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It is known that in general, this condition is not sufficient for quasi-convexity when
n ≥ 2 an m ≥ 3, see [5, 16]. The case m = 2 seems to be open, although we would
like to draw the attention of the reader to the recent preprint [6] where a numerical
method for constructing a potential counterexample is discussed. The question
also seems to be open for certain cases with m ≥ 3 when we restrict the class of
the admissible functions f by symmetries. In addition to [6], previous numerical
exploration of the relations between rank-one convexity and quasi-convexity can be
found for example in [8]. Important theoretical results relevant to Morrey quasi-
convexity can be found for example in [1, 7, 10,11,14].

In this note, we wish to explore the fact that, for a fixed deformation φ, determin-
ing whether the basic quasi-convexity inequality (1.3) holds for all rank-one convex
functions f essentially amounts to convex optimization. At a conceptual level, this
is a straightforward consequence of the linearity of the expression in (1.3) with re-
spect to f , and the fact that the set of rank-one convex functions forms a convex
cone. In practice, convex optimization is most effective when optimizing over com-
pact convex sets. For numerical experiments, these sets should be finite-dimensional
as well.

A key notion in this context is that of a convex cone with a compact base. We
say that a closed cone Y in a locally convex (Hausdorff) topological linear space
E (over the real numbers) has a compact base if there exists a continuous linear
functional ℓ : E → R that is strictly positive on Y such that the set X = Y ∩{ℓ = 1}
is compact. (There are various definitions of the notion of the base of a cone in
the literature, see, for example, [2, 4]. The definition above seems to be suitable
for our purposes here.) When µ is another continuous linear functional on E and
Y is a closed convex cone with a compact base X , one can reduce the study of the
question of whether µ is positive on Y to the minimization of µ over the compact
set X . This is a classical problem of convex optimization and we have various tools
at our disposal in that situation. In particular, we can try to use finite-dimensional
approximations, approximations by polytopes, and linear programming.

Rank-one convexity is often considered to be easier than quasi-convexity because
its definition is local. While this is no doubt a valid viewpoint, there also seems to
be some truth in the statement that the challenge of deciding the validity of (1.3)
is often related to our incomplete understanding of the cone of the rank-one convex
functions. Our effort will be directed toward finding a suitable setup in which the
cone of rank-one convex functions, after suitably factoring out the rank-one affine
functions1, becomes as close to a cone with a compact base as possible. While we
do not quite achieve this goal (at least not without some form of “completion”),
we do obtain a satisfactory setup for polynomial approximations. The setup should
be applicable to various other approximation methods as well. Our main results
are Theorem 2.6 and Corollary 2.7. We also mention Lemma 4.3 that concerns
approximations by polytopes. Various forms of the lemma can be probably found
in the literature, but we include it here for completeness.

The main idea is that, after factoring out the rank-one affine functions, the suit-
able linear functional ℓ on rank-one convex functions on a unit ball B in Mm×n

1also known as null Lagrangians
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that almost results in a compact base (although not quite) is

(1.5)
1

|S|

∫
S
f(X) dX , S = ∂B .

It turns out that rank-one convex functions are sub-harmonic, and one can use this
fact in combination with simple representation formulae for harmonic functions and
elementary estimates to obtain the desired results, utilizing the convexity properties
of the cone of rank-one convex functions.

2. Compactness

Clearly the expression (1.3) is linear in f and the class of rank-one convex func-
tions forms a cone. However, for optimization it is good to have compactness, in
addition to convexity. Identifying a suitable class of the functions f where one can
obtain compactness will be our next task.

Let us recall some terminology. Let Y be a closed convex cone in a locally convex
(Hausdorff) topological vector space E . As discussed in the introduction, we will say
that Y has a compact base if there exists a continuous linear functional l : E → R
that is strictly positive on Y \ {0} such that the set X = Y ∩ {l = 1} is compact.
This is a favorable situation in which one can essentially work with X rather than
Y, using the compactness of X . As we mentioned in the introduction, our definition
here is closely related to that in [4], but other definitions are used in the literature,
see [2], for example.

