{\nu}\right\rangle\right| \leq \frac{\left|y_{m}\right|\left|y_{\nu}\right|}{t_{m}}+\theta^{-1}\left|x_{0}\right|\left|y_{\nu}\right| \sin \varepsilon_{\nu} \tag{1.6}
\end{equation*}
$$

for any $m, \nu=0,1,2, \ldots$
5. Now we prove that $\left\{x_{n}\right\}$ is a Cauchy sequence and hence it converges to some $w \in H$. Given any $n, k \in \mathbb{N}$ assume that $m \in \Lambda$ and $m>\max \{n, k\}$. Since $\left|x_{n}-x_{k}\right| \leq\left|x_{n}-x_{m}\right|+\left|x_{k}-x_{m}\right|$, it is enough to show that $\left|x_{n}-x_{m}\right| \rightarrow 0$ as $n, m \rightarrow \infty, n<m$ and $m \in \Lambda$. We use the identity

$$
\left|x_{n}-x_{m}\right|^{2}=\left|x_{n}\right|^{2}-\left|x_{m}\right|^{2}-2\left\langle x_{n}-x_{m}, x_{m}\right\rangle
$$

Since $\left|x_{n}\right| \rightarrow R$, we have $\left|x_{n}\right|^{2}-\left|x_{m}\right|^{2} \rightarrow 0$ as $n, m \rightarrow \infty$. The last term we estimate using (1.6) as follows:

$$
\begin{aligned}
\left|\left\langle x_{n}-x_{m}, x_{m}\right\rangle\right| & =\left|\sum_{\nu=n}^{m-1}\left\langle y_{\nu}, x_{m}\right\rangle\right| \leq \sum_{\nu=n}^{m-1}\left|\left\langle y_{\nu}, x_{m}\right\rangle\right| \\
& \leq \frac{\left|y_{m}\right|}{t_{m}} \sum_{\nu=n}^{m-1}\left|y_{\nu}\right|+\theta^{-1}\left|x_{0}\right| \sum_{\nu=n}^{m-1}\left|y_{\nu}\right| \sin \varepsilon_{\nu}
\end{aligned}
$$

The first sum does not exceed b_{m} by (1.2), so it tends to 0 as $m \rightarrow \infty, m \in \Lambda$. The second sum tends to 0 as $n, m \rightarrow \infty$ in view of (1.3).
6. Finally we show that $w=\lim x_{n}$ is contained in all C_{α} 's. If $w \notin C_{\beta}$ for some β, then

$$
\operatorname{dist}\left(x_{n}, C_{\beta}\right)>\delta>0
$$

for all $n \geq n_{0}$. This implies that

$$
\begin{aligned}
\left|x_{n+1}\right|^{2} & \leq\left|x_{n}\right|^{2}-\left|y_{n}\right|^{2}=\left|x_{n}\right|^{2}-\operatorname{dist}\left(x_{n}, C_{\alpha(n)}\right)^{2} \\
& \leq\left|x_{n}\right|^{2}-t_{n}^{2} \operatorname{dist}\left(x_{n}, C_{\beta}\right)^{2} \leq\left|x_{n}\right|^{2}-t_{n}^{2} \delta^{2} \\
& \leq \cdots \leq\left|x_{n_{0}}\right|^{2}-\delta^{2} \sum_{\nu=n_{0}}^{n} t_{\nu}^{2}
\end{aligned}
$$

Since (T) implies that $\sum t_{\nu}^{2}=\infty$, this contradicts $\left|x_{n}\right| \downarrow R>0$.
Assume C_{1}, \ldots, C_{K} are closed linear subspaces of H. Assume $\{\alpha(n)\}$ is a quasiperiodic sequence of the indices $1, \ldots, K$. This means that there is a constant $M \in \mathbb{N}$ so that for every interval I of length M the set $\{\alpha(n): n \in I\}$ contains all of the indices:

$$
\{\alpha(n): n \in I\}=\{1, \ldots, K\} .
$$

Then the sequence $x_{n+1}=P_{\alpha(n)} x_{n}$ of projections converges in norm [19], [11], [21]. Already for two closed and convex sets this is not true, as the example of Hundal exhibits [12], [14], [18]. Theorem 1 implies easily, that as soon as the closed and convex sets C_{1}, \ldots, C_{K} are also quasi-symmetric, convergence occurs. For symmetric in place of quasi-symmetric this was established in [2].

Corollary 1.1. Assume C_{1}, \ldots, C_{K} are finitely many closed, convex and quasisymmetric subsets of H with a nonempty intersection $C=\bigcap_{1}^{K} C_{j}$. Assume $\{\alpha(n)\}$ is a quasi-periodic sequence of the indices $1, \ldots, K$. Then the sequence $x_{n+1}=$ $P_{\alpha(n)} x_{n}$ of nearest point projections converges in norm to a point in C for any starting point $x_{0} \in H$.

Proof. The given sets are quasi-symmetric and there are only finitely many of them, so the family is uniformly quasi-symmetric. We will show there are weakness parameters $t_{n} \in[0,1]$ satifying $\sum t_{n} / n=\infty$ so that the sequence $\left\{x_{n}\right\}$ corresponds to a sequence of remote projections with these parameters. Hence according to Theorem 1 the sequence $\left\{x_{n}\right\}$ converges in norm.

We choose $\beta(n) \in\{1, \ldots, K\}$ and define $b_{n}>0$ and $t_{n} \in[0,1]$ as follows:

$$
\begin{aligned}
\operatorname{dist}\left(x_{n}, C_{\beta(n)}\right) & =\max _{k} \operatorname{dist}\left(x_{n}, C_{k}\right)=b_{n}, \\
t_{n} & =\left|x_{n+1}-x_{n}\right| / b_{n} .
\end{aligned}
$$

We will prove that for each interval I of length M there is an $n \in I$ so that $t_{n} \geq 1 /(6 M)$ and hence $\sum t_{n} / n=\infty$; here M is the constant of the quasi-periodicity of $\left\{\alpha_{n}\right\}$.

