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about the geometry of the subspaces is known (see [16], [17], and [15]). The sequence
{xn}, however, always converges weakly to a point in C if Ω is finite, each α ∈ Ω
occurs infinitely many times in the sequence {α(n)} and the sets Cα are closed
linear subspaces [1].

In the lack of linearity, when the sets Cα are just closed and convex, the situation
is different. Already for |Ω| = 2 the sequence {xn} might diverge in norm ( [12], see
also [14] and [18]). Weak convergence is known only under additional conditions [7]:
when |Ω| ≤ 3 [9], or when |Ω| < ∞ and the indices {α(n)} are cyclic [8], or when
|Ω| < ∞ and the sets are “somewhat symmetric” [9], or when Ω is arbitrary but
each successive projection takes place on the farthest set [8]. In this article we
develop the last plot.

For any starting element x0 ∈ H, we consider the sequence of remote projections

(0.1) xn+1 = Pα(n)xn, n = 0, 1, 2, . . . ,

where α(n) ∈ Ω is chosen so that

dist (xn, Cα(n)) ≥ tn sup
α

dist (xn, Cα),

and tn ∈ [0, 1] are prescribed weakness parameters. If there is at least one n ∈
N with tn = 1, that is, when the nth projection is the remotest, we require the
maximum maxα dist (x,Cα) to be attained for each x ∈ H. Note that any sequence
of consecutive projections onto the family {Cα} can be regarded as a sequence of
remote projections with some, possibly very small, tn’s.

We prove a convergence result for the remote projections (0.1). If all the convex
sets Cα are closed subspaces of codimension one, this convergence theorem is already
known within the greedy approximation theory [24].

We recall the corresponding definitions. A subset D of the unit sphere S(H) =
{s ∈ H : |s| = 1} is called a dictionary if spanD = H. For any dictionary D ⊂
S(H), any sequence {tn} in [0, 1] of weakness parameters, and any x0 ∈ H, the
Weak Greedy Algorithm (WGA) generates a sequence xn defined inductively by

(0.2) xn+1 = xn − ⟨xn, gn⟩gn, n = 0, 1, 2, . . . ,

where the element gn ∈ D is such that

|⟨xn, gn⟩| ≥ tn sup{|⟨xn, g⟩| : g ∈ D}.
The weakness parameters were introduced by Temlyakov in [22]. In the case when
tn ≡ 1 of the Pure Greedy Algorithm, or even if tn = 1 for at least one n, we require
the maximum max{|⟨xn, g⟩| : g ∈ D} to be attained for each x ∈ H. We say that
the WGA converges if |xn| → 0.

Clearly, the WGA coincides with the process of remote projecting onto the family
of hyperplanes {g⊥ : g ∈ D} orthogonal to the dictionary elements. Since D is
spanning, the origin is the only point in the intersection of these hyperplanes. The
other way round it works as well.

Remark 1. Let {Cα} be a family of closed linear subspaces with
⋂

αCα = {0}.
Then

⋃
αC

⊥
α is spanning and the remote projections (0.1) correspond to the WGA

with respect to the dictionary
⋃

αC
⊥
α ∩S(H) with the same sequence {tn} of weakness

parameters.
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According to Temlyakov [23] the condition

(T) ∀{aν} ∈ ℓ2 with aν ≥ 0 : lim inf
m→∞

am
tm

m∑
ν=1

aν = 0

on the sequence {tm} is necessary and sufficient for the convergence of all realizations
of the WGA with the weakness sequence {tm} for each x0 ∈ H and all dictionaries
D ⊂ S(H).

The condition (T) is rather subtle. For instance,∑ tm
m

= ∞ ⇒ (T) ⇒
∑

t2m = ∞,

but none of the implications can be reversed.
In Section 1 we generalize the convergence theorem of [23] to the case of re-

mote projections onto a family of closed convex sets Cα that are uniformly quasi-
symmetric with respect to their common point; see Theorem 1 below. Our proof
partially leans on Temlyakov’s paper [23] and on the proof of Jones’ theorem on
the convergence of the Pure Greedy Algorithm in Hilbert space [13], [24, Ch. 2].
The quasi-symmetry condition is essential in view of Hundal’s example [12], [14].
In Corollary 1.1 we show that cyclic projections onto finitely many closed, convex
and quasi-symmetric sets converge in norm. This generalizes a result from [2].

In Section 2 we discuss different versions of the quasi-symmetry condition, and
show that the uniform quasi-symmetry is essential in Theorem 1.

Section 3 is devoted to the weak convergence of remote projections. In Theorem 2
we give a condition on {tn} sufficient for weak convergence to a point in C. As
Corollary 2.1 we get a result of [9]: quasi-periodic projections onto finitely many
closed and convex sets converge weakly to a point in their intersection. In Theorem 3
we give another condition on {tn} that is necessary and sufficient for all sequences
of remote projections to have a partial weak limit in C. We construct an example
showing certain sharpness of these theorems.

1. Norm convergence

In this section we show when remote projections onto a family of closed and
convex sets converge. A symmetry assumption on the sets is needed; we define
this weakened symmetry below. In Section 2 we will show to what extent this
symmetry condition is necessary. We will also compare it to another weakened
symmetry condition.

In what follows B(a, r) denotes the closed ball with center a and radius r > 0.

Definition 1. Let C and Cα, α ∈ Ω, be closed convex sets in a Banach space X,
all containing the origin.

