o Pug,

@ Yokohama Publishers

Volume 8, Number 5, 2023, 1565-1571 Lome®ll /SSN 2189-3764 _ ONLINE JOURNAL
) ) ) Hinge 199D .
© Copyright 2023

%,

Pure and A}J}J[ied Functional Anu[ysis

Yok,

CLARKE SUBDIFFERENTIAL FOR LIPSCHITZ FUNCTIONS ON
ASPLUND SPACES

XI YIN ZHENG

ABSTRACT. Based on Preiss’ Fréchet differentiability theorem, this note proves
that the Clarke subdifferential df(x) of a locally Lipschitz real-valued function f
on an open set in an Asplund space is equal to the weak*-closed convex hull of the
set of all weak™ limit points w*— khﬁngo V f(zk) with {x} converging strongly to
x and f being Fréchet differentiable at each xj. This extends Clarke’s classical
result about the Clarke subdifferential from the finite dimensional case to the
infinite dimensional one.

1. INTRODUCTION

Given an open set G in a Banach space X and a locally Lipschitz function f :
G — R, recall that the Clarke subdifferential of f at x € G is the following set

of(x) :={z* € X*: («*, h) < f°(x,h) Vhe X},

where f°(z,h) = limsup w is the Clarke directional derivative of f at x
y—x,t—0t

in direction h. For convenience, let
Gr(f) ={u € G: fisFrechet differentiable at u}.

It is well known, as the Radmader theorem, that if X is finite dimensional then
G\Gr(f) is of Lebesgue measure 0. With the help of Radmader’s theorem, Clarke [1]
proved that if X is finite dimensional then

(1.1) of(x) = co{ lim Vf(xg): o — x, 21 € Qp(f)}

k—00

(cf. [1, Theorem 2.5.1]). Hiriart-Urruty and Thibault [3] extended formula (1.1) to
separable Banach spaces (also see [1, page 285]). Recall that the Fréchet subdiffer-
ential and Mordukhovich limiting subdifferential df () and 8f(z) of f at 2 € G are
defined by

df(x) = {:U* € X" li}rln_glf fw+h) _H“;(Hw) mlCEL) > 0}
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and
(1.2) of (z) :=={z*: a2 =z, =} 3 2* and o € Of (zr)},

respectively. Note that there exists a globally Lipschitz function ¢ on the classical
Banach space ¢! such that dp(z) = dp(x) = 0 for all z € £'. However, in the case
when X is an Asplund space, dom(df) = {z € G : df(z) # 0} is dense in the
domain G of f and

(1.3) of (x) = (8f(z)) Vze G,

where c6%" denotes the weak*-closed convex hull (cf. [5,6]). Recall that X is an
Asplund space if every continuous convex function ¢ on an open convex set G in X
is Fréchet differentiable on a dense G subset of G. Many important and interesting
results on Asplund spaces have been established (cf. [2,7]). In particular, X is an
Asplund space if and only if every separable subspace of X has a separable dual
space (cf. [7]). Moreover, Preiss [8] proved that if X is an Asplund space then Gg(f)
is dense in G for any locally Lipschitz function f on an open subset G of X. Given
a locally Lipschitz function f on an open set G in an Asplund space, motivated by
(1.1)—(1.3) and Preiss’ result, it is nature to ask whether or not

of () = o ({w*—klirgo Vf(zg): o — x, o) € gF(f)}) ‘

This note will give a positive answer to the above question. Moreover, this note
considers extending Clarke’s generalized Jacobian chain rule to infinite dimension
spaces from the finite dimensional spaces.

2. PRELIMINARIES

Throughout this section, we make the following assumptions:

A1) X is an Asplund space.
A2) (G is an open nonempty set in X.
A3) f:G — Ris alocally Lipschitz function.

Recall that Gp(f) denotes the set of all Fréchet differentiable points of f in G.
To prove the main result in this note, we need the following very profound result
established by Preiss (cf. [8, Theorem 2.5]).

