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and

(1.2) ∂̄f(x) := {x∗ : xk → x, x∗k
w∗
→ x∗ and x∗k ∈ ∂̂f(xk)},

respectively. Note that there exists a globally Lipschitz function φ on the classical
Banach space ℓ1 such that ∂̂φ(x) = ∂̄φ(x) = ∅ for all x ∈ ℓ1. However, in the case

when X is an Asplund space, dom(∂̂f) = {x ∈ G : ∂̂f(x) ̸= ∅} is dense in the
domain G of f and

(1.3) ∂f(x) = cow
∗
(∂̄f(x)) ∀x ∈ G,

where cow
∗
denotes the weak∗-closed convex hull (cf. [5, 6]). Recall that X is an

Asplund space if every continuous convex function φ on an open convex set G in X
is Fréchet differentiable on a dense Gδ subset of G. Many important and interesting
results on Asplund spaces have been established (cf. [2, 7]). In particular, X is an
Asplund space if and only if every separable subspace of X has a separable dual
space (cf. [7]). Moreover, Preiss [8] proved that if X is an Asplund space then GF (f)
is dense in G for any locally Lipschitz function f on an open subset G of X. Given
a locally Lipschitz function f on an open set G in an Asplund space, motivated by
(1.1)—(1.3) and Preiss’ result, it is nature to ask whether or not

∂f(x) = cow
∗
({

w∗− lim
k→∞

▽f(xk) : xk → x, xk ∈ GF (f)

})
.

This note will give a positive answer to the above question. Moreover, this note
considers extending Clarke’s generalized Jacobian chain rule to infinite dimension
spaces from the finite dimensional spaces.

2. Preliminaries

Throughout this section, we make the following assumptions:

A1) X is an Asplund space.
A2) G is an open nonempty set in X.
A3) f : G → R is a locally Lipschitz function.

Recall that GF (f) denotes the set of all Fréchet differentiable points of f in G.
To prove the main result in this note, we need the following very profound result
established by Preiss (cf. [8, Theorem 2.5]).

Lemma 2.1. Let u, v ∈ X be such that the segment [u, v] := {tu+ (1 − t)v : 0 ≤
t ≤ 1} is contained in G, and suppose that A1)—A3) are satisfied. Then

inf{⟨▽f(x), v − u⟩ : x ∈ G ∩ GF (f)} ≤ f(v)− f(u)

≤ sup{⟨▽f(x), v − u⟩ : x ∈ G ∩ GF (f)}.

The following Lebourg mean-value theorem (cf. [1, Theorem 2.3.7]) is also useful
for our analysis.

Lemma 2.2. For any x, y ∈ X with [x, y] ⊂ G, there exists u ∈ (x, y) :=
{tu+ (1− t)v : 0 < t < 1} such that

f(y)− f(x) ∈ {⟨u∗, y − x⟩ : u∗ ∈ ∂f(u)}.
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For a locally Lipschitz vector-valued function F : G → Rn, we adopt the gener-
alized Jacobian ∂F (x) of F at x ∈ G as follows

(2.1) ∂F (x) :=

{
lim
k→∞

▽F (xk) : xk → x, xk ∈ GF (F )

}
(cf. [1,10]), where GF (F ) denotes the set of all points at which F are differentiable.
Even for n = 2, it is unknown whether or not ∂F (x) is nonempty (c.f [2]). However,
when the dimension dim(X) of X is finite, ∂F (x) ̸= ∅ for all x ∈ G and the following
result holds (cf. [1, Proposition 2.6.5]).

Lemma 2.3. Suppose that X is finite dimensional. Then, for any x, y ∈ X with
[x, y] ⊂ G,

F (y)− F (x) ∈ co(∂F ([x, y]))(y − x).

3. Main result

First we extend Clarke’s result on the Clarke subdifferential formula for a locally
Lipschitz real-valued function from the finite dimensional space to the more general
Asplund space.

Theorem 3.1. Let G be an open set in an Asplund space X and let f : G → R be
a locally Lipschitz function. Then, for any x ∈ G,

(3.1) f◦(x, h) = lim sup

y
Gf−→x

⟨▽f(y), h⟩ ∀h ∈ X

and

∂f(x) = cow
∗
({

w∗− lim
k→∞

▽f(xk) : xk → x, xk ∈ GF (f)

})
,

where y
GF (f)−→ x means ∥y − x∥ → 0 and y ∈ GF (f).