(i) We call the set C quasi-symmetric, if
∀r > 0 ∃ θ = θ(r) ∈ (0, 1] : x ∈ C ∩B(0, r) ⇒ −θx ∈ C.

(ii) We say that the family of sets {Cα}α∈Ω is uniformly quasi-symmetric if
∀r > 0 ∃ θ = θ(r) ∈ (0, 1] ∀α : x ∈ Cα ∩B(0, r) ⇒ −θx ∈ Cα.

Moreover, we say that C is quasi-symmetric with respect to a point a ∈ C if the
set (C − a) is quasi-symmetric. Similarly, the family of sets {Cα}α∈Ω is uniformly
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quasi-symmetric with respect to a point a ∈
⋂

α∈ΩCα if the family {Cα − a}α∈Ω is
uniformly quasi-symmetric.

In the above definition we can equivalently write “∃ r > 0” instead of “∀ r > 0”.
Indeed, θ(r) = θ0min{1, r0/r} works for a given r > 0, if θ0 works for some r0 > 0.

Theorem 1. For a sequence {tn}∞n=0 ⊂ [0, 1], the following two statements are
equivalent:

(i) The sequence {tn} satisfies the condition (T).
(ii) For any family {Cα}α∈Ω of closed and convex sets in a Hilbert space H which

is uniformly quasi-symmetric with respect to a point a ∈ C =
⋂

α∈ΩCα and
for any starting element x0 ∈ H the sequence {xn} of remote projections
(0.1) converges in norm to a point in C.

Proof. We will prove here that (i) ⇒ (ii). The implication (ii) ⇒ (i) follows from [23]
where Temlyakov shows that the condition (T) is necessary already when all Cα’s
are hyperplanes.

1. We can assume that a = 0. Let xn − xn+1 = yn, ∠0xn+1xn = π/2 + εn. We
have εn ∈ [0, π/2]; otherwise xn+1 is not the nearest point for xn in the segment
[0, xn+1] and hence also in Cα(n). Consequently, |xn|2 ≥ |xn+1|2 + |yn|2, so that
the norms |xn| decrease to some R ≥ 0. We suppose R > 0, otherwise xn → 0.
Moreover,

(1.1)
∞∑
n=0

|yn|2 ≤
∞∑
n=0

(|xn|2 − |xn+1|2) < ∞.

Consequently, since {tm} satisfies (T), we can choose a subsequence Λ ⊂ N with
the property

(1.2) bm :=
|ym|
tm

m∑
ν=0

|yν | → 0, m → ∞, m ∈ Λ.

2. Now we prove that

(1.3)

∞∑
n=0

|yn| sin εn < ∞.

By the law of cosines,

|xn|2 = |xn+1|2 + |yn|2 − 2|xn+1||yn| cos
(π
2
+ εn

)
= |xn+1|2 + |yn|2 + 2|xn+1||yn| sin εn,

so that

|yn| sin εn =
|xn|2 − |xn+1|2 − |yn|2

2|xn+1|
≤ |xn|2 − |xn+1|2

2R
,

and (1.3) follows.
3. The vector yν is externally normal to a hyperplane supporting the set Cα(ν)

at the point xν+1. Hence,

(1.4) ⟨yν , z − xν+1⟩ ≤ 0
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for any z ∈ Cα(ν), so that

⟨yν , z⟩ ≤ ⟨yν , xν+1⟩ = |yν ||xν+1| cos
(π
2
− εν

)
= |yν ||xν+1| sin εν ≤ |yν ||x0| sin εν .

Since Cα(ν) is quasi-symmetric with respect to 0, we get

(1.5) |⟨yν , z⟩| ≤ θ−1|yν ||x0| sin εν , z ∈ Cα(ν) ∩B(0, 2|x0|),

where θ = θ(2|x0|) is from the definition of uniform quasi-symmetry.
4. Next, for any m and ν,

|ym| = dist (xm, Cα(m)) ≥ tm sup
α

dist (xm, Cα) ≥ tmdist (xm, Cα(ν))

= tm min
z∈Cα(ν)

|xm − z| = tm min
z∈Cα(ν)∩B(0,2|x0|)

|xm − z|

≥ tm min
z∈Cα(ν)∩B(0,2|x0|)

|⟨xm − z, yν/|yν |⟩|

≥ tm

(
|⟨xm, yν/|yν |⟩| − max

z∈Cα(ν)∩B(0,2|x0|)
|⟨z, yν/|yν |⟩|

)
≥ tm

(
|⟨xm, yν/|yν |⟩| − θ−1|x0| sin εν

)
;

we have used (1.5) in the last inequality. The above estimate implies that

(1.6) |⟨xm, yν⟩| ≤
|ym||yν |

tm
+ θ−1|x0||yν | sin εν

for any m, ν = 0, 1, 2, . . .
5. Now we prove that {xn} is a Cauchy sequence and hence it converges to

some w ∈ H. Given any n, k ∈ N assume that m ∈ Λ and m > max{n, k}. Since
|xn − xk| ≤ |xn − xm| + |xk − xm|, it is enough to show that |xn − xm| → 0 as
n,m → ∞, n < m and m ∈ Λ. We use the identity

|xn − xm|2 = |xn|2 − |xm|2 − 2⟨xn − xm, xm⟩.