Assume for a contradiction that there is $m \in \mathbb{N}$ so that $t_{m+j}<1 /(6 M)$ for all $j \in\{0, \ldots, M\}$. We will show that then $\beta(m) \notin\{\alpha(m+j): j=0, \ldots, M\}$ contradicting the sequence $\{\alpha(n)\}$ of indices being quasi-periodic with constant M. Indeed, by the triangle inequality,

$$
\begin{aligned}
b_{n+1} & =\left|x_{n+1}-P_{\beta(n+1)} x_{n+1}\right| \\
& \leq\left|x_{n+1}-x_{n}\right|+\left|x_{n}-P_{\beta(n+1)} x_{n}\right|+\left|P_{\beta(n+1)}\left(x_{n}-x_{n+1}\right)\right| \\
& \leq \frac{b_{n}}{6 M}+b_{n}+\frac{b_{n}}{6 M}=\left(1+\frac{1}{3 M}\right) b_{n}
\end{aligned}
$$

for $m \leq n \leq m+M-1$. By induction, for any $1 \leq k \leq M$,

$$
b_{m+k} \leq\left(1+\frac{1}{3 M}\right)^{M} b_{m} \leq 2 b_{m}
$$

Again by triangle inequalities

$$
\left|x_{m}-x_{m+k}\right| \leq \frac{k}{6 M} 2 b_{m}<b_{m}
$$

hence $x_{m+k} \notin C_{\beta(m)}$.
Assume $\left\{C_{\alpha}\right\}_{\alpha \in \Omega}$ is a family of closed subspaces in H and that $|\Omega| \geq 2$ is at most countable. Assume that in a sequence $\{\alpha(n)\} \subset \Omega$ each element of Ω appears infinitely many times. The sequence of consecutive projections $x_{n+1}=P_{\alpha(n)} x_{n}$, $n=0,1,2, \ldots, x_{0} \in H$, generated by α does not have to converge in general. However, if the norm limit (or even just the weak limit) of the sequence exists, then it is equal to $P_{C} x_{0}$, where $C=\bigcap_{\alpha} C_{\alpha}$.

Already for three closed subspaces C_{1}, C_{2}, C_{3} and the sequence of remote projections (0.1) we can choose some of the weakness parameters $t_{n} \in[0,1]$ so small that the subspace C_{3} can be completely avoided. This causes (0.1) to converge to $P_{C_{1} \cap C_{2}} x_{0}$ which can be arranged to differ from $P_{C} x_{0}$.

Already for two closed convex sets things can go awry even for the remotest projections, that is, if in (0.1) we set $t_{n}=1$ for all $n \in \mathbb{N}$.

Example 1. In the Euclidean plane $H=\mathbb{R}^{2}$ there are two closed, convex and symmetric sets C_{1} and C_{2}, and a starting point x_{0} so that the limit point of the remotest projections is not equal to $P_{C_{1} \cap C_{2}} x_{0}$.
Proof. In the coordinate representation (s, t) of vectors in \mathbb{R}^{2}, we set

$$
C_{1}=\{s=0\}, \quad C_{2}=\{s-2 \leq t \leq s+2\}
$$

The line C_{1} and the stripe C_{2} are both symmetric with respect to 0 , and their intersection is the segment $C=\{(0, t): t \in[-2,2]\}$. For the starting point $x_{0}=$ $(-4,4)$, we have

$$
\operatorname{dist}\left(x_{0}, C_{2}\right)=3 \sqrt{2}>4=\operatorname{dist}\left(x_{0}, C_{1}\right)
$$

Hence $x_{1}=P_{2} x_{0}=(-1,1)$ and $x_{2}=P_{1} x_{1}=(0,1) \in C$, whereas $P_{C} x_{0}=(0,2)$.
Note that for finitely many closed convex sets there are special projection algorithms converging to the projection of the starting point onto their intersection $[3$, Ch. 30].

2. SYMMETRY CONDITIONS

Dye and Reich [9] introduced the following property of weakened symmetry.
Definition 2. Let C be a closed convex set in a Banach space X. The origin is a weak internal point (shortly WIP) of C if

$$
\begin{equation*}
\forall x \in C \exists \delta=\delta(x)>0:-\delta x \in C \tag{2.1}
\end{equation*}
$$

Moreover, we say that $a \in X$ is a WIP-point of C if the origin is a WIP-point of the set $(C-a)$.

Clearly, the origin is a WIP-point of C if and only if it is a WIP-point of $C_{1}=$ $C \cap B(0,1)$. It is also easy to see that the origin is a WIP-point of a quasi-symmetric set: the condition (i) of Definition 1 seems to be stronger than (2.1). Surprisingly, the converse is also true: $\delta(x)$ in (2.1) can be chosen independently of x lying in the unit ball, say. Closed convex sets in Banach spaces cannot be too asymmetric.

Remark 2. Let C be a closed and convex set in a Banach space X. A point $a \in X$ is a weak internal point of C if and only if C is quasi-symmetric with respect to a.

Proof. We show only the less obvious implication. We assume that $a=0$ and that $C=C \cap B(0,1)$. We take the maximal possible δ which works in (2.1): for every $0 \neq x \in C$ there exists $\delta(x)>0$ so that
(i) $-\delta(x) x \in C$;
(ii) if $\eta>\delta(x)$, then $-\eta x \notin C$.

We claim that $\inf _{x \in C} \delta(x)>0$ and give an elementary proof of this fact first. If not, then there are non-zero elements $e_{n} \in C$ having $\delta\left(e_{n}\right)<1 / 3^{n}, n \in \mathbb{N}$. Then

$$
e=\sum_{n=1}^{\infty} \frac{e_{n}}{2^{n}} \in C
$$

and we may assume $e \neq 0$; otherwise we take $(1-\varepsilon) e_{1}$ instead of e_{1} for sufficiently small $\varepsilon>0$. Then $-\delta e \in C$ for some $\delta>0$. For a fixed $k \in \mathbb{N}$ we observe that

$$
\frac{1}{1+\delta\left(1-1 / 2^{k}\right)}+\sum_{\mathbb{N} \ni n \neq k} \frac{1}{1+\delta\left(1-1 / 2^{k}\right)} \frac{\delta}{2^{n}}=1 ;
$$

all the summands on the left-hand side are positive. Consequently,

$$
\frac{1}{1+\delta\left(1-1 / 2^{k}\right)}(-\delta e)+\sum_{\mathbb{N} \ni n \neq k} \frac{1}{1+\delta\left(1-1 / 2^{k}\right)} \frac{\delta}{2^{n}} e_{n} \in C,
$$

that is,

$$
\frac{1}{1+\delta\left(1-1 / 2^{k}\right)}\left(-\delta \sum_{n=1}^{\infty} \frac{e_{n}}{2^{n}}+\sum_{\mathbb{N} \ni n \neq k} \frac{\delta}{2^{n}} e_{n}\right)=\frac{-\delta / 2^{k}}{1+\delta\left(1-1 / 2^{k}\right)} e_{k} \in C .
$$

Hence,

$$
\frac{\delta / 2^{k}}{1+\delta\left(1-1 / 2^{k}\right)} \leq \delta\left(e_{k}\right)<\frac{1}{3^{k}} .
$$

The last inequality implies that

$$
\frac{\delta}{2^{k}}<\frac{1+\delta}{3^{k}}-\frac{\delta}{6^{k}},
$$

which is impossible for large k 's; how large exactly depends on δ.
Here is a "Baire category" proof of the fact that $\inf _{x \in C} \delta(x)>0$ due to V.I. Bogachev. According to [4, Proposition 2.5.1] both sets $C \cap(-C)$ and conv $(C \cup(-C))$ generate norms on span C in which span C is a Banach space. The open mapping theorem implies that the two norms are equivalent, hence the above infimum is positive.