Proof. Take L, r ∈ (0, +∞) such that B(x, r) ⊂ G and

(3.2) |f(y)− f(z)| ≤ L∥y − z∥ ∀y, z ∈ B(x, r),

where B(x, r) is the open ball with center x and radius r. Let

A :=

{
w∗− lim

k→∞
▽f(xk) : xk → x, xk ∈ GF (f)

}
.

For any h in X, take a sequence {yn} in B(x, r) such that

lim
n→∞

⟨▽f(yn), h⟩ = lim sup

y
GF (f)
−→ x

⟨▽f(y), h⟩.

Then ∥▽f(yn)∥ ≤ L for all n ∈ N (thanks to (3.2)). Since X is an Asplund space,
the unit ball BX∗ of X∗ is sequentially compact with respect to the weak∗ topology
(cf. [5, Proposition 1.123]). Hence there exists a subsequence {ynk

} of {yn} such

that ▽f(ynk
)

w∗
−→ y∗ ∈ LBX∗ . It follows that y∗ ∈ A and

⟨y∗, h⟩ = lim
k→∞

⟨▽f(yk), h⟩ = lim sup

y
GF (f)
−→ x

⟨▽f(y), h⟩.



1568 XI YIN ZHENG

Hence lim sup

y
GF (f)
−→ x

⟨▽f(y), h⟩ ≤ σA(h) = σcow∗
(A)(h), where σA denotes the support

functional of A (i.e., σA(h) = sup
y∗∈A

⟨y∗, h⟩). Thus, by (1.2) and (1.3), one has

(3.3) lim sup

y
GF (f)
−→ x

⟨▽f(y), h⟩ ≤ σcow∗
(A)(h) ≤ σ∂f(x)(h) = f◦(x, h)

(the last equality holds because of [1, Proposition 2.1.2]). On the other hand, take
a sequence {(xn, tn)} in X × (0, +∞) such that [xn, xn + tnh] ⊂ B(x, r),

xn → x, tn → 0 and
f(xn + tnh)− f(xn)

tn
→ f◦(x, h).

Then there exists a sequence {εn} in (0, +∞) converging to 0 such that

Un = {u ∈ X : d(u, [xn, xn + tnh]) < εn} ⊂ B(x, r) ∀n ∈ N.
By Lemma 2.1, there exists un ∈ Un ∩ GF (f) such that

f(xn + tnh)− f(xn) < ⟨▽f(un), tnh⟩+ t2n.

Hence ∥un − x∥ ≤ ∥un − xn∥+ ∥xn − x∥ ≤ εn + tn∥h∥+ ∥xn − x∥ → 0 and

f◦(x, h) = lim
n→∞

f(xn + tnh)− f(xn)

tn
≤ lim sup

n→∞
⟨▽f(un), h⟩

≤ lim sup

y
GF (f)
−→ x

⟨▽f(y), h⟩.

This and (3.3) show that (3.1) holds and f◦(x, h) = σcow∗
(A)(h). Noting that ∂f(x)

is a weak∗-closed convex set and f◦(x, ·) = σ∂f(x), it follows from the separation

theorem that ∂f(x) = cow
∗
(A). The proof is complete. □

The following Jacobian chain rule is known (cf. [1, Theorem 2.6.6]).

Theorem 3.2. Let F : Rm → Rn be Lipschitz near x ∈ Rm and g : Rn → R be
Lipschitz near F (x). Then

∂f(x) ⊂ co
(
∂g(F (x))∂F (x)

)
.