Since |xn| → R, we have |xn|2−|xm|2 → 0 as n,m → ∞. The last term we estimate
using (1.6) as follows:

|⟨xn − xm, xm⟩| =

∣∣∣∣∣
m−1∑
ν=n

⟨yν , xm⟩

∣∣∣∣∣ ≤
m−1∑
ν=n

|⟨yν , xm⟩|

≤ |ym|
tm

m−1∑
ν=n

|yν |+ θ−1|x0|
m−1∑
ν=n

|yν | sin εν .

The first sum does not exceed bm by (1.2), so it tends to 0 as m → ∞, m ∈ Λ. The
second sum tends to 0 as n,m → ∞ in view of (1.3).

6. Finally we show that w = limxn is contained in all Cα’s. If w /∈ Cβ for some
β, then

dist (xn, Cβ) > δ > 0
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for all n ≥ n0. This implies that

|xn+1|2 ≤ |xn|2 − |yn|2 = |xn|2 − dist (xn, Cα(n))
2

≤ |xn|2 − t2ndist (xn, Cβ)
2 ≤ |xn|2 − t2nδ

2

≤ · · · ≤ |xn0 |2 − δ2
n∑

ν=n0

t2ν .

Since (T) implies that
∑

t2ν = ∞, this contradicts |xn| ↓ R > 0. □
Assume C1, . . . , CK are closed linear subspaces of H. Assume {α(n)} is a quasi-

periodic sequence of the indices 1, . . . ,K. This means that there is a constant
M ∈ N so that for every interval I of length M the set {α(n) : n ∈ I} contains all
of the indices:

{α(n) : n ∈ I} = {1, . . . ,K}.
Then the sequence xn+1 = Pα(n)xn of projections converges in norm [19], [11],
[21]. Already for two closed and convex sets this is not true, as the example of
Hundal exhibits [12], [14], [18]. Theorem 1 implies easily, that as soon as the
closed and convex sets C1, . . . , CK are also quasi-symmetric, convergence occurs.
For symmetric in place of quasi-symmetric this was established in [2].

Corollary 1.1. Assume C1, . . . , CK are finitely many closed, convex and quasi-
symmetric subsets of H with a nonempty intersection C =

⋂K
1 Cj. Assume {α(n)}

is a quasi-periodic sequence of the indices 1, . . . ,K. Then the sequence xn+1 =
Pα(n)xn of nearest point projections converges in norm to a point in C for any
starting point x0 ∈ H.

Proof. The given sets are quasi-symmetric and there are only finitely many of them,
so the family is uniformly quasi-symmetric. We will show there are weakness pa-
rameters tn ∈ [0, 1] satifying

∑
tn/n = ∞ so that the sequence {xn} corresponds

to a sequence of remote projections with these parameters. Hence according to
Theorem 1 the sequence {xn} converges in norm.

We choose β(n) ∈ {1, . . . , K} and define bn > 0 and tn ∈ [0, 1] as follows:

dist (xn, Cβ(n)) = max
k

dist (xn, Ck) = bn,

tn = |xn+1 − xn|/bn.
We will prove that for each interval I of length M there is an n ∈ I so that
tn ≥ 1/(6M) and hence

∑
tn/n = ∞; hereM is the constant of the quasi-periodicity

of {αn}.
Assume for a contradiction that there is m ∈ N so that tm+j < 1/(6M) for

all j ∈ {0, . . . ,M}. We will show that then β(m) /∈ {α(m + j) : j = 0, . . . ,M}
contradicting the sequence {α(n)} of indices being quasi-periodic with constant M .
Indeed, by the triangle inequality,

bn+1 = |xn+1 − Pβ(n+1)xn+1|
≤ |xn+1 − xn|+ |xn − Pβ(n+1)xn|+ |Pβ(n+1)(xn − xn+1)|

≤ bn
6M

+ bn +
bn
6M

=

(
1 +

1

3M

)
bn,
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for m ≤ n ≤ m+M − 1. By induction, for any 1 ≤ k ≤ M ,

bm+k ≤
(
1 +

1

3M

)M

bm ≤ 2bm.

Again by triangle inequalities

|xm − xm+k| ≤
k

6M
2bm < bm,

hence xm+k /∈ Cβ(m). □

Assume {Cα}α∈Ω is a family of closed subspaces in H and that |Ω| ≥ 2 is at
most countable. Assume that in a sequence {α(n)} ⊂ Ω each element of Ω appears
infinitely many times. The sequence of consecutive projections xn+1 = Pα(n)xn,
n = 0, 1, 2, . . . , x0 ∈ H, generated by α does not have to converge in general.
However, if the norm limit (or even just the weak limit) of the sequence exists, then
it is equal to PCx0, where C =

⋂
αCα.

Already for three closed subspaces C1, C2, C3 and the sequence of remote pro-
jections (0.1) we can choose some of the weakness parameters tn ∈ [0, 1] so small
that the subspace C3 can be completely avoided. This causes (0.1) to converge to
PC1∩C2x0 which can be arranged to differ from PCx0.

Already for two closed convex sets things can go awry even for the remotest
projections, that is, if in (0.1) we set tn = 1 for all n ∈ N.

Example 1. In the Euclidean plane H = R2 there are two closed, convex and
symmetric sets C1 and C2, and a starting point x0 so that the limit point of the
remotest projections is not equal to PC1∩C2x0.

Proof. In the coordinate representation (s, t) of vectors in R2, we set

C1 = {s = 0}, C2 = {s− 2 ≤ t ≤ s+ 2}.
The line C1 and the stripe C2 are both symmetric with respect to 0, and their
intersection is the segment C = {(0, t) : t ∈ [−2, 2]}. For the starting point x0 =
(−4, 4), we have

dist (x0, C2) = 3
√
2 > 4 = dist (x0, C1).