Next we exhibit that the uniform quasi-symmetry assumption on the sets C_{α} in Theorem 1 is essential. In [12] and [14], an example of a closed convex cone C with the vertex at the origin was constructed so that iterating the nearest point projection between C and a hyperplane D converges weakly but not in norm for a starting point $x_{0} \in D$. In the example the hyperplane $D=e^{\perp}$ for an $0 \neq e \in H=\ell_{2}$ and the set C is the epigraph in $\ell_{2}=D+\operatorname{span}\{e\}$ of a suitably chosen nonnegative convex sublinear function defined on D. Those familiar with the example readily "see", that the family of closed convex sets consisting of D and $C-c_{n} e$ for some suitable $c_{n} \searrow 0$ consists of quasi-symmetric sets for which the remote projections algorithm starting at x_{0} closely traces the iterates of nearest points projections of x_{0} between C and D. Consequently it converges weakly but not in norm. Rather than writing this up rigorously we give here a construction which is easier to present.

Example 2. In any infinite dimensional Hilbert space H, there exists a countable family of closed, convex and quasi-symmetric sets so that the sequence of remotest projections on this family does not converge in norm for a certain starting point.

Proof. We assume that H is separable as if it is not, then we build the example in a closed separable infinite dimensional subspace of H. Also, we construct a family of sets and a point in their intersection so that each set in the family is quasi-symmetric with respect to this point. To center at the origin, we translate, if need be.

We use as a building stone an example constructed in [5]; we first recall its relevant properties.

Let $\left\{e, e_{k}: k \in \mathbb{N}\right\}$ be an orthonormal basis of H. For each $k \in \mathbb{N}$, we choose vectors $v_{1}^{k}, \ldots, v_{n_{k}}^{k} \in \operatorname{span}\left\{e_{k}, e_{k+1}\right\}$ as in [5]. Their number n_{k} increases in a particular way, the norms $\left|v_{n}^{k}\right|$ decrease in a particular way. Their only property relevant here are their directions:

$$
\begin{equation*}
\arg v_{n}^{k}=-\frac{\pi}{2}+\frac{\pi n}{n_{k}}, \quad k \in \mathbb{N}, n=1, \ldots, n_{k} \tag{2.2}
\end{equation*}
$$

here the polar angle \arg in the plane $\operatorname{span}\left\{e_{k}, e_{k+1}\right\}$ is measured from the positive direction of e_{k}.

The diverging greedy algorithm with respect to the dictionary containing $\pm e$ and all vectors $\left(e+v_{n}^{k}\right) /\left|e+v_{n}^{k}\right|$ which is constructed in [5] can be interpreted as the process of remotest projections onto the family of closed convex sets consisting of the hyperplane $D=e^{\perp}$ and the half-spaces

$$
C_{n, k}=\left\{y \in H:\left\langle y, e+v_{n}^{k}\right\rangle \leq 0\right\}
$$

Starting with $x_{0}=e_{1}$, the remotest projections algorithm generates $x_{m+1}=P_{C_{n, k}} x_{m}$ for even m (k and n depending on m) and $x_{m+1}=P_{D} x_{m}$ for odd m. For all m and k, the inequalities $\left\langle x_{m}, e_{k}\right\rangle \geq 0$ and $\left\langle x_{m}, e\right\rangle \leq 0$ hold. The sequence $\left\{x_{m}\right\}$ converges to 0 weakly but not in norm; for more details see [5].

The hyperplane D and all the half-spaces $C_{n, k}$ are quasi-symmetric with respect to any point

$$
a \in D \cap\left(\cap_{n, k} C_{n, k}^{\circ}\right)
$$

where $C_{n, k}^{\circ}$ denotes the interior of the half-space $C_{n, k}$. We define the coordinates of such a point

$$
a=\left(0, a^{1}, a^{2}, \ldots\right)
$$

with respect to the basis $\left\{e, e_{k}: k \in \mathbb{N}\right\}$, recursively:

$$
a^{1}=-1, a^{k+1}=a^{k} \tan \frac{\pi}{4 n_{k}}
$$

Clearly, $a \in \ell_{2}, a \in D$, and (2.2) implies that

$$
\left\langle a, e+v_{n}^{k}\right\rangle=\left\langle a, v_{n}^{k}\right\rangle=\left\langle a^{k} e_{k}+a^{k+1} e_{k+1}, v_{n}^{k}\right\rangle<0
$$

since

$$
\arg \left(a^{k} e_{k}+a^{k+1} e_{k+1}\right)=-\pi+\frac{\pi}{4 n_{k}}
$$

in the plane span $\left\{e_{k}, e_{k+1}\right\}$. Hence, $a \in C_{n, k}^{\circ}$ for each k and n.
If the interior of the intersection of a family of closed convex sets is non-empty, then, clearly, the family is uniformly quasi-symmetric. In such a case, any sequence of projections onto these sets converges. For remote projections we even give an estimate of the rate.

Remark 3. Let each closed convex set C_{α} contain the ball $B(a, r), a \in H, r>0$.
(a) The sequence (0.1) of remote projections converges in norm for each starting element $x_{0} \in H$ and for any sequence $\left\{t_{n}\right\}$. In particular, random projections converge.
(b) If, moreover, $\sum t_{n}^{2}=\infty$, then the limit point w belongs to $\bigcap_{\alpha \in \Omega} C_{\alpha}$, and the rate of convergence is estimated by

$$
\begin{equation*}
\left|x_{n}-w\right| \leq 2\left|x_{0}-a\right| \prod_{k=0}^{n-1}\left(1-\frac{t_{k}^{2} r^{2}}{\left|x_{0}-a\right|^{2}}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

The statement (b) clarifies a result from [10]. There the convergence to a point in the intersection was shown under the condition $\sup _{\alpha} \operatorname{dist}\left(x_{n}, C_{\alpha}\right) \rightarrow 0$ as $n \rightarrow \infty$. Also, an exponential rate of convergence was established for remotest projections $\left(t_{n} \equiv 1\right)$ with an estimate similar to ours.