Naturally, one may try to extend Theorem 3.2 by replacing Rm with an infinite
dimensional Asplund space X. However, even in the case that X is an infinite
dimensional Hilbert space, it is not known whether or not a Lipschitz function
G : X → R3 is Fréchet differentiable at some point in X, that is, it is unknown
whether or not GF (F ) is nonempty. This motivates us to consider the case of
piecewise linear vector-valued functions. Recall that P ⊂ X is a convex polyhedron
if there exist (x∗1, r1), · · · , (x∗k, rk) ∈ X∗ × R such that

P = {x ∈ X : ⟨x∗i , x⟩ ≤ ri, i = 1, · · · , k}.
We say that a vector-valued function F : X → Rn is piecewise linear if its graph
gph(F ) := {(x, F (x)) : x ∈ X} is the union of finitely many convex polyhedra in
X ×Rn. The following lemma is known (cf. [11, Proposition 3.1 and Theorem 3.1])
and useful for us.
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Lemma 3.3. Let F be a piecewise linear vector-valued function from a normed
space X to Rn. Then there exist convex polyhedra Pi in X, Ti ∈ L(X,Rn) and
bi ∈ Rn (i ∈ 1m := {1, · · · ,m}) such that

(3.4) X =

m⋃
i=1

Pi, int(Pi) ̸= ∅, int(Pi) ∩ Pj = ∅ ∀i, j ∈ 1m with i ̸= j,

(3.5) F (x) = Ti(x) + bi ∀i ∈ 1m and ∀x ∈ Pi

and

(3.6) T1(x) = · · · = Tm(x) ∀x ∈ lin

(
m⋂
i=1

Pi

)
where L(X,Rn) denotes the space of all continuous linear operators from X to Rn

and lin

(
m⋂
i=1

Pi

)
denotes the largest subspace contained in

m⋂
i=1

Pi.

Theorem 3.4. Let X be a normed space, F : X → Rn be a piecewise linear vector-
valued function and let g : Rn → R be a locally Lipschitz function. Then, for any
x ∈ X,

(3.7) ∂(g ◦ F )(x) ⊂ co
(
∂g(F (x))∂F (x)

)
.

Proof. Since F : X → Rn is piecewise linear, there exist convex polyhedra Pi in X,
Ti ∈ L(X,Rn) and bi ∈ Rn (i = 1, · · · ,m) such that (3.4)–(3.6) hold (thanks to
Lemma 3.3). For each i ∈ 1m, take x∗ij ∈ X∗ and rij ∈ R (j = 1, · · · , νi) such that

Pi = {x ∈ X : ⟨x∗ij , x⟩ ≤ rij , j = 1, · · · , νi}.
It is easy to verify that

XF := lin

(
m⋂
i=1

Pi

)
=

m⋂
i=1

νi⋂
j=1

ker(x∗ij),

where ker(x∗ij) := {x ∈ X : ⟨x∗ij , x⟩ = 0}, and hence XF is a closed subspace of X

whose codimension is less than or equal to
m∑
i=1

νi. Therefore, there exists a subspace

X̂ of X such that

(3.8) dim(X̂) < ∞, X̂ ∩XF = {0} and X = X̂ +XF .

For each i ∈ 1m, let

P̂i :=
{
u ∈ X̂ : ⟨x∗ij , u⟩ ≤ rij , j = 1, · · · , νi

}
.

Then, by (3.4), P̂i is a convex polyhedron in X̂,

Pi = P̂i +XF and X̂ =
m⋃
i=1

P̂i.

Moreover, by (3.5) and (3.6), one has

F (u+ v) = Ti(u) + T0(v) + bi ∀(u, v) ∈ P̂i ×XF , i = 1, · · · ,m
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where T0 is a continuous linear operator from XF to Rn. Let F̂ : X̂ → Rn be such

that F̂ (u) := F (u) for all u ∈ X̂. Then F̂ is a Lipschitz vector-valued function from

X̂ to Rm, and

(3.9) F (u+ v) = (F̂ ⊕ T0)(u+ v) := F̂ (u) + T0(v) ∀(u, v) ∈ X̂ +XF .

Thus, for (u, v) ∈ X̂×XF , it is easy from (3.8) and (3.9) to verify that F is Fréchet

differentiable at u+ v if and only if F̂ is Fréchet differentiable at u with

▽F (u+ v)(u′ + v′) = ▽F̂ (u)(u′) + T0(v
′) ∀(u′, v′) ∈ X̂ ×XF .