2.1. A 1d Toy Model with convex functions. As a very simple example, con-
sider the cone Ycf in C[−1, 1] of the convex functions on the interval [−1, 1]. One
obstacle to the existence of a suitable base for this cone is that Ycf is not proper
(using the terminology in [4]), in the sense that it contains a non-trivial linear sub-
space. We can replace Ycf by the cone Y of convex functions on [−1, 1] that satisfy
f(0) = 0 and f ≥ 0. The cone Y is proper. Defining

(2.1) l(f) =
1

2
(f(−1) + f(1)) ,

the set X = Y ∩ {l = 1} almost works, the only minor issue is that to obtain
compactness, we have to extend our set of functions by relaxing the continuity
requirement: instead of requiring our functions to be continuous on [−1, 1], we
require them to be continuous only on (−1, 1), while still imposing the convexity
and the conditions f(0) = 0 and f ≥ 0 on [−1, 1]. We denote by Ȳ the cone of such
convex functions f and let X̄ = Ȳ ∩ {l = 1}. The set X̄ then can be identified with
the set of probability measures on [−1, 1] via the representation

(2.2) f(x) =

∫
F (x, t) dν(t) ,

where F is defined for t ∈ [0, 1) by

(2.3) F (x, t) =

{
0 when x < t

2(x− t)/(1− t) when x ∈ [t, 1] ,
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(2.4) F (x, 1) =

{
2 when x = 1

0 when x ∈ [−1, 1) ,

and analogously for t ∈ [−1, 0). The measures ν which charge the set {−1, 1} have
to be added to the original continuous functions setup to obtain compactness.

When we restrict our attention to suitable finite-dimensional subspaces, no com-
pletion is necessary. For example, letting YN to be the set of polynomials f of
degree ≤ N such that f(0) = 0 , f ≥ 0 in [−1, 1] and f ′′ ≥ 0 in [−1, 1], the set

(2.5) XN = YN ∩ {ℓ = 1}
will clearly be a closed compact subset of a finite-dimensional linear space over the
real numbers.

If our goal is to optimize some linear functionals over X , we can try to avoid
the issues related to the infinite-dimensionality by working in XN . (For the simple
model above one can probably deal directly with X̄ in many problems.) In case
one wishes to deal with finite-dimensional approximations, the simplicity of the toy
model gives us many reasonable possibilities for finite-dimensional approximations.
For example, instead of polynomials, one could use continuous piece-wise affine
functions.2 This aspect becomes more subtle when we work in the more complicated
setting of rank-one convex functions in (subsets of) Mm×n.

Another way to factor out the affine functions from Ycf and obtain a proper
cone is to choose two points −1 < α < β < 1 and restrict our attention to the
cone Yz = Ycf ∩ {f , f(α) = 0 , f(β) = 0} . Starting with Yz, one can then proceed
similarly as with Y. This choice may be in fact more suitable for the polynomial
approximations. We leave the details for interested readers. Below we will employ
a similar choice in the context of the rank-one convex functions.

2.2. Convex functions in dimensions d ≥ 2. One can adapt the model above
to Rn in a natural way as follows. We replace the unit interval [−1, 1] by the unit
ball Bn = {x ∈ Rn , |x| ≤ 1} and the functional l above by

(2.6) ℓ(f) =
1

|Sn−1|

∫
Sn−1

f(x) dx , Sn−1 = ∂Bn .

One can now consider the cone Y of non-negative convex Borel-measurable functions
on Bn that are finite in the interior of Bn, vanish at x = 0, but are not necessarily
finite or continuous at the boundary of Bn. We can try to take X = Y ∩ {ℓ = 1} as
the base of the cone. However, to obtain compactness, we would need to compactify
X by allowing the restrictions of the functions on Bn to Sn−1 to be probability
measures. One important difference with the case d = 1 is that it is not clear
whether one has a nice representation similar to (2.2). The difficulty is that the set
X or its suitable completion is presumably no longer a simplex in the sense of the
Choquet theory.