Lemma 2.1. Let u,v € X be such that the segment [u, v] := {tu+ (1 —t)v: 0 <
t <1} is contained in G, and suppose that A1)—A3) are satisfied. Then

nf{(Vf(z),0—u) s @€ GNGR(f)} < Fo) - F(u)
<sup{(Vf(z),v—u): x € GNGr(f)}.

The following Lebourg mean-value theorem (cf. [1, Theorem 2.3.7]) is also useful
for our analysis.

Lemma 2.2. For any z,y € X with [z, y| C G, there exists u € (z, y) :=
{tu+ (1 —t)v: 0<t<1} such that

fly) = f@) e {{u"y =) : w” €df(u)}.
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For a locally Lipschitz vector-valued function F': G — R", we adopt the gener-
alized Jacobian OF (x) of F at x € G as follows

(2.1) OF (z) := {klim VF(zg) : xp = x, x), € QF(F)}
—00

(cf. [1,10]), where Gr(F') denotes the set of all points at which F' are differentiable.

Even for n = 2, it is unknown whether or not 0F(z) is nonempty (c.f [2]). However,

when the dimension dim(X) of X is finite, OF (z) # 0 for all x € G and the following

result holds (cf. [1, Proposition 2.6.5]).

Lemma 2.3. Suppose that X is finite dimensional. Then, for any x,y € X with
[z, y] C G,
F(y) = F(x) € co(F ([z, y]))(y — ).

3. MAIN RESULT

First we extend Clarke’s result on the Clarke subdifferential formula for a locally
Lipschitz real-valued function from the finite dimensional space to the more general
Asplund space.

Theorem 3.1. Let G be an open set in an Asplund space X and let f: G — R be
a locally Lipschitz function. Then, for any x € G,

(3.1) f(x,h) =limsup(Vf(y),h) VheX
95
y——x
and

8f(x) :mw* ({w*_klggo vf(xk) DX — T, T € gF(f)}) s

()

where y W) & means ly —z|| = 0 and y € Gr(f).

Proof. Take L,r € (0, 400) such that B(z,r) C G and
(3.2) 1f(y) = f(I < Llly -zl Vy,z € Blz,r),

where B(z,r) is the open ball with center = and radius r. Let

A= {w*—klim Vf(:nk) X — X, T € gp(f>} .
—00
For any h in X, take a sequence {y,} in B(x,r) such that
(Vf(yn), h) = limsup(V f(y), h).

lim
n—o0 Gr(f)
y — T

Then ||V f(yn)|| < L for all n € N (thanks to (3.2)). Since X is an Asplund space,
the unit ball Bx~ of X* is sequentially compact with respect to the weak* topology
(cf. [5, Proposition 1.123]). Hence there exists a subsequence {y,,} of {y,} such

that vV f(yn,) 0 y* € LBx+«. It follows that y* € A and
(' ) = Jim (9 (), h) = limsup( f(3), ).

g
v
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Hence limsup(Vf(y),h) < oa(h) = a@w*(A)(h), where o4 denotes the support

Gr(f)
y —'x
functional of A (i.e., o4(h) = sup (y*, h)). Thus, by (1.2) and (1.3), one has
yreA
(33) hmsup(Vf(y), h> < Ocsw* (A)(h) < T9f(x) (h’) = fo(mv h’)
gr ()
Yy —x

(the last equality holds because of [1, Proposition 2.1.2]). On the other hand, take
a sequence {(xn,t,)} in X x (0, 400) such that [z, =, + t,h] C B(z, 1),
tph) —

f($n+ n ) f(.In) —>fo((13,h).

tn
Then there exists a sequence {&,} in (0, +00) converging to 0 such that

Up=A{ue X: du,|zn, xn+tyh]) <epn} C B(z,r) VYneN.