Proof. (a) We assume $a=0$ and use the notations $y_{n}=x_{n}-x_{n+1}, \varepsilon_{n}=\pi / 2-$ $\angle 0 x_{n+1} x_{n}$, and also several inequalities from the proof of Theorem 1.

In view of (1.4), we have $\left\langle y_{n}, z-x_{n+1}\right\rangle \leq 0$ for any $z \in B(0, r)$. Consequently,

$$
\left|y_{n}\right|\left|x_{n+1}\right| \sin \varepsilon_{n}=\left\langle y_{n}, x_{n+1}\right\rangle \geq \sup _{z \in B(0, r)}\left\langle y_{n}, z\right\rangle=r\left|y_{n}\right|
$$

so that

$$
\sin \varepsilon_{n} \geq \frac{r}{\left|x_{n+1}\right|} \geq \frac{r}{\left|x_{0}\right|}
$$

This estimate together with (1.3) yields $\sum\left|y_{n}\right|<\infty$, meaning that x_{n} converge in norm.
(b) To prove that the limit point w belongs to $C=\bigcap_{\alpha \in \Omega} C_{\alpha}$ in case $\sum t_{n}^{2}=\infty$, one can use the same arguments as in part 6 of the proof of Theorem 1.

Now we proceed to prove (2.3). Note that for any $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|x_{n}-w\right| \leq 2 \operatorname{dist}\left(x_{n}, C\right) \tag{2.4}
\end{equation*}
$$

otherwise

$$
\left|x_{m}-y\right|<\frac{\left|x_{m}-w\right|}{2}
$$

for some $y \in C$ and $m \in \mathbb{N}$, so that

$$
\left|x_{n}-y\right| \rightarrow|w-y| \geq\left|x_{m}-w\right|-\left|x_{m}-y\right|>\left|x_{m}-y\right|
$$

which contradicts the fact that the sequence $\left\{\left|x_{n}-y\right|\right\}$ is decreasing.
Let $n \in \mathbb{N}$ and

$$
d_{n}=\sup _{\alpha} \operatorname{dist}\left(x_{n}, C_{\alpha}\right) .
$$

The ball $B\left(x_{n}, d_{n}\right)$ contains a point $p_{\alpha} \in C_{\alpha}$ for each α. Since the point

$$
u_{n}=\frac{d_{n}}{d_{n}+r} a+\frac{r}{d_{n}+r} x_{n}
$$

belongs to conv $\{p, B(a, r)\}$ for each $p \in B\left(x_{n}, d_{n}\right)$, we get $u_{n} \in C$, so that

$$
\operatorname{dist}\left(x_{n}, C\right) \leq\left|x_{n}-u_{n}\right|=\left|x_{n}-a\right| \cdot \frac{d_{n}}{d_{n}+r}
$$

Consequently,

$$
d_{n} \geq \frac{r \operatorname{dist}\left(x_{n}, C\right)}{\left|x_{n}-a\right|-\operatorname{dist}\left(x_{n}, C\right)} \geq \frac{r \operatorname{dist}\left(x_{n}, C\right)}{\left|x_{0}-a\right|}
$$

Let $P_{C} x_{n}=b$. Since $b \in C_{\alpha(n)}$, the angle $\angle x_{n} x_{n+1} b$ is not less than $\pi / 2$, so that

$$
\begin{aligned}
& \operatorname{dist}\left(x_{n+1}, C\right)^{2} \leq\left|x_{n+1}-b\right|^{2} \leq\left|x_{n}-b\right|^{2}-\left|x_{n}-x_{n+1}\right|^{2} \\
& \leq \operatorname{dist}\left(x_{n}, C\right)^{2}-t_{n}^{2} d_{n}^{2} \leq \operatorname{dist}\left(x_{n}, C\right)^{2}\left(1-\frac{t_{n}^{2} r^{2}}{\left|x_{0}-a\right|^{2}}\right)
\end{aligned}
$$

Hence,

$$
\operatorname{dist}\left(x_{n+1}, C\right) \leq \operatorname{dist}\left(x_{0}, C\right) \prod_{k=0}^{n}\left(1-\frac{t_{k}^{2} r^{2}}{\left|x_{0}-a\right|^{2}}\right)^{1 / 2}
$$

which together with (2.4) gives (2.3).

Assume that unlike the assumption in Remark 3 we deal with a family of slim sets: all C_{α} are hyperplanes g_{α}^{\perp}. Then remote projections implement the Weak Greedy Algorithm with respect to the dictionary $D=\left\{ \pm g_{\alpha}: \alpha \in \Omega\right\}$ and there are estimates of the rate of convergence for starting elements from $\overline{\text { conv }} D[24, \mathrm{Ch} .2]$. We wonder if any such estimates can be shown for a class of starting elements in the general setting of Theorem 1 .

3. Weak convergence

Bregman [8] proved that for any family of general (non-symmetric) closed convex sets with nonempty intersection the remotest projections (0.1) with $t_{n} \equiv 1$ always converge weakly. He assumed that $\max _{\alpha} \operatorname{dist}\left(x, C_{\alpha}\right)$ is attained for each $x \in H$. It is quite natural to generalize this result to remote projections by slightly changing his arguments.
Theorem 2. Assume $\left\{C_{\alpha}\right\}$ is a family of closed and convex sets in a Hilbert space H with a nonempty intersection $C=\bigcap_{\alpha \in \Omega} C_{\alpha}$. Let the sequence $\left\{t_{n}\right\}$ in $[0,1]$ satisfy the following condition: there are $\delta>0$ and $K \in \mathbb{N}$ so that for any $n \in \mathbb{N}$ at least one of the values t_{n}, \ldots, t_{n+K} is greater than δ. Then the sequence (0.1) of remote projections converges weakly to some point of C for any starting element $x_{0} \in H$.