2In fact, this choice would make the description of XN easier than it would be when we work
with polynomials. This is because, for piece-wise linear approximations on a fixed grid, one can
easily identify the extremal points in the cone of the piece-wise affine convex functions. They are
essentially the functions F (x, t) above for suitable values of t. The situation for polynomials is
more difficult because in terms of the terminology used in [4], for the polynomial approximation,
the set XN is no longer a simplex.
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We will not go into the technicalities, as our main interest will again be in the
case when Y is replaced by the intersection of Y with some finite-dimensional space
of functions, such as polynomials of degree ≤ N . The situation is then quite similar
to the case d = 1, except for the fact that we are not dealing with simplices.

We remark that we could also factor out the affine functions by restricting our
attention to convex functions that vanish at some given n+1 points in the interior
of B that are “affinely independent”. We leave the details to the interested reader.

2.3. Rank-One Convex Functions on Mm×n. We now turn our attention to
the rank-one convex functions. Our first task is to show that the problem with
the existence/non-existence of a suitable base of the cone of the rank-one convex
functions is somewhat similar to the simple situation with the convex functions
above.

Although ultimately we will be dealing with finite-dimensional submanifolds of
the rank-one convex functions in which each function is finite and well-defined ev-
erywhere, for more general considerations it makes sense to allow functions with
values in the extended real line R = R∪{∞}. A function f : [a, b] → R is convex if
the usual convexity condition f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2) is satisfied
for each x1, x2 ∈ [a, b] and each t ∈ [0, 1], with the usual conventions that we have
∞+ x = ∞, 0∞ = 0 , t∞ = ∞ and x < ∞ for any x ∈ R, t ∈ [0, 1].

Definition 2.1.

(a) Let O ⊂ Mm×n be a convex set with a non-empty interior. A function
f : O → R is rank-one convex in O if it is finite in the interior of O and
convex on the intersection of O with any line in a rank-one direction.

(b) A function f defined on an open subset of Mm×n is locally rank-one convex
if it is rank-one convex on each ball contained in the set.

The following observation will be useful:

Lemma 2.2. Let O ⊂ Mm×n be an open set and let f : O → R be locally rank-one
convex. Then f is subharmonic in the sense that ∆f ≥ 0 in distributions, where ∆
is the standard Laplace operator in Mm×n ∼ Rmn.

Proof. Writing a matrix X in coordinates Xij we can write the Laplacian as

(2.7) ∆ =
∑
i,j

∂2

∂X2
ij

.

Assume first that f is twice differentiable. Each direction ∂/∂Xij is a rank-one
direction, and hence f is convex along it, by the local rank-one convexity. The
general case of possibly non-smooth functions f can be handled for example by
approximation: We replace f by fε = f ∗ϕε for suitable mollifiers ϕε. (The function
fε will be defined on a set Oε that is slightly smaller than O, but the sets will Oε

will approach O as ε ↘ 0.) The mollification will preserve the rank-one convexity
and hence fε will safisfy ∆fε ≥ 0, and this will be preserved in the limit (in the
distributional sense). □
Lemma 2.3. Let B ⊂ Mm×n be a closed ball and let f : B → R be rank-one convex.
Then f is bounded from below.
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Proof. We can assume that B is centered at X = 0. Since any locally rank-one
convex function is continuous in the interior of B, the function f must be bounded
on any compact subset of the interior of B. In particular, for each R < 1 we have

(2.8) sup{|f(X)| , |X| < R} ≤ c(R, f) < ∞.