By Lemma 2.1, there exists u,, € U, N Gp(f) such that

f(an +tnh) = f(@n) <(V[f(un), tnh) + ti'
Hence ||uy, — z|| < ||un — zu|| + |20 — z|| < &n + tul|h|| + [|2n — z]| — 0 and

fo(x7 h) = nh_}fg() f(x" + tnt}:) — f(xn)

< limsup(V f(uy),h)

n—oo

< limsup(Vf(y),h).

r, =z, t, — 0 and

g
v

This and (3.3) show that (3.1) holds and f°(x,h) = o~ 4)(h). Noting that 0f (x)
is a weak*-closed convex set and f°(z,-) = 0gy(y), it follows from the separation
theorem that df(z) = co® (A). The proof is complete. O

The following Jacobian chain rule is known (cf. [1, Theorem 2.6.6]).

Theorem 3.2. Let F': R™ — R" be Lipschitz near x € R™ and g : R® — R be
Lipschitz near F(x). Then

df (z) C co(0g(F(z))0F(z)).

Naturally, one may try to extend Theorem 3.2 by replacing R™ with an infinite
dimensional Asplund space X. However, even in the case that X is an infinite
dimensional Hilbert space, it is not known whether or not a Lipschitz function
G : X — R3 is Fréchet differentiable at some point in X, that is, it is unknown
whether or not Gp(F') is nonempty. This motivates us to consider the case of
piecewise linear vector-valued functions. Recall that P C X is a convex polyhedron
if there exist (z7,71), -, (2}, 7%) € X* x R such that

P={zeX: (zj,z)<r;,i1=1,--- k}.
We say that a vector-valued function F' : X — R" is piecewise linear if its graph
gph(F) := {(z,F(z)) : = € X} is the union of finitely many convex polyhedra in
X x R™. The following lemma is known (cf. [11, Proposition 3.1 and Theorem 3.1])
and useful for us.
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Lemma 3.3. Let F be a piecewise linear vector-valued function from a normed
space X to R™. Then there exist convex polyhedra P; in X, T; € L(X,R"™) and
b; e R" (i € Im:={1,--- ,m}) such that

(34) X =|JP, int(P) #0, int(P) NP =0 Vi,j € Tm with i # j,

i=1
(3.5) F(z)=Tiy(x)+b; Vie€lmandVxe P,
and
(3.6) Ti(z)="---=Tyn(x) Vzecln <ﬂ B)
i=1

where L(X,R™) denotes the space of all continuous linear operators from X to R™

m m
and lin <ﬂ B) denotes the largest subspace contained in () P;.
i=1 i=1

Theorem 3.4. Let X be a normed space, F' : X — R" be a piecewise linear vector-
valued function and let g : R™ — R be a locally Lipschitz function. Then, for any
re X,

(3.7) d(go F)(x) C co(dg(F(z))0F (x)).

Proof. Since F' : X — R" is piecewise linear, there exist convex polyhedra P; in X,
T, € L(X,R™) and b; € R™ (i = 1,--- ,m) such that (3.4)—(3.6) hold (thanks to
Lemma 3.3). For each i € Im, take z}; € X* and r;; € R (j =1,--- ,1;) such that

Pi = {.17 €X: <:U;kj’m> < Tijy j: ]-7 7V’i}~
It is easy to verify that
m m v
Xp :=lin (ﬂ Pz-> = m ﬂ ker(z7;),
i=1 ;

where ker(z};) == {z € X : (z};,2) = 0}, and hence Xp is a closed subspace of X
m

whose codimension is less than or equal to > ;. Therefore, there exists a subspace
i=1

X of X such that

(3.8) dim(X) < oo, X N Xp = {0} and X = X + Xp.
For each i € 1m, let

~

P = {ue)?: <x;‘j,u>§n~j, j=1,-- ,I/Z‘}.