Hence x1 = P2x0 = (−1, 1) and x2 = P1x1 = (0, 1) ∈ C, whereas PCx0 = (0, 2). □
Note that for finitely many closed convex sets there are special projection algo-

rithms converging to the projection of the starting point onto their intersection [3,
Ch. 30].

2. Symmetry conditions

Dye and Reich [9] introduced the following property of weakened symmetry.

Definition 2. Let C be a closed convex set in a Banach space X. The origin is a
weak internal point (shortly WIP) of C if

(2.1) ∀x ∈ C ∃ δ = δ(x) > 0 : −δx ∈ C.

Moreover, we say that a ∈ X is a WIP-point of C if the origin is a WIP-point of
the set (C − a).
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Clearly, the origin is a WIP-point of C if and only if it is a WIP-point of C1 =
C∩B(0, 1). It is also easy to see that the origin is a WIP-point of a quasi-symmetric
set: the condition (i) of Definition 1 seems to be stronger than (2.1). Surprisingly,
the converse is also true: δ(x) in (2.1) can be chosen independently of x lying in
the unit ball, say. Closed convex sets in Banach spaces cannot be too asymmetric.

Remark 2. Let C be a closed and convex set in a Banach space X. A point a ∈ X
is a weak internal point of C if and only if C is quasi-symmetric with respect to a.

Proof. We show only the less obvious implication. We assume that a = 0 and that
C = C ∩ B(0, 1). We take the maximal possible δ which works in (2.1): for every
0 ̸= x ∈ C there exists δ(x) > 0 so that

(i) −δ(x)x ∈ C;
(ii) if η > δ(x), then −ηx /∈ C.

We claim that infx∈C δ(x) > 0 and give an elementary proof of this fact first. If
not, then there are non-zero elements en ∈ C having δ(en) < 1/3n, n ∈ N. Then

e =
∞∑
n=1

en
2n

∈ C

and we may assume e ̸= 0; otherwise we take (1− ε)e1 instead of e1 for sufficiently
small ε > 0. Then −δe ∈ C for some δ > 0. For a fixed k ∈ N we observe that

1

1 + δ(1− 1/2k)
+
∑

N∋n ̸=k

1

1 + δ(1− 1/2k)

δ

2n
= 1;

all the summands on the left-hand side are positive. Consequently,

1

1 + δ(1− 1/2k)
(−δe) +

∑
N∋n ̸=k

1

1 + δ(1− 1/2k)

δ

2n
en ∈ C,

that is,

1

1 + δ(1− 1/2k)

−δ

∞∑
n=1

en
2n

+
∑

N∋n ̸=k

δ

2n
en

 =
−δ/2k

1 + δ(1− 1/2k)
ek ∈ C.

Hence,

δ/2k

1 + δ(1− 1/2k)
≤ δ(ek) <

1

3k
.

The last inequality implies that

δ

2k
<

1 + δ

3k
− δ

6k
,

which is impossible for large k’s; how large exactly depends on δ.
Here is a “Baire category” proof of the fact that infx∈C δ(x) > 0 due to V.I. Bogachev.

According to [4, Proposition 2.5.1] both sets C∩(−C) and conv (C∪(−C)) generate
norms on spanC in which spanC is a Banach space. The open mapping theorem
implies that the two norms are equivalent, hence the above infimum is positive.

□
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Next we exhibit that the uniform quasi-symmetry assumption on the sets Cα in
Theorem 1 is essential. In [12] and [14], an example of a closed convex cone C
with the vertex at the origin was constructed so that iterating the nearest point
projection between C and a hyperplane D converges weakly but not in norm for a
starting point x0 ∈ D. In the example the hyperplane D = e⊥ for an 0 ̸= e ∈ H = ℓ2
and the set C is the epigraph in ℓ2 = D+span {e} of a suitably chosen nonnegative
convex sublinear function defined on D. Those familiar with the example readily
“see”, that the family of closed convex sets consisting of D and C − cne for some
suitable cn ↘ 0 consists of quasi-symmetric sets for which the remote projections
algorithm starting at x0 closely traces the iterates of nearest points projections of x0
between C and D. Consequently it converges weakly but not in norm. Rather than
writing this up rigorously we give here a construction which is easier to present.

Example 2. In any infinite dimensional Hilbert space H, there exists a countable
family of closed, convex and quasi-symmetric sets so that the sequence of remotest
projections on this family does not converge in norm for a certain starting point.

Proof. We assume that H is separable as if it is not, then we build the example in a
closed separable infinite dimensional subspace of H. Also, we construct a family of
sets and a point in their intersection so that each set in the family is quasi-symmetric
with respect to this point. To center at the origin, we translate, if need be.

We use as a building stone an example constructed in [5]; we first recall its
relevant properties.

Let {e, ek : k ∈ N} be an orthonormal basis of H. For each k ∈ N, we choose
vectors vk1 , . . . , v

k
nk

∈ span {ek, ek+1} as in [5]. Their number nk increases in a

particular way, the norms |vkn| decrease in a particular way. Their only property
relevant here are their directions:

(2.2) arg vkn = −π

2
+

πn

nk
, k ∈ N, n = 1, . . . , nk;

here the polar angle arg in the plane span {ek, ek+1} is measured from the positive
direction of ek.