Let X ∈ B and let us write X =
∑m

j=1 ej ⊗ aj where aj are n−vectors and ej is the

j−th vector of the canonical basis of Rm. Choosing j0 so that that |aj0 | ≥ |X|/
√
m,

we see that the cosine of the angle between the rank-one matrix ej0 ⊗ aj0 and X
is ≥ 1/

√
m. Now the convexity of f on the line X + tej0 ⊗ aj0 together with the

bound (2.8) give the desired result. □

Lemma 2.4. Let B ⊂ Mm×n be a closed ball with center X and let f : B → R be
a Borel measurable rank-one convex function. Then

(2.9)
1

|∂B|

∫
∂B

f(X) dX ≥ f(X) .

Moreover, the equality holds if and only if f is rank-one affine (in the sense that
both f and −f are rank-one convex).

Proof. We can assume that X = 0 and the radius of B is one. The function f is
bounded below on ∂B by Lemma 2.3, so there is no issue with the definition of
the integral. When f is continuous up to the boundary, the inequality (2.9) is a
consequence of f being bounded below, and subharmonic. In the general case one
can use the rank-one convexity of f “up to the boundary” to show that

(2.10) lim sup
R↗1

∫
∂BR

f(X) dX ≤
∫
∂B

f(X) dX .

Let us sketch an argument by which one can obtain (2.10). First, we note that a
convex R-valued function g on a closed interval [a, b] satisfies

(2.11) g(b) ≥ lim sup
x→b−

g(x) .

If we take a small piece Σ of the boundary of B and move it inside along a rank-one
line, we can establish a local version of (2.10) for Σ. (Note that we can use the
rank-one line from the proof of Lemma 2.3 for this purpose.) Putting together the
local pieces, we obtain (2.10).

In the case of equality, the function f has to be harmonic (as we know that it is
subharmonic) and therefore it is smooth in the interior of B. Assume that f is not
affine along some rank-one line with direction a ⊗ b ̸= 0. Let Q1, Q2 be matrices
in SO(m) and SO(n), respectively, such that Q1a = (1, 0, . . . , 0) ∈ Rm and Q2b =
(1, . . . , 0) ∈ Rn, respectively. Let g : B → R be defined by g(X) = f(Q−1

1 XQ2).

Then ∂2g/∂X11
2 > 0 on some open set. Since the map X → Q1XQ−1

2 is an isometry
of Mm×n and preserves the cone of rank-one matrices, we see that ∆g > 0 on an
open subset of B. Hence also ∆f > 0 on an open subset of B and the inequality
in (2.9) has to be strict. We see that we can only have equality when f is rank-one
affine, as claimed. □

We will use the following well-known statement.
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Lemma 2.5. Let O ⊂ Mm×n be open and connected and let f : O → R be locally
affine along rank-one lines in O. Then f is a linear combination of minors, in
the sense that f(X) is of the form a1M1(X) + a2M2(X) + . . . arMr(X) + b, where
X → Mj(X) is either a suitable subdeterminant of X or a constant.

Proof. We refer the reader for example to [5]. □

We will denote the set of all rank-one affine functions (also known as null La-
grangians) by L. Let r = dimL.

Let us now choose a finite set of matrices 0 = A(1), A(2), . . . , A(r) ∈ Mm×n with
|A(k)| ≤ 1

2 , k = 1, 2, . . . r so that the map

f →
(
f(A(1)), f(A(2)), . . . , f(A(r)

)
is a linear space isomorphism of L and Rr.

In what follows we will fix the notation

(2.12) B = {X ∈ Mm×n , |X| ≤ 1} , S = {X ∈ Mm×n , |X| = 1} ,

(2.13) RC(B) = {f : B → R , f is Borel measurable and rank-one convex in B}

and

(2.14) RC0(B) = {f ∈ RC(B) , f(A(j)) = 0 , j = 1, 2, . . . , r} .

We also define

(2.15) X = {f ∈ RC0(B) ,
1

|S|

∫
S
f(X) dX = 1 } .

The set X seems to be the right analog of the set X from subsection 2.1.

Theorem 2.6. For f ∈ X we have

(2.16) sup
BR

|∇f | ≤ c(R) < ∞ , 0 < R < 1 ,

where BR = {X ∈ Mm×n , |X| ≤ R} .