Proof. Take any $n \in \mathbb{N}$ and $k \in\{n, \ldots, n+K\}$ so that $t_{k}>\delta$. We use the notation $y_{\nu}=x_{\nu}-x_{\nu+1}$. For any $\alpha \in \Omega$, we have

$$
\begin{aligned}
& \operatorname{dist}\left(x_{n}, C_{\alpha}\right) \leq\left|x_{n}-x_{k}\right|+\operatorname{dist}\left(x_{k}, C_{\alpha}\right) \leq \sum_{i=n}^{k-1}\left|y_{i}\right|+\frac{\operatorname{dist}\left(x_{k}, C_{\alpha(k)}\right)}{t_{k}} \\
& \quad \leq \sqrt{K}\left(\sum_{i=n}^{n+K-1}\left|y_{i}\right|^{2}\right)^{1 / 2}+\frac{\left|y_{k}\right|}{\delta} \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

since $\sum\left|y_{\nu}\right|^{2}<\infty$ in view of (1.1). Consequently, each partial weak limit w of the x_{n} 's belongs to C. In its turn, this implies that the whole sequence $\left|x_{n}-w\right|$ is decreasing, since each P_{α} is a 1-Lipschitz retraction onto C_{α}.

A partial weak limit does exist, so we have to prove its uniqueness. Let v and w be two partial weak limits, so that $x_{n_{i}}$ converge weakly to v and $x_{m_{j}}$ converge weakly to w. The numbers
$d_{n}:=\left|x_{n}-v\right|^{2}-\left|x_{n}-w\right|^{2}=2\left\langle v-x_{n}, v-w\right\rangle-|v-w|^{2}=2\left\langle x_{n}-w, w-v\right\rangle+|w-v|^{2}$ tend to a single limit, as we have just mentioned. On the other hand, $d_{n_{i}} \rightarrow-|v-w|^{2}$ and $d_{m_{j}} \rightarrow|w-v|^{2}$. Hence, $v=w$.

The following result was established by Dye and Reich in [9].
Corollary 2.1. Assume C_{1}, \ldots, C_{K} are finitely many closed and convex subsets of H with a nonempty intersection $C=\bigcap_{1}^{K} C_{j}$. Assume $\{\alpha(n)\}$ is a quasi-periodic sequence of the indices $1, \ldots, K$. Then the sequence $x_{n+1}=P_{\alpha(n)} x_{n}$ of nearest point projections converges weakly to a point in C for any starting point $x_{0} \in H$.

Proof. The sequence $\{\alpha(n)\}$ is quasi-periodic, which means that there is a constant $M \in \mathbb{N}$ so that for every interval I of length M the set $\{\alpha(n): n \in I\}$ contains all of the indices $1, \ldots, K$. As in the proof of Corollary 1.1 we choose $\beta(n) \in\{1, \ldots, K\}$ and define $b_{n}>0$ and weakness parameters $t_{n} \in[0,1]$ as follows:

$$
\begin{aligned}
\operatorname{dist}\left(x_{n}, C_{\beta(n)}\right) & =\max _{k} \operatorname{dist}\left(x_{n}, C_{k}\right)=b_{n}, \\
t_{n} & =\left|x_{n+1}-x_{n}\right| / b_{n}
\end{aligned}
$$

Then for each interval I of length M there is an $n \in I$ so that $t_{n} \geq 1 /(6 M)$, as shown in the proof of Corollary 1.1. According to Theorem 2 the sequence $\left\{x_{n}\right\}$ converges weakly to a point of C.

We do not know if the condition on the sequence $\left\{t_{n}\right\}$ in Theorem 2 is necessary for the weak convergence of remote projections. It is much stronger than the condition (T) implying the norm convergence of remote projections in the uniformly quasi-symmetric case. We do not know of an equivalent condition for the weak convergence in the uniformly quasi-symmetric case either. We give, however, criteria for remote projections to have a partial weak limit in the intersection of the sets considered.

Theorem 3. For a sequence $\left\{t_{n}\right\}_{n=0}^{\infty} \subset[0,1]$, the following statements are equivalent:
(i) $\sum t_{n}^{2}=\infty$;
(ii) the sequence $\left\{x_{n}\right\}$ of remote projections (0.1) with parameters t_{n} has a partial weak limit in $\bigcap_{\alpha \in \Omega} C_{\alpha}$ for any starting element $x_{0} \in H$ and any family $\left\{C_{\alpha}\right\}_{\alpha \in \Omega}$ of closed and convex sets in H with nonempty intersection;
(iii) the residuals $\left\{x_{n}\right\}$ in the Weak Greedy Algorithm (0.2) with parameters t_{n} have a partial weak limit 0 for any starting element $x_{0} \in H$ and any dictionary $D \subset S(H)$.
Proof. (i) \Rightarrow (ii). Let $\sum t_{n}^{2}=\infty, 0 \in C=\bigcap_{\alpha \in \Omega} C_{\alpha}$ and $\left\{x_{n}\right\}$ be the sequence (0.1). We denote $y_{n}=x_{n}-x_{n+1}$ again. Since $\sum\left|y_{n}\right|^{2}<\infty$ in view of (1.1), we can choose a subsequence $\Lambda \subset \mathbb{N}$ with the property $\left|y_{n}\right| / t_{n} \rightarrow 0, n \in \Lambda, n \rightarrow \infty$. Taking any $\alpha \in \Omega$ and $n \in \Lambda$, we get

$$
\operatorname{dist}\left(x_{n}, C_{\alpha}\right) \leq \frac{\operatorname{dist}\left(x_{n}, C_{\alpha(n)}\right)}{t_{n}}=\frac{\left|y_{n}\right|}{t_{n}} \rightarrow 0, \quad n \rightarrow \infty
$$

Consequently, any partial weak limit of $\left\{x_{n}\right\}_{n \in \Lambda}$ belongs to C. In fact, this partial weak limit in C is unique, as we have seen in the proof of Theorem 2. However, there may be other partial weak limits outside of C, as Example 3 below shows.
(ii) \Rightarrow (iii). This is obvious, since the WGA is a particular case of remote projections onto a family of hyperplanes having unique common point 0 .
(iii) \Rightarrow (i). Let $\sum t_{n}^{2}<\infty$. In what follows we construct a countable family $\left\{C_{n}\right\}$ of one-dimensional subspaces and a sequence (0.1) of remote projections onto this family with parameters t_{n}, which does not converge weakly and does not have 0 as a partial weak limit. Remark 1 then supplies an example of the WGA with parameters t_{n} whose residuals do not have 0 as a partial weak limit.