Then, by (3.4), P, is a convex polyhedron in X,
~ o~ m ~
P,=P +Xp and X = UPi.
i=1

Moreover, by (3.5) and (3.6), one has
F(u+v) =Ti(u) + To(v) + b Y(u,v) € P x Xp, i=1,--,m
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where TO is a continuous hnear operator from Xp to R™. Let F:X — R” be such

that F' (u) := F(u) for all u € X. Then F is a Lipschitz vector-valued function from
X to R™, and
(3.9) Fu+v)=(F&T)(u+v):=Fu)+Tow) Y(uv)e X+ Xp.

Thus, for (u,v) € X x Xp, it is easy from (3.8) and (3.9) to verify that F' is Fréchet

differentiable at uw + v if and only if F' is Fréchet differentiable at u with
VF(u+v)(u + ') = VF(u) (W) + To(") V(' ,v') e X x Xp.

This implies that

(3.10) OF(u+v)=0F(u) ®T = {E@TO . Se aﬁ(u)} V(u,v) € X x Xp.

Take (ug,vg) € X x Xr such that = ug + vg. Then, for any (hi, h2) € X x Xr,
there exists a sequence {(ug,vg,tx)} in X x Xp x (0, +00) such that

(3.11) (ug, v, tg) — (uo,v0,0) and (go F)°(x,h1 + he) = klim Ay,
—00

where
g(F(ug + vg + tr.(ha + h2)) — g(F(ug + vy))

123
By (3.9) and Lemma 2.2, there exist yx € [F(ug + vg), F(ug + vg + ti(h1 + h2))]
and y; € 0g(yx) such that

« Fug + vk +ti(h1 + ha) — F(ug + vg)
Ak = Yk tk

Ap =

(3.12) =

< o Fluy +tihh)) —

yk;v tk

F<“’“)> T s To(ha))-

Noting that F' is locally Lipschitz, it follows from (3.11) that yx — F(up + vo) =
F(z). Since g is also locally Lipschitz, we can assume without loss of generality
that

(3.13) Yp =y € 0g(F(x))
(thanks to [1, Proposition 2.1.5]). On the other hand, by Lemma 2.3, one has
F(ug + tphy)) —
123
and hence there exists §k € aﬁ([uk, ug + txhi]) such that

<y;:7 F(uk +tkhl)) - F(uk)> < <yz;§k(h1)>

tg

F(ur) € co (aﬁ([uk, ug + tkhl])> (h1),

Therefore, by (3.12), one has
(3.14) Ak < (gt Silhn) + To(ha)) = (i, (S & To) (hn + ha)).
By the definition of OF , for any k € N there exist 4y, € X such that

1 " 1
d (it gy 1w+ tihu]) < - and Hw(ak) - SkH <
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It follows from (3.11) that klim {, = ug. Since F' is a locally Lipschitz function
—00

between finite Adimensional spaces X and R™ we can assume without loss of gen-
erality that VF(a,) — S € 0F (up) (taking a subsequence if necessary). Thus, by
(3.10)—(3.14), one has

y" o (S@Ty) € 0g(F(2))dF (x) and (g0 F)°(x,h1 +ha) < (y*, (S & To)(h1 + ha)).

Noting that the Clarke directional derivative (g o F))°(z, hi 4+ hg) is equal to the
value of the support functional oy(4or)(y) at h1 + ha, it follows that

To(goF)(z) (M1 + h2) < 0gg(p(2))0F @) (h1 + ha).
This means that d(g o F)(z) C @* (9g(F(z))0F(z)). Thus, to prove (3.7), we
only need to show that co(9g(F(z))0F(x)) is compact. Noting that F:X 5 R"
is a locally Lipschitz function, it is easy to verify that OF (up) is a bounded closed

set in £(X,R"). Since dim (C()?,]R”)) = dim()?) X n < 0o, 8ﬁ(u0) is a compact

set in £(X,R"). Since Of (F(x)) is a compact set in R™, this and (3.10) show that
0g(F(z))0F (x) is a bounded closed set in a finite dimensional subspace of X*. It
follows that co(dg(F(x))OF (x)) is compact (cf. [9, Theorem 3.20]). The proof is
complete. O
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