Proof. Let us first show that the functions in X have a common uniform bound
from below:

(2.17) inf{f(X) , f ∈ X , X ∈ B} > −∞ .

Arguing by contradiction, let us assume that this is not the case and that from
some sequence fn ∈ X there are Xn ∈ B such that fn(Xn) ↘ −∞. Let us set
gn = fn/(− infB fn). Then infB gn = −1, and

(2.18)
1

|S|

∫
S
gn(X) dX = εn ↘ 0 .

Clearly

(2.19)
1

|S|

∫
S
|gn| ≤ 2 + εn .
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The functions gn are subharmonic by Lemma 2.2. For sub-harmonic functions h
on B we have

(2.20) h(X) ≤
∫
S
h(Y )P (X,Y ) dY ,

where

(2.21) P (X,Y ) =
1

|S|
1− |X|2

|X − Y |mn

is the Poisson kernel for the unit ball B. This gives
(2.22)

gn(X) ≤
∫
S
gn(Y )P (X,Y ) dY ≤ (2 + εn) sup

Y ∈S

1− |X|2

|X − Y |mn
= (2 + εn)

1− |X|2

(1− |X|)mn
.

This upper bound together with the convexity along the rank-one lines and infB gn =
−1 easily give an upper bound

(2.23) sup
BR

|∇gn| ≤ C(R) , 0 ≤ R < 1 ,

where C(R) is a finite increasing function on [0, 1) . Recalling that fn and hence
also gn belong to RC0, we have gn(0) = 0. The functions gn are sub-harmonic and

(2.24)
1

|S|

∫
S
gn(X) dX = εn ↘ 0 .

In view of (2.23) and the Arzela-Ascoli Theorem, we can assume that gn converge
locally uniformly in the interior of B to some continuous function g. The function
g clearly belongs to RC0, and is rank-one convex and hence subharmonic, due to
Lemma 2.2. Denoting by GR(X,Y ) the Green’s function of the Laplacian in the
ball BR, we can write for 0 < R < 1

(2.25) 0 = gn(0) =
1

|∂BR|

∫
∂BR

gn(Y ) dY +

∫
BR

GR(0, Y )∆gn(Y ) dY

and therefore

(2.26)

∫
BR

GR(0, Y )∆gn(Y ) dY = − 1

|∂BR|

∫
∂BR

gn(Y ) dY ≥ −εn ↗ 0 .

Since ∆gn ≥ 0 in B and GR(0, ·) ≤ 0 in B, we see that ∆g = 0, and by Lemma 2.4
this means that g is rank-one affine. Being also a member of RC0 we see that g ≡ 0.
The functions gn, therefore, converge locally uniformly to g ≡ 0 in the interior of
the ball B. Now the condition infB gn = −1 easily leads to a contradiction of the
convexity of gn along rank-one lines. □

Theorem 2.6 shows that one can in some sense take X as a reasonable base of
the rank-one convex functions, at least if we consider them modulo rank-one affine
functions. One could try to compactify X by allowing the function f |∂B to be in a
suitable class of measures. However, when we work with suitable finite-dimensional
subspaces, we get compactness without any additional technicalities. For example,
let us define

(2.27) XN = X ∩ {f : Mm×n → R , f is a polynomial of degree ≤ N} .
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Corollary 2.7. The set XN is convex and compact for each positive integer N .
Moreover, it can be considered as a base of the convex cone of the rank-one convex
polynomials of degree ≤ N , taken modulo rank-one affine functions.