The diverging greedy algorithm with respect to the dictionary containing ±e and
all vectors (e + vkn)/|e + vkn| which is constructed in [5] can be interpreted as the
process of remotest projections onto the family of closed convex sets consisting of
the hyperplane D = e⊥ and the half-spaces

Cn,k = {y ∈ H : ⟨y, e+ vkn⟩ ≤ 0}.
Starting with x0 = e1, the remotest projections algorithm generates xm+1 = PCn,k

xm
for even m (k and n depending on m) and xm+1 = PDxm for odd m. For all m and
k, the inequalities ⟨xm, ek⟩ ≥ 0 and ⟨xm, e⟩ ≤ 0 hold. The sequence {xm} converges
to 0 weakly but not in norm; for more details see [5].

The hyperplane D and all the half-spaces Cn,k are quasi-symmetric with respect
to any point

a ∈ D ∩
(
∩n,kC

◦
n,k

)
,

where C◦
n,k denotes the interior of the half-space Cn,k. We define the coordinates of

such a point
a = (0, a1, a2, . . . )
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with respect to the basis {e, ek : k ∈ N}, recursively:

a1 = −1, ak+1 = ak tan
π

4nk
.

Clearly, a ∈ ℓ2, a ∈ D, and (2.2) implies that

⟨a, e+ vkn⟩ = ⟨a, vkn⟩ = ⟨akek + ak+1ek+1, v
k
n⟩ < 0,

since
arg(akek + ak+1ek+1) = −π +

π

4nk

in the plane span {ek, ek+1}. Hence, a ∈ C◦
n,k for each k and n. □

If the interior of the intersection of a family of closed convex sets is non-empty,
then, clearly, the family is uniformly quasi-symmetric. In such a case, any sequence
of projections onto these sets converges. For remote projections we even give an
estimate of the rate.

Remark 3. Let each closed convex set Cα contain the ball B(a, r), a ∈ H, r > 0.

(a) The sequence (0.1) of remote projections converges in norm for each starting
element x0 ∈ H and for any sequence {tn}. In particular, random projec-
tions converge.

(b) If, moreover,
∑

t2n = ∞, then the limit point w belongs to
⋂

α∈ΩCα, and
the rate of convergence is estimated by

(2.3) |xn − w| ≤ 2|x0 − a|
n−1∏
k=0

(
1−

t2kr
2

|x0 − a|2

)1/2

.

The statement (b) clarifies a result from [10]. There the convergence to a point
in the intersection was shown under the condition supα dist (xn, Cα) → 0 as n → ∞.
Also, an exponential rate of convergence was established for remotest projections
(tn ≡ 1) with an estimate similar to ours.

Proof. (a) We assume a = 0 and use the notations yn = xn − xn+1, εn = π/2 −
∠0xn+1xn, and also several inequalities from the proof of Theorem 1.

In view of (1.4), we have ⟨yn, z − xn+1⟩ ≤ 0 for any z ∈ B(0, r). Consequently,

|yn||xn+1| sin εn = ⟨yn, xn+1⟩ ≥ sup
z∈B(0,r)

⟨yn, z⟩ = r|yn|,

so that
sin εn ≥ r

|xn+1|
≥ r

|x0|
.

This estimate together with (1.3) yields
∑

|yn| < ∞, meaning that xn converge in
norm.

(b) To prove that the limit point w belongs to C =
⋂

α∈ΩCα in case
∑

t2n = ∞,
one can use the same arguments as in part 6 of the proof of Theorem 1.

Now we proceed to prove (2.3). Note that for any n ∈ N we have

(2.4) |xn − w| ≤ 2 dist (xn, C),

otherwise

|xm − y| < |xm − w|
2
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for some y ∈ C and m ∈ N, so that

|xn − y| → |w − y| ≥ |xm − w| − |xm − y| > |xm − y|,
which contradicts the fact that the sequence {|xn − y|} is decreasing.

Let n ∈ N and
dn = sup

α
dist (xn, Cα).

The ball B(xn, dn) contains a point pα ∈ Cα for each α. Since the point

un =
dn

dn + r
a+

r

dn + r
xn

belongs to conv {p,B(a, r)} for each p ∈ B(xn, dn), we get un ∈ C, so that

dist (xn, C) ≤ |xn − un| = |xn − a| · dn
dn + r

.

Consequently,

dn ≥ r dist (xn, C)

|xn − a| − dist (xn, C)
≥ r dist (xn, C)

|x0 − a|
.

Let PCxn = b. Since b ∈ Cα(n), the angle ∠xnxn+1b is not less than π/2, so that

dist (xn+1, C)2 ≤ |xn+1 − b|2 ≤ |xn − b|2 − |xn − xn+1|2

≤ dist (xn, C)2 − t2nd
2
n ≤ dist (xn, C)2

(
1− t2nr

2

|x0 − a|2

)
.

Hence,

dist (xn+1, C) ≤ dist (x0, C)
n∏

k=0

(
1−

t2kr
2

|x0 − a|2

)1/2

,

which together with (2.4) gives (2.3).
□

Assume that unlike the assumption in Remark 3 we deal with a family of slim
sets: all Cα are hyperplanes g⊥α . Then remote projections implement the Weak
Greedy Algorithm with respect to the dictionary D = {±gα : α ∈ Ω} and there are
estimates of the rate of convergence for starting elements from convD [24, Ch. 2].
We wonder if any such estimates can be shown for a class of starting elements in
the general setting of Theorem 1.