We choose a sequence $\left\{\tau_{n}\right\}$ with the properties $\tau_{n} \geq t_{n}$ for all $n, \sum \tau_{n}^{2}<\infty$, $\sum \tau_{n}=\infty$, and fix m so that

$$
\begin{equation*}
\sum_{n=m}^{\infty} \tau_{n}^{2}<\frac{1}{4} \tag{3.1}
\end{equation*}
$$

We fix a point s on the unit sphere of H and take the spherical cap

$$
V(s)=\left\{v \in S(H):\langle v, s\rangle \geq \frac{\sqrt{3}}{2}\right\}
$$

We choose two opposite points a and b on the boundary of the cap: $\langle a, s\rangle=\langle b, s\rangle=$ $\sqrt{3} / 2$. We also choose a sequence $\left\{s_{n}\right\}_{n=m}^{\infty} \subset V(s)$ so that $s_{m}=a$ and $\left\langle s_{n}, s_{n+1}\right\rangle=$ $\sqrt{1-\tau_{n}^{2}}$ for all $n \geq m$. This sequence can be constructed inductively: the choice of each next $s_{n+1} \in V(s)$ is possible, since $\sqrt{1-\tau_{n}^{2}} \geq \sqrt{3} / 2$ by (3.1). Moreover, we have

$$
\left|s_{n}-s_{n+1}\right|=\sqrt{2-2 \sqrt{1-\tau_{n}^{2}}} \geq \tau_{n}
$$

so that $\left\{s_{n}\right\}_{n=m}^{\infty}$ may be made dense in $V(s)$, since $\sum \tau_{n}=\infty$.
Denoting by $L(v):=\operatorname{span}\{v\}$ the line spanned by a vector $v \in S(H)$, we consider the family of lines

$$
L(a), L(b), L\left(s_{n}\right), \quad n=m, m+1, \ldots
$$

and the following sequence of remote projections onto this family of lines with starting element $x_{0}=s$. The projections x_{1}, \ldots, x_{m} alternately lie on the lines
$L(a)$ and $L(b)$ so that they are remotest and satisfy the inequalities needed for any given parameters t_{0}, \ldots, t_{m-1}. We choose the first projection x_{1} lying either on $L(a)$ or $L(b)$ so that $x_{m} \in L(a)$, depending on the parity of m. As for $n \geq m$, we set x_{n+1} to be the projection of x_{n} onto $L\left(s_{n+1}\right)$:

$$
\begin{aligned}
\operatorname{dist}\left(x_{n}, L\left(s_{n+1}\right)\right) & =\left|x_{n}\right| \sin \angle\left(s_{n} 0 s_{n+1}\right) \\
& =\left|x_{n}\right| \tau_{n} \geq\left|x_{n}\right| t_{n} \geq t_{n} \sup _{v \in V(s)} \operatorname{dist}\left(x_{n}, L(v)\right)
\end{aligned}
$$

Clearly, the sequence $\left\{x_{n}\right\}$ is contained in the cone $\{\lambda v: v \in V(s), \lambda>0\}$. For any $n>m$, we have

$$
\left|x_{n}\right|^{2}=\left|x_{m}\right|^{2}-\sum_{k=m}^{n-1}\left|x_{k}\right|^{2} \tau_{k}^{2} \geq\left|x_{m}\right|^{2}\left(1-\sum_{k=m}^{\infty} \tau_{k}^{2}\right) \geq \frac{3}{4}\left|x_{m}\right|^{2}
$$

This means that $\left|x_{n}\right| \rightarrow r>0$, and the set of all partial weak limits of the sequence $\left\{x_{n}\right\}$ is the closed convex hull of the cap $r V(s)$.

The following Example shows that the conditions on the sequence $\left\{t_{n}\right\}$ in Theorem 2 cannot be replaced by $\liminf _{n \rightarrow \infty} t_{n}>0$ and that in Theorem 3 one cannot claim the uniqueness of the weak limit.

Example 3. Let H be an infinite dimensional Hilbert space. Then there exists a countable family of closed convex sets in H with non-empty intersection and a sequence (0.1) of remote projections on this family which does not converge weakly and its weakness parameters satisfy $\liminf _{n \rightarrow \infty} t_{n}>0$.

Proof. 1. We use the following local construction.
Lemma A. [14, Section 2.2] Let $a, b, c \in H$ be such that $|a|=|b| \neq 0$ and $0 \neq c \in\{a, b\}^{\perp}$. For every $\varepsilon>0$ there exists a convex closed cone $C=C(a, b, c, \varepsilon) \subset$ span $\{a, b, c\}$ with vertex 0 so that alternating projections between C and the plane $D=\operatorname{span}\{a, b\}$ move the point a close to the point b :

$$
\begin{equation*}
\left|\left(P_{D} P_{C}\right)^{m} a-b\right|<\varepsilon \tag{3.2}
\end{equation*}
$$

for some $m=m(a, b, c, \varepsilon)$.
The cone from Lemma A also satisfies

$$
\begin{equation*}
\operatorname{dist}(a, C) \leq \sqrt{2|a| \varepsilon} \tag{3.3}
\end{equation*}
$$

since otherwise

$$
\left|\left(P_{D} P_{C}\right)^{m} a\right| \leq\left|P_{C} a\right|=\sqrt{|a|^{2}-\operatorname{dist}(a, C)^{2}}<|a|-\varepsilon=|b|-\varepsilon
$$

which contradicts (3.2). Similarly,

$$
\left|P_{C}\left(P_{D} P_{C}\right)^{m-1} a-\left(P_{D} P_{C}\right)^{m} a\right|=\operatorname{dist}\left(P_{C}\left(P_{D} P_{C}\right)^{m-1} a, D\right) \leq \sqrt{2|a| \varepsilon}
$$

and hence

$$
\begin{align*}
\operatorname{dist}(b, C) & \leq\left|b-P_{C}\left(P_{D} P_{C}\right)^{m-1} a\right| \leq\left|b-\left(P_{D} P_{C}\right)^{m} a\right| \\
& +\left|P_{C}\left(P_{D} P_{C}\right)^{m-1} a-\left(P_{D} P_{C}\right)^{m} a\right| \leq \varepsilon+\sqrt{2|a| \varepsilon} \tag{3.4}
\end{align*}
$$