Proof. This follows from the more general considerations above, but can also be
proved more directly using the finite-dimensional nature of XN . Indeed, let us
consider XN as a subset of the finite-dimensional space PN of polynomials of degree
≤ N on Mm×n. Consider a norm [| · |] on PN . We can take for example [| f |] =
supB |f |, although the exact form of the norm is unimportant for our purposes here
(and we know that for a fixed N all norms of PN are equivalent). We claim that XN

is bounded. If not, assume that fn ∈ XN is an unbounded sequence of polynomials.
Setting gn = fn/[| fn |], we can assume gn → g ∈ XN . Since

∫
S gn(X) dx → 0+ we

have
∫
S g(X) dX = 0 and since g(0) = 0 and g is subharmonic, we see — as before

— that g must be rank-one affine and being in RC0 it must vanish, a contradiction
with [| g |] = 1. □

3. A convex optimization problem

3.1. Gradient Young measures. It is convenient to introduce the following no-
tation. For φ : Tn → Rm and A ∈ Mm×n we will define the measure µ = µA,φ on
Mm×n by

(3.1) ⟨µ, f⟩ = 1

|Tn|

∫
Tn

f(A+∇φ) dX .

We will also use the notation µ̄ for the center of mass of µ. In the situation above
we clearly have

(3.2) µ̄A,φ = A.

Any measure µ arising in this way from a Lipschitz function φ will be called a
gradient Young measure. One can generate the gradient Young measure numerically
simply by generating the smooth mappings φ : Tn → Rm, for example by using
trigonometric polynomials, piece-wise polynomial approximations (finite-elements),
and other methods of representing functions.

Clearly, a continuous function f : Mm×n → R is quasi-convex if and only if

(3.3) ⟨µ, f⟩ ≥ f(µ̄)

for each gradient Young measure µ on Mm×n.
It can be shown by a Hahn-Banach type argument, see [9], that every probability

measure satisfying (3.3) for all continuous quasi-convex functions f : Mm×n → R is
a gradient Young measure, but we will not need this statement in what follows.

3.2. Optimization. With the terminology introduced above, one can now formu-
late the question of whether rank-one convexity implies quasi-convexity on Mm×n

as the question of whether (3.3) holds for each gradient Young measure µ and each
rank-one convex function f . Therefore it is natural to consider the following ques-
tion:

(∗) Given a gradient Young measure µ on Mm×n, do we have ⟨µ, f⟩ ≥ f(µ̄) for each
rank-one convex function?
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By applying suitable shifts and rescalings to the functions f we can restrict our
attention to the case µ̄ = 0 , supp (µ) ⊂ B and f(0) = 0.

4. Finite-dimensional Approximations

Let us consider a gradient Young measure µ with supp(µ) ⊂ B (where, as above,
B is the closed unit ball in Mm×n) and µ̄ = 0. Let XN be the finite-dimensional
approximation of the set X defined in (2.27) by polynomials on Mm×n of degree
≤ N . Recall that B = {X ∈ Mm×n , |X| ≤ 1}.

Lemma 4.1. Let µ be a probabilistic measure in B ⊂ Mm×n and let O ⊂ Mm×n be
an open ball such that B ⊂ O. If ⟨f, µ⟩ < f(µ̄) for some rank-one convex function
f : O → R, then there also exists an integer N ≥ 0 and g ∈ XN such that

(4.1) ⟨µ, g⟩ < g(µ̄) .

Proof. Replacing f by its suitable mollification (defined on a set slightly smaller that
O but still containing B), if necessary, we can assume that f is smooth. Given η > 0,
we can find a polynomial h : B → R such that supB

(
|f − h|+ |D2f −D2h|

)
< η.

We can now take

(4.2) g(X) = h(X) + ε|X|2 + L(X) .

for a suitable ε = ε(f, h, η) and a suitable null-Lagrangian L, assuming η is suffi-
ciently small (relatively to the quantity f(µ̄)− ⟨µ, f⟩. The null Lagrangian can be

used to make sure that the condition g(A(k)) = 0 is satisfied for k = 1, 2, . . . , r. We
leave the standard technical details to the reader. □

Remark 4.2.

(i) The above proof can no doubt lead to g ∈ XN with a large N . On the
other hand, for possible numerical experiments, it is desirable to take N as
low as possible. For general m,n and a fixed N one can very likely have, a
situation with ⟨g, µ⟩ ≥ ⟨g, µ̄⟩ for any g ∈ XN but ⟨f, µ⟩ < ⟨f, µ̄⟩ for some
rank-one convex f : Mm×n → R.