3. Weak convergence

Bregman [8] proved that for any family of general (non-symmetric) closed convex
sets with nonempty intersection the remotest projections (0.1) with tn ≡ 1 always
converge weakly. He assumed that maxα dist (x,Cα) is attained for each x ∈ H. It
is quite natural to generalize this result to remote projections by slightly changing
his arguments.

Theorem 2. Assume {Cα} is a family of closed and convex sets in a Hilbert space
H with a nonempty intersection C =

⋂
α∈ΩCα. Let the sequence {tn} in [0, 1] satisfy

the following condition: there are δ > 0 and K ∈ N so that for any n ∈ N at least
one of the values tn, . . . , tn+K is greater than δ. Then the sequence (0.1) of remote
projections converges weakly to some point of C for any starting element x0 ∈ H.
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Proof. Take any n ∈ N and k ∈ {n, . . . , n+K} so that tk > δ. We use the notation
yν = xν − xν+1. For any α ∈ Ω, we have

dist (xn, Cα) ≤ |xn − xk|+ dist (xk, Cα) ≤
k−1∑
i=n

|yi|+
dist (xk, Cα(k))

tk

≤
√
K

(
n+K−1∑
i=n

|yi|2
)1/2

+
|yk|
δ

→ 0 (n → ∞),

since
∑

|yν |2 < ∞ in view of (1.1). Consequently, each partial weak limit w of the
xn’s belongs to C. In its turn, this implies that the whole sequence |xn − w| is
decreasing, since each Pα is a 1-Lipschitz retraction onto Cα.

A partial weak limit does exist, so we have to prove its uniqueness. Let v and
w be two partial weak limits, so that xni converge weakly to v and xmj converge
weakly to w. The numbers

dn := |xn−v|2−|xn−w|2 = 2⟨v−xn, v−w⟩− |v−w|2 = 2⟨xn−w,w−v⟩+ |w−v|2

tend to a single limit, as we have just mentioned. On the other hand, dni → −|v−w|2
and dmj → |w − v|2. Hence, v = w. □

The following result was established by Dye and Reich in [9].

Corollary 2.1. Assume C1, . . . , CK are finitely many closed and convex subsets of
H with a nonempty intersection C =

⋂K
1 Cj. Assume {α(n)} is a quasi-periodic

sequence of the indices 1, . . . ,K. Then the sequence xn+1 = Pα(n)xn of nearest point
projections converges weakly to a point in C for any starting point x0 ∈ H.

Proof. The sequence {α(n)} is quasi-periodic, which means that there is a constant
M ∈ N so that for every interval I of length M the set {α(n) : n ∈ I} contains all of
the indices 1, . . . ,K. As in the proof of Corollary 1.1 we choose β(n) ∈ {1, . . . , K}
and define bn > 0 and weakness parameters tn ∈ [0, 1] as follows:

dist (xn, Cβ(n)) = max
k

dist (xn, Ck) = bn,

tn = |xn+1 − xn|/bn.
Then for each interval I of length M there is an n ∈ I so that tn ≥ 1/(6M), as
shown in the proof of Corollary 1.1. According to Theorem 2 the sequence {xn}
converges weakly to a point of C. □

We do not know if the condition on the sequence {tn} in Theorem 2 is necessary
for the weak convergence of remote projections. It is much stronger than the con-
dition (T) implying the norm convergence of remote projections in the uniformly
quasi-symmetric case. We do not know of an equivalent condition for the weak con-
vergence in the uniformly quasi-symmetric case either. We give, however, criteria
for remote projections to have a partial weak limit in the intersection of the sets
considered.

Theorem 3. For a sequence {tn}∞n=0 ⊂ [0, 1], the following statements are equiva-
lent:

(i)
∑

t2n = ∞;
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(ii) the sequence {xn} of remote projections (0.1) with parameters tn has a par-
tial weak limit in

⋂
α∈ΩCα for any starting element x0 ∈ H and any family

{Cα}α∈Ω of closed and convex sets in H with nonempty intersection;
(iii) the residuals {xn} in the Weak Greedy Algorithm (0.2) with parameters

tn have a partial weak limit 0 for any starting element x0 ∈ H and any
dictionary D ⊂ S(H).

Proof. (i) ⇒ (ii). Let
∑

t2n = ∞, 0 ∈ C =
⋂

α∈ΩCα and {xn} be the sequence (0.1).

We denote yn = xn−xn+1 again. Since
∑

|yn|2 < ∞ in view of (1.1), we can choose
a subsequence Λ ⊂ N with the property |yn|/tn → 0, n ∈ Λ, n → ∞. Taking any
α ∈ Ω and n ∈ Λ, we get

dist (xn, Cα) ≤
dist (xn, Cα(n))

tn
=

|yn|
tn

→ 0, n → ∞.

Consequently, any partial weak limit of {xn}n∈Λ belongs to C. In fact, this partial
weak limit in C is unique, as we have seen in the proof of Theorem 2. However,
there may be other partial weak limits outside of C, as Example 3 below shows.

(ii) ⇒ (iii). This is obvious, since the WGA is a particular case of remote pro-
jections onto a family of hyperplanes having unique common point 0.