2. We may assume that H is separable and fix an orthonormal basis $\left\{u, v, e_{k}\right.$: $k \in \mathbb{N}\}$ of H. We choose a decreasing sequence $\varepsilon_{n} \searrow 0$ so that

$$
\sum_{k=1}^{\infty} \sqrt{\varepsilon_{k}}<\frac{1}{10}
$$

We set

$$
\begin{aligned}
D & =v^{\perp}=\overline{\operatorname{span}}\left\{u, e_{k}: k \in \mathbb{N}\right\}, \\
C_{1} & =C\left(e_{1}, u, v, \varepsilon_{1}\right)+\overline{\operatorname{span}}\left\{e_{n}: n \in \mathbb{N}, n \neq 1\right\}, \\
m_{1} & =m\left(e_{1}, u, v, \varepsilon_{1}\right), \\
C_{2} & =C\left(u, e_{2}, v, \varepsilon_{2}\right)+\overline{\operatorname{span}}\left\{e_{n}: n \in \mathbb{N}, n \neq 2\right\}, \\
m_{2} & =m\left(u, e_{2}, v, \varepsilon_{2}\right), \\
& \ldots \\
C_{2 k-1} & =C\left(e_{k}, u, v, \varepsilon_{2 k-1}\right)+\overline{\operatorname{span}}\left\{e_{n}: n \in \mathbb{N}, n \neq k\right\}, \\
m_{2 k-1} & =m\left(e_{k}, u, v, \varepsilon_{2 k-1}\right), \\
C_{2 k} & =C\left(u, e_{k+1}, v, \varepsilon_{2 k}\right)+\overline{\operatorname{span}}\left\{e_{n}: n \in \mathbb{N}, n \neq k+1\right\}, \\
m_{2 k} & =m\left(u, e_{k+1}, v, \varepsilon_{2 k}\right), \\
& \ldots
\end{aligned}
$$

Clearly, (3.2) works for the extended cones $C_{2 k-1}$ and $C_{2 k}$ as well:

$$
\begin{gather*}
\left|\left(P_{D} P_{C_{2 k-1}}\right)^{m_{2 k-1}} e_{k}-u\right|<\varepsilon_{2 k-1} \tag{3.5}\\
\left|\left(P_{D} P_{C_{2 k}}\right)^{m_{2 k}} u-e_{k+1}\right|<\varepsilon_{2 k} \tag{3.6}
\end{gather*}
$$

3. We have $e_{k} \in D$ for all k and $e_{k} \in C_{n}$ for $n \neq 2 k-2,2 k-1$ by construction, hence also

$$
\begin{aligned}
& \operatorname{dist}\left(e_{k}, C_{2 k-1}\right)<\sqrt{2 \varepsilon_{2 k-1}} \\
& \operatorname{dist}\left(e_{k}, C_{2 k-2}\right)<\sqrt{2 \varepsilon_{2 k-2}}+\varepsilon_{2 k-2}
\end{aligned}
$$

by (3.3) and (3.4). This implies for P being a projection onto C_{n} or D that

$$
\begin{equation*}
\left|e_{k}-P e_{k}\right|<3 \sqrt{\varepsilon_{2 k-2}}, \quad k=2,3, \ldots \tag{3.7}
\end{equation*}
$$

4. Now we define the required sequence of remote projections on the family $\left\{D, C_{n}: n \in \mathbb{N}\right\}$.

We start with $x_{0}=e_{1}$ and make m_{1} alternating projections on C_{1} and D :

$$
y_{1}=\left(P_{D} P_{C_{1}}\right)^{m_{1}} e_{1}
$$

Then we make m_{2} alternating projections on C_{2} and D :

$$
y_{2}=\left(P_{D} P_{C_{2}}\right)^{m_{2}} y_{1}
$$

Then we make the projection P_{2} on one of the sets C_{n} so that

$$
\left|y_{2}-P_{2} y_{2}\right| \geq \frac{1}{2} \sup _{n} \operatorname{dist}\left(y_{2}, C_{n}\right)
$$

and we set

$$
z_{2}=P_{2} y_{2}
$$

We proceed by induction: having defined $y_{1}, y_{2}, \ldots, y_{2 k-2}$ and $z_{2}, z_{4}, \ldots, z_{2 k-2}$, we make $m_{2 k-1}$ alternating projections on $C_{2 k-1}$ and D :

$$
y_{2 k-1}=\left(P_{D} P_{C_{2 k-1}}\right)^{m_{2 k-1}} z_{2 k-2}
$$

then $m_{2 k}$ alternating projections on $C_{2 k}$ and D :

$$
y_{2 k}=\left(P_{D} P_{C_{2 k}}\right)^{m_{2 k}} y_{2 k-1}
$$

and then one projection $P_{2 k}$ on one of the sets C_{n} so that

$$
\begin{equation*}
\left|y_{2 k}-P_{2 k} y_{2 k}\right| \geq \frac{1}{2} \sup _{n} \operatorname{dist}\left(y_{2 k}, C_{n}\right) \tag{3.8}
\end{equation*}
$$

and we set

$$
z_{2 k}=P_{2 k} y_{2 k}
$$

For this sequence of projections, containing subsequences $\left\{y_{k}\right\}$ and $\left\{z_{2 k}\right\}$, we have

$$
\liminf _{n \rightarrow \infty} t_{n} \geq \frac{1}{2}
$$

since projections via $P_{2 k}$ have $t_{n} \geq 1 / 2$ by (3.8).
5. At last we have to prove that the sequence $\left\{y_{k}\right\}$ does not converge weakly, and hence the whole sequence of projections has no weak limit.

We have $\left|y_{1}-u\right|<\varepsilon_{1}$ by (3.5) for $k=1$. Using (3.6) for $k=1$, we get

$$
\left|y_{2}-e_{2}\right| \leq\left|\left(P_{D} P_{C_{2}}\right)^{m_{2}}\left(y_{1}-u\right)\right|+\left|\left(P_{D} P_{C_{2}}\right)^{m_{2}} u-e_{2}\right|<\varepsilon_{1}+\varepsilon_{2}
$$

which together with (3.7) implies that

$$
\left|z_{2}-e_{2}\right|=\left|P_{2} y_{2}-e_{2}\right| \leq\left|P_{2}\left(y_{2}-e_{2}\right)\right|+\left|P_{2} e_{2}-e_{2}\right|<\varepsilon_{1}+\varepsilon_{2}+3 \sqrt{\varepsilon_{2}}
$$

In the same way, by induction on k, we get

$$
\begin{aligned}
& \left|y_{2 k-1}-u\right|<\sum_{\nu=1}^{2 k-1} \varepsilon_{\nu}+3 \sum_{\nu=1}^{k-1} \sqrt{\varepsilon_{2 \nu}} \\
& \left|y_{2 k}-e_{k+1}\right|<\sum_{\nu=1}^{2 k} \varepsilon_{\nu}+3 \sum_{\nu=1}^{k-1} \sqrt{\varepsilon_{2 \nu}} \\
& \left|z_{2 k}-e_{k+1}\right|<\sum_{\nu=1}^{2 k} \varepsilon_{\nu}+3 \sum_{\nu=1}^{k} \sqrt{\varepsilon_{2 \nu}}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left|y_{2 k-1}-u\right|<0.4 & \Rightarrow\left\langle y_{2 k-1}, u\right\rangle>0.6 \\
\left|y_{2 k}-e_{k+1}\right|<0.4 & \Rightarrow\left\langle y_{2 k}, u\right\rangle<0.4
\end{aligned}
$$

and the sequence $\left\{y_{n}\right\}$ does not converge weakly.
The following statement is a parallel to Remark 3 (a). We consider here weak convergence instead of norm convergence. The intersection of the sets is not contained in any affine hyperplane in place of having non-empty interior.