(ii) In general, a polynomial P that is rank-one convex in B may of course not
be rank-one convex in Mm×n. However, it is not hard to find a rank-one
convex function f : Mm×n → R that is as close to P on B as we wish, and
this is sufficient. A suitable extension method can be found for example
in [15]. (This is one of the situations in which the locality of the rank-one
convexity is important.)

4.1. Possible numerical experiments. The simplest approach might be the fol-
lowing.

1. Generate a “random” gradient Young measure µ supported in B with µ̄ = 0.
2. Minimize the linear functional f → ⟨f, µ⟩ over the compact convex set XN .

If the minimum found in step 2 drops below zero, we of course have a counterex-
ample. In principle, one could consider the minimal value obtained in step 2 as
function F(µ) of µ and perform some steepest descend algorithm on F over some
chosen finite-dimensional set of admissible gradient Young measures µ.
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The dimension of the space of polynomials of degree ≤ N in Mm×n is

d = d(N,m, n) =

(
N +mn

N

)
.

The first interesting case seems to be N = 4,m = n = 2 and

d(4, 2, 2) =

(
8

4

)
= 70.

The null Lagragians in that case are of the form

L(x) = a11X11 + a12X12 + a21X21 + a22X22 + b det(X) + c ,

hence of dimension 6. Therefore the set X4 can be considered as a compact convex
set in R64.

The corresponding numbers for N = 4, n = 2,m = 3 are

d(4, 3, 2) =

(
10

4

)
= 210

and the dimension of the null Lagrangians to be 6+3+1 = 10 hence for n = 2,m = 3
the set X4 can be considered as a compact convex subset of R200. The evaluation
of the linear functional

ℓ(X) =
1

|S|

∫
S
f(X) dX

should not present a problem.
The interesting question is how one should impose the requirement of the rank-

one convexity of the polynomials numerically. For a C2-function f : Mm×n → R
this amounts to the condition

(4.3) f ′′(X) (a⊗ b, a⊗ b) ≥ 0

for eachX ∈ Mm×n and each rank-one matrix a⊗b. When f is a quartic polynomial,
the expression X → f ′′(X) (a⊗ b, a⊗ b) is a quadratic form and one could use
some effective algorithms for verifying the positive definiteness of quadratic forms.
However, in order to be able to use off-the-shelf linear programming3 software, it
may be natural to try the following method. Let us choose at random matrices
X1, X2, . . . , Xp ∈ B and unit vectors a1, a2, . . . aq, b1, . . . , bq′ and use the condition

(4.4) f ′′(Xi)(aj ⊗ bk, aj ⊗ bk) ≥ 0 , 1 ≤ i ≤ p, 1 ≤ j ≤ q , 1 ≤ k ≤ q′

as an approximation for rank-one convexity. For example, for N = 4, n = 2, m =
2, p = 1000, q = 40, q′ = 40 one would end up with a linear programming problem
in 64 variables and 1.6 · 106 constraints. This might still be feasible with some
efficient algorithms.

It would be interesting to see how the linear programming algorithms will per-
form. There are also some theoretical questions related to these approximations,
see subsection 4.2 below.

Remark on invariant functions

As we already mentioned, for n ≥ 2,m ≥ 3 one has rank-one convex functions that
are not quasi-convex. However, the question whether rank-one convexity is sufficient

3We refer the reader for example to [3] for details concerning linear programming.
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for quasi-convexity remains open for various classes of functions with symmetries.
For example, in non-linear elasticity one often deals with stored energy functions
W : M3×3 → R that are frame-indifferent and isotropic. These two requirements
mean that W (Q1XQ2) = W (X) for all Q1, Q2 ∈ SO (3) and all X. By replacing
the set XN above with their natural symmetric variants, such as

(4.5) X sym
N = {f ∈ XN , f has a desired symmetry}

one could test whether the rank-one convexity might imply quasi-convexity in some
of the natural symmetry classes.