(iii) ⇒ (i). Let
∑

t2n < ∞. In what follows we construct a countable family
{Cn} of one-dimensional subspaces and a sequence (0.1) of remote projections onto
this family with parameters tn, which does not converge weakly and does not have
0 as a partial weak limit. Remark 1 then supplies an example of the WGA with
parameters tn whose residuals do not have 0 as a partial weak limit.

We choose a sequence {τn} with the properties τn ≥ tn for all n,
∑

τ2n < ∞,∑
τn = ∞, and fix m so that

(3.1)
∞∑

n=m

τ2n <
1

4
.

We fix a point s on the unit sphere of H and take the spherical cap

V (s) =

{
v ∈ S(H) : ⟨v, s⟩ ≥

√
3

2

}
.

We choose two opposite points a and b on the boundary of the cap: ⟨a, s⟩ = ⟨b, s⟩ =√
3/2. We also choose a sequence {sn}∞n=m ⊂ V (s) so that sm = a and ⟨sn, sn+1⟩ =√
1− τ2n for all n ≥ m. This sequence can be constructed inductively: the choice

of each next sn+1 ∈ V (s) is possible, since
√

1− τ2n ≥
√
3/2 by (3.1). Moreover, we

have

|sn − sn+1| =
√
2− 2

√
1− τ2n ≥ τn,

so that {sn}∞n=m may be made dense in V (s), since
∑

τn = ∞.
Denoting by L(v) := span {v} the line spanned by a vector v ∈ S(H), we consider

the family of lines

L(a), L(b), L(sn), n = m,m+ 1, . . . ,

and the following sequence of remote projections onto this family of lines with
starting element x0 = s. The projections x1, . . . , xm alternately lie on the lines
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L(a) and L(b) so that they are remotest and satisfy the inequalities needed for any
given parameters t0, . . . , tm−1. We choose the first projection x1 lying either on
L(a) or L(b) so that xm ∈ L(a), depending on the parity of m. As for n ≥ m, we
set xn+1 to be the projection of xn onto L(sn+1):

dist (xn, L(sn+1)) =|xn| sin∠(sn0sn+1)

=|xn|τn ≥ |xn|tn ≥ tn sup
v∈V (s)

dist (xn, L(v))

Clearly, the sequence {xn} is contained in the cone {λv : v ∈ V (s), λ > 0}. For
any n > m, we have

|xn|2 = |xm|2 −
n−1∑
k=m

|xk|2τ2k ≥ |xm|2
(
1−

∞∑
k=m

τ2k

)
≥ 3

4
|xm|2.

This means that |xn| → r > 0, and the set of all partial weak limits of the sequence
{xn} is the closed convex hull of the cap rV (s).

□

The following Example shows that the conditions on the sequence {tn} in Theo-
rem 2 cannot be replaced by lim infn→∞ tn > 0 and that in Theorem 3 one cannot
claim the uniqueness of the weak limit.

Example 3. Let H be an infinite dimensional Hilbert space. Then there exists
a countable family of closed convex sets in H with non-empty intersection and a
sequence (0.1) of remote projections on this family which does not converge weakly
and its weakness parameters satisfy lim infn→∞ tn > 0.

Proof. 1. We use the following local construction.

Lemma A. [14, Section 2.2] Let a, b, c ∈ H be such that |a| = |b| ̸= 0 and
0 ̸= c ∈ {a, b}⊥. For every ε > 0 there exists a convex closed cone C = C(a, b, c, ε) ⊂
span {a, b, c} with vertex 0 so that alternating projections between C and the plane
D = span {a, b} move the point a close to the point b:

(3.2) |(PDPC)
ma− b| < ε

for some m = m(a, b, c, ε).

The cone from Lemma A also satisfies

(3.3) dist (a,C) ≤
√
2|a|ε,

since otherwise

|(PDPC)
ma| ≤ |PCa| =

√
|a|2 − dist (a,C)2 < |a| − ε = |b| − ε,

which contradicts (3.2). Similarly,∣∣PC(PDPC)
m−1a− (PDPC)

ma
∣∣ = dist (PC(PDPC)

m−1a,D) ≤
√
2|a|ε,

and hence

dist (b, C) ≤
∣∣b− PC(PDPC)

m−1a
∣∣ ≤ |b− (PDPC)

ma|

+
∣∣PC(PDPC)

m−1a− (PDPC)
ma
∣∣ ≤ ε+

√
2|a|ε.

(3.4)
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2. We may assume that H is separable and fix an orthonormal basis {u, v, ek :
k ∈ N} of H. We choose a decreasing sequence εn ↘ 0 so that

∞∑
k=1

√
εk <

1

10
.

We set

D = v⊥ = span {u, ek : k ∈ N},
C1 = C(e1, u, v, ε1) + span {en : n ∈ N, n ̸= 1},
m1 = m(e1, u, v, ε1),

C2 = C(u, e2, v, ε2) + span {en : n ∈ N, n ̸= 2},
m2 = m(u, e2, v, ε2),

. . .

C2k−1 = C(ek, u, v, ε2k−1) + span {en : n ∈ N, n ̸= k},
m2k−1 = m(ek, u, v, ε2k−1),

C2k = C(u, ek+1, v, ε2k) + span {en : n ∈ N, n ̸= k + 1},
m2k = m(u, ek+1, v, ε2k),

. . . .

Clearly, (3.2) works for the extended cones C2k−1 and C2k as well:

(3.5)
∣∣(PDPC2k−1

)m2k−1ek − u
∣∣ < ε2k−1,

(3.6) |(PDPC2k
)m2ku− ek+1| < ε2k.