Remark 4. Let $\left\{C_{\alpha}\right\}$ be a family of closed convex subsets of a Hilbert space H. Assume that the affine hull of the intersection $C=\bigcap C_{\alpha}$ is dense in H. Then the sequence (0.1) of remote projections converges weakly for each starting element $x_{0} \in H$ and for any sequence $\left\{t_{n}\right\}$ of weakness parameters. In particular, random projections converge weakly in this case.

Proof. Fix a point $a \in C$. Then $\overline{\operatorname{span}}\{v-a: v \in C\}=H$. For each $v \in C$ and any $n \in \mathbb{N}$, we have $v \in C_{\alpha(n)}$, hence $\angle v x_{n+1} x_{n} \geq \pi / 2$, so that $\left|x_{n}-v\right| \geq\left|x_{n+1}-v\right|$, and the decreasing sequence

$$
\begin{equation*}
\left|x_{n}-v\right|^{2}=\left|x_{n}-a\right|^{2}-2\left\langle x_{n}-a, v-a\right\rangle+|v-a|^{2} \tag{3.9}
\end{equation*}
$$

has a limit. In particular, the sequence $\left\{\left|x_{n}-a\right|^{2}\right\}$ has a limit, which together with (3.9) implies that the sequence of scalar products

$$
\left\langle x_{n}-a, v-a\right\rangle
$$

has a limit as well. The sequence $\left\{x_{n}-a\right\}$ is bounded and the set span $\{v-a: v \in C\}$ is dense in H, hence the sequence $\left\{x_{n}-a\right\}$ converges weakly, and so does the sequence $\left\{x_{n}\right\}$.

Dye and Reich [9] proved weak convergence of random projections on a finite family of closed convex sets that are all WIP sets with respect to their common point, see also [7]. Such sets are uniformly quasi-symmetric with respect to this point by Remark 2. We wonder if Theorem 2 and Theorem 3 can be clarified under the additional condition of uniform quasi-symmetry of the sets C_{α}. We also note that the problem of weak convergence of random projections, that is, remote projections with arbitrary t_{n} 's, onto a finite family of closed convex sets having nonempty intersection is still open [7].

Acknowledgements

We thank S. Reich, V.N. Temlyakov, and V.I. Bogachev for fruitful discussions.

References

[1] I. Amemiya and T. Ando, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239-244.
[2] J. B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.
[3] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, 2017.
[4] V. I. Bogachev and O. G. Smolyanov, Topological vector spaces and their applications, Springer, 2017.
[5] P. A. Borodin, Example of divergence of a greedy algorithm with respect to an asymmetric dictionary, Math. Notes 109 (2021), 379-385.
[6] P. Borodin and E. Kopecká, Alternating projections, remotest projections, and greedy approximation, J. Approx. Th. 260 (2020), 105486.
[7] P. A. Borodin and E. Kopecká, Weak limits of consecutive projections and of greedy steps, Proc. Steklov Inst. Math. 319 (2022), 56-63.
[8] L. M. Bregman, The method of successive projection for finding a common point of convex sets, Soviet Mathematics Doklady 6 (1965), 688-692.
[9] J. M. Dye and S. Reich, Unrestricted iterations of nonexpansive mappings in Hilbert space, Nonlinear Analysis, 18:2 (1992), 199-207.
[10] L. G. Gubin, B. T. Polyak and E. V. Raik, The method of projections for finding the common point of convex sets, USSR Computational Mathematics and Mathematical Physics, 7:6 (1967), $1-24$.
[11] I. Halperin, The product of projection operators, Acta Sci. Math. (Szeged) 23 (1962), 96-99.
[12] H. S. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004), 35-61.
[13] L. Jones, On a conjecture of Huber concerning the convergence of projection pursuit regression, Ann. Stat., 15:2 (1987), 880-882.
[14] E. Kopecká, Spokes, mirrors and alternating projections, Nonlinear Analysis, 68 (2008), 17591764.
[15] E. Kopecká, When products of projections diverge, J. London Math. Soc. (2) 102 (2020), 345-367.
[16] E. Kopecká and V. Müller, A product of three projections, Studia Math. 223 (2014), 175-186.
[17] E. Kopecká and A. Paszkiewicz, Strange products of projections, Israel J. Math. 219 (2017), 271-286.
[18] E. Matoušková and S. Reich, The Hundal example revisited, J. Nonlinear Convex Anal. 4 (2003), 422-427.
[19] J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50 (1949), 401-485.
[20] S. Reich and R. Zalas, Polynomial estimates for the method of cyclic projections in Hilbert spaces, Numer. Algor. 94 (2023), 1217-1242.
[21] M. Sakai, Strong convergence of infinite products of orthogonal projections in Hilbert space, Appl. Anal. 59 (1995), 109-120.
[22] V. N. Temlyakov, Weak greedy algorithms, Advances in Comp. Math., 12 (2000), 213-227.
[23] V. Temlyakov, A criterion for convergence of Weak Greedy Algorithms, Adv. Comp. Math., 17 (2002), 269-280.
[24] V. Temlyakov, Greedy approximation, Cambridge, 2011.

Manuscript received November 302023 revised December 102023

Department of Mechanics and Mathematics, Moscow State University, Moscow 119991, Russia; and Moscow Center for Fundamental and Applied Mathematics

E-mail address: pborodin@inbox.ru
Universität Innsbruck, Department of Mathematics, Technikerstraße 13, 6020 Innsbruck, Austria E-mail address: eva.kopecka@uibk.ac.at

[^0]: 2020 Mathematics Subject Classification. Primary: 46C05, 47J25 Secondary: 41A65.
 Key words and phrases. Hilbert space, metric projection, convex set, convergence, symmetry.
 ${ }^{*}$ The first author was supported by the Russian Science Foundation (grant no. 23-71-30001) in Moscow State University.