4.2. Topics related to approximations. For each Xi, aj , bk as in (4.4) let us
consider the linear functional

(4.6) ℓi,j,k : f → f ′′(Xi)(aj ⊗ bk, aj ⊗ bk)

In particular, the functional ℓi,j,k is well-defined on the (compact) set XN .
We will use the notation

(4.7) ℓ0(f) =
1

|S|

∫
S
f(X) dX .

Let us also denote by B the set of all functionals of the form

(4.8) ℓ : f → f ′′(X)(a⊗ b, a⊗ b)

with X ∈ B and unit vectors a ∈ Rm , b ∈ Rn . Here and in what follows we will
use ℓ for the generic functional from B, a slight change of notation in comparison
with the meaning of ℓ used in the previous section, where it was used for what is
now denoted ℓ0. As above, we will use PN to denote the set of all polynomials of
degree ≤ N on the set Mm×n. (Strictly speaking, we should write PN,m,n but the
values of m,n will be clear from the context.)

Recalling the definition of the matrices Aj , j = 1, 2, . . . , r after Lemma 2.5, we
have, by definition,
(4.9)

XN = { f ∈ PN , l0(f) = 1, f(Aj) = 0 , j = 1, 2, . . . , r , l(f) ≥ 0 for each ℓ ∈ B}

The following lemma suggests that the approximation scheme leading to linear
programming discussed above should be reasonable.

Lemma 4.3. Let E be a finite-dimensional normed space and let E∗ be its dual
space. Let ℓ0 be a non-zero element of E∗ and let K be a compact subset of E∗ such
that the set

K = { x ∈ E , l0(x) = 1 and l(x) ≥ 0 for each ℓ ∈ K }

is non-empty and compact. Then there exist finite sets K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ K
such that the sets

Kj = { x ∈ E , l0(x) = 1 and l(x) ≥ 0 for each ℓ ∈ Kj }

are compact and their intersection is K.
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Proof. It is enough to show that there exists a finite set K1 as above, the rest then
follows by letting Kj = K1∪{ℓ1, . . . , ℓj−1} for j=2, 3,. . . , where ℓ1, ℓ2, . . . is a dense
subset of K. Arguing by contradiction, let us assume that K1 is non-compact for
each finite set K1 ⊂ K. This means that the set Z1 = {y ∈ E ; ||y|| = 1 , ℓ0(y) =
0 , ℓ(y) ≥ 0 for each ℓ ∈ K1} is non-empty for each finite K1 ⊂ K. However, by
standard compactness arguments, this means that it is also non-empty for K1 = K.
Let y ∈ E with ||y|| = 1 , ℓ0(y) = 0, and l(y) ≥ 0 for each ℓ ∈ K. Then for any
x ∈ K the ray x + ty , t ∈ [0,∞) is a subset of K, a contradiction with K being
bounded. □

The number of elements in K1 has to be equal at least to the dimension of the
affine set {x ∈ E , ℓ0(x) = 1} .

Assuming the set K = XN has a non-empty interior in the affine space A =
{f ∈ PN , f(Aj) = 0 , j = 1, 2, . . . , r , ℓ0(f) = 1} the discrepancy between Kj and
K could in principle be measured by |Kj − K|/|K|, where we denote by |K| the
Lebesgue measure in the affine space A.

Ideally, we would like to perform optimization on the set K = XN . However, if
we wish to use existing linear programming software, we probably will have to use
approximations of the form Kj . In the situation we consider here, it can be expected
that the set K = XN cannot be described by finitely many linear functionals and
the minimizers we get when we replace K with Kj will probably not be in K. We
can hope that if we achieve ⟨f, µ⟩ < f(µ̄) for some f ∈ Kj (with K = XN ) with
j sufficiently large, the gap will be large enough to move f into XN while still
preserving some gap.
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