3. We have ek ∈ D for all k and ek ∈ Cn for n ̸= 2k − 2, 2k − 1 by construction,
hence also

dist (ek, C2k−1) <
√

2ε2k−1,

dist (ek, C2k−2) <
√
2ε2k−2 + ε2k−2

by (3.3) and (3.4). This implies for P being a projection onto Cn or D that

(3.7) |ek − Pek| < 3
√
ε2k−2, k = 2, 3, . . . .

4. Now we define the required sequence of remote projections on the family
{D, Cn : n ∈ N}.

We start with x0 = e1 and make m1 alternating projections on C1 and D:

y1 = (PDPC1)
m1e1.

Then we make m2 alternating projections on C2 and D:

y2 = (PDPC2)
m2y1.

Then we make the projection P2 on one of the sets Cn so that

|y2 − P2y2| ≥
1

2
sup
n

dist (y2, Cn),

and we set
z2 = P2y2.
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We proceed by induction: having defined y1, y2, . . . , y2k−2 and
z2, z4, . . . , z2k−2, we make m2k−1 alternating projections on C2k−1 and D:

y2k−1 = (PDPC2k−1
)m2k−1z2k−2,

then m2k alternating projections on C2k and D:

y2k = (PDPC2k
)m2ky2k−1,

and then one projection P2k on one of the sets Cn so that

(3.8) |y2k − P2ky2k| ≥
1

2
sup
n

dist (y2k, Cn),

and we set

z2k = P2ky2k.

For this sequence of projections, containing subsequences {yk} and {z2k}, we have

lim inf
n→∞

tn ≥ 1

2
,

since projections via P2k have tn ≥ 1/2 by (3.8).
5. At last we have to prove that the sequence {yk} does not converge weakly,

and hence the whole sequence of projections has no weak limit.
We have |y1 − u| < ε1 by (3.5) for k = 1. Using (3.6) for k = 1, we get

|y2 − e2| ≤ |(PDPC2)
m2(y1 − u)|+ |(PDPC2)

m2u− e2| < ε1 + ε2,

which together with (3.7) implies that

|z2 − e2| = |P2y2 − e2| ≤ |P2(y2 − e2)|+ |P2e2 − e2| < ε1 + ε2 + 3
√
ε2.

In the same way, by induction on k, we get

|y2k−1 − u| <
2k−1∑
ν=1

εν + 3
k−1∑
ν=1

√
ε2ν ,

|y2k − ek+1| <
2k∑
ν=1

εν + 3

k−1∑
ν=1

√
ε2ν ,

|z2k − ek+1| <
2k∑
ν=1

εν + 3

k∑
ν=1

√
ε2ν .

Consequently,

|y2k−1 − u| < 0.4 ⇒ ⟨y2k−1, u⟩ > 0.6

|y2k − ek+1| < 0.4 ⇒ ⟨y2k, u⟩ < 0.4

and the sequence {yn} does not converge weakly. □

The following statement is a parallel to Remark 3 (a). We consider here weak con-
vergence instead of norm convergence. The intersection of the sets is not contained
in any affine hyperplane in place of having non-empty interior.
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Remark 4. Let {Cα} be a family of closed convex subsets of a Hilbert space H.
Assume that the affine hull of the intersection C =

⋂
Cα is dense in H. Then

the sequence (0.1) of remote projections converges weakly for each starting element
x0 ∈ H and for any sequence {tn} of weakness parameters. In particular, random
projections converge weakly in this case.

Proof. Fix a point a ∈ C. Then span {v− a : v ∈ C} = H. For each v ∈ C and any
n ∈ N, we have v ∈ Cα(n), hence ∠vxn+1xn ≥ π/2, so that |xn − v| ≥ |xn+1 − v|,
and the decreasing sequence

(3.9) |xn − v|2 = |xn − a|2 − 2⟨xn − a, v − a⟩+ |v − a|2

has a limit. In particular, the sequence {|xn− a|2} has a limit, which together with
(3.9) implies that the sequence of scalar products

⟨xn − a, v − a⟩
has a limit as well. The sequence {xn−a} is bounded and the set span {v−a : v ∈ C}
is dense in H, hence the sequence {xn − a} converges weakly, and so does the
sequence {xn}. □

Dye and Reich [9] proved weak convergence of random projections on a finite
family of closed convex sets that are all WIP sets with respect to their common
point, see also [7]. Such sets are uniformly quasi-symmetric with respect to this
point by Remark 2. We wonder if Theorem 2 and Theorem 3 can be clarified
under the additional condition of uniform quasi-symmetry of the sets Cα. We also
note that the problem of weak convergence of random projections, that is, remote
projections with arbitrary tn’s, onto a finite family of closed convex sets having
nonempty intersection is still open [7].
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[7] P. A. Borodin and E. Kopecká, Weak limits of consecutive projections and of greedy steps,
Proc. Steklov Inst. Math. 319 (2022), 56–63.

[8] L. M. Bregman, The method of successive projection for finding a common point of convex
sets, Soviet Mathematics Doklady 6 (1965), 688–692.

[9] J. M. Dye and S. Reich, Unrestricted iterations of nonexpansive mappings in Hilbert space,
Nonlinear Analysis, 18:2 (1992), 199–207.



1620 P. A. BORODIN AND E. KOPECKÁ
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[17] E. Kopecká and A. Paszkiewicz, Strange products of projections, Israel J. Math. 219 (2017),

271–286.
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