This implies that

(3.10) ∂F (u+ v) = ∂F̂ (u)⊕ T̂ :=
{
Ŝ ⊕ T0 : Ŝ ∈ ∂F̂ (u)

}
∀(u, v) ∈ X̂ ×XF .

Take (u0, v0) ∈ X̂ ×XF such that x = u0 + v0. Then, for any (h1, h2) ∈ X̂ ×XF ,

there exists a sequence {(uk, vk, tk)} in X̂ ×XF × (0, +∞) such that

(3.11) (uk, vk, tk) → (u0, v0, 0) and (g ◦ F )◦(x, h1 + h2) = lim
k→∞

∆k,

where

∆k :=
g(F (uk + vk + tk(h1 + h2))− g(F (uk + vk))

tk
.

By (3.9) and Lemma 2.2, there exist yk ∈ [F (uk + vk), F (uk + vk + tk(h1 + h2))]
and y∗k ∈ ∂g(yk) such that

∆k =

〈
y∗k,

F (uk + vk + tk(h1 + h2)− F (uk + vk)

tk

〉
=

〈
y∗k,

F̂ (uk + tkh1))− F (uk)

tk

〉
+ ⟨y∗k, T0(h2)⟩.(3.12)

Noting that F is locally Lipschitz, it follows from (3.11) that yk → F (u0 + v0) =
F (x). Since g is also locally Lipschitz, we can assume without loss of generality
that

(3.13) y∗k → y∗ ∈ ∂g(F (x))

(thanks to [1, Proposition 2.1.5]). On the other hand, by Lemma 2.3, one has

F̂ (uk + tkh1))− F (uk)

tk
∈ co

(
∂F̂ ([uk, uk + tkh1])

)
(h1),

and hence there exists Ŝk ∈ ∂F̂ ([uk, uk + tkh1]) such that〈
y∗k,

F̂ (uk + tkh1))− F (uk)

tk

〉
≤ ⟨y∗k, Ŝk(h1)⟩.

Therefore, by (3.12), one has

(3.14) ∆k ≤ ⟨y∗k, Ŝk(h1) + T0(h2)⟩ = ⟨y∗k, (Ŝk ⊕ T0)(h1 + h2)⟩.

By the definition of ∂F̂ , for any k ∈ N there exist ûk ∈ X̂ such that

d (ûk, [uk, uk + tkh1]) <
1

k
and

∥∥∥▽F̂ (ûk)− Ŝk

∥∥∥ <
1

k
.
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It follows from (3.11) that lim
k→∞

ûk = u0. Since F̂ is a locally Lipschitz function

between finite dimensional spaces X̂ and Rn, we can assume without loss of gen-

erality that ▽F̂ (ûk) → Ŝ ∈ ∂F̂ (u0) (taking a subsequence if necessary). Thus, by
(3.10)—(3.14), one has

y∗ ◦ (Ŝ ⊕ T0) ∈ ∂g(F (x))∂F (x) and (g ◦ F )◦(x, h1 + h2) ≤ ⟨y∗, (Ŝ ⊕ T0)(h1 + h2)⟩.
Noting that the Clarke directional derivative (g ◦ F )◦(x, h1 + h2) is equal to the
value of the support functional σ∂(g◦F )(x) at h1 + h2, it follows that

σ∂(g◦F )(x)(h1 + h2) ≤ σ∂g(F (x))∂F (x)(h1 + h2).

This means that ∂(g ◦ F )(x) ⊂ cow
∗(
∂g(F (x))∂F (x)

)
. Thus, to prove (3.7), we

only need to show that co
(
∂g(F (x))∂F (x)

)
is compact. Noting that F̂ : X̂ → Rn

is a locally Lipschitz function, it is easy to verify that ∂F̂ (u0) is a bounded closed

set in L(X̂,Rn). Since dim
(
L(X̂,Rn)

)
= dim(X̂) × n < ∞, ∂F̂ (u0) is a compact

set in L(X̂,Rn). Since ∂f(F (x)) is a compact set in Rn, this and (3.10) show that
∂g(F (x))∂F (x) is a bounded closed set in a finite dimensional subspace of X∗. It
follows that co

(
∂g(F (x))∂F (x)

)
is compact (cf. [9, Theorem 3.20]). The proof is

complete. □
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