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∥PCi(x)− PCi(y)∥ ≤ ∥x− y∥, x, y ∈ X

and

∥z − x∥2 ≥ ∥z − Pi(x)∥2 + ∥x− Pi(x)∥2

for each x ∈ X and each z ∈ Ci. In practice for solving convex feasibility problem
the following iterative method is used.

Fix an integer N̄ ≥ m and denote byR the collection of all maps r : {1, 2, . . . , } →
{1, . . . ,m} such that for every positive integer s,

{1, . . . ,m} ⊂ {r(s), . . . , r(s+ N̄ − 1)}.

We associate with any map r ∈ R the following iterative algorithm:
Initialization: choose any starting point x0 of the space X.
Iterative step: given a current iterate xk ∈ X calculate

xk+1 = Pr(k+1)(xk).

It is known that iterates obtained by this method converge weakly to a solution
of our feasibility problem. The same result is also guaranteed by the well-known
Cimmino algorithm described below:

Initialization: choose any starting point x0 of the space X.
Iterative step: given a current iterate xk ∈ X calculate

xk+1 =

m∑
i=1

m−1Pi(xk).

In [8] Y. Censor, T. Elfving, and G. T. Herman introduced dynamic string-
averaging methods, which are in some sense a combination of the iterative algorithm
and the Cimmino algorithm. In these dynamic string-averaging methods, which
became very popular in the literature, a family of sets is divided into blocks and the
algorithms operate in such a manner that all the blocks are processed in parallel.

In [30] we studied a feasibility problem with a collection of sets which is not
necessarily finite. Clearly, the algorithms described above cannot be applied if the
collection of sets is infinite. The main feature of these algorithms is that for iterative
steps we need to calculate the values of all the operators belonging to our family of
maps and even their sums with weighted coefficients. Of course, this is impossible
if the family of maps is not finite. In [30] we introduced a new algorithm for solving
feasibility problems with infinite families of sets and studied its convergence. It
turns out that our results hold for feasibility problems in a general metric space.

In this paper we use the following notation.
For each z ∈ R1 set

⌊z⌋ = sup{i : i is an integer and i ≤ z}.

Let (X, ρ) be a metric space endowed with a metric ρ. For every element x ∈ X
and every positive number r put

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

For every element x ∈ X and every nonempty set D ⊂ X define

ρ(x,D) = inf{ρ(x, y) : y ∈ D}.
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Fix θ ∈ X. Denote by Card(E) the cardinality of a set E. We assume that the sum
over an empty set is zero.

The following feasibility problem was considered in [30]. Assume that A is a
nonempty set, for each α ∈ A, Cα ⊂ X is a nonempty, closed set and that there
exists Pα : X → Cα such that

Pα(x) = x, x ∈ Cα.

We also assume that there exists c̄ ∈ (0, 1) such that for each α ∈ A, each z ∈ Cα

and each x ∈ X,
ρ(z, x)2 ≥ ρ(z, Pα(x))

2 + c̄ρ(x, Pα(x))
2

and that there exists
ẑ ∈ ∩α∈ACα.

In [30] we consider the problem

Find z ∈ ∩α∈ACα

and use the following algorithm.
Let a sequence {∆i}∞i=1 ⊂ (0,∞) satisfy

lim
i→∞

∆i = 0.

Initialization: choose any element x0 ∈ X.
Iterative step: given a current iterate xk calculate αk ∈ A such that

ρ(xk, Pαk
(xk)) ≥ sup{ρ(xk, Pα(xk)) : α ∈ A} −∆k+1

and calculate
xk+1 = Pαk

(xk).

It was shown in [30] that for each sequences {xt}∞t=0 ⊂ X generated by the
algorithm we have

lim
t→∞

ρ(xt, xt+1) = 0

and
lim
t→∞

sup{ρ(xt, Pα(xt)) : α ∈ A} = 0.

In [31] we studied our algorithm introduced in [30] for common fixed problems
taking into account computational errors which always present in practice. In this
case the convergence to a solution does not take place. We showed that our algo-
rithms generate a good approximate solution, if computational errors are bounded
from above by a small positive constant. Clearly, in practice it is sufficient to find
a good approximate solution instead of constructing a sequence which converges to
a solution. On the other hand in practice computations induce numerical errors
and if one uses methods in order to solve problems these methods usually provide
only approximate solutions. Our main goal is, for a known computational error, to
find out what an approximate solution can be obtained and how many iterates one
needs for this.

Assume that (X, ρ) is a metric space. For each S : X → X set

Fix(S) = {z ∈ X : S(z) = z}.
Fix

θ ∈ X.
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Assume that A is a nonempty set and that for each α ∈ A, Pα : X → X satisfies

Fix(Pα) ̸= ∅.
Assume that c̄ ∈ (0, 1) and the following assumption holds:

for each α ∈ A, each z ∈ Fix(Pα) and each x ∈ X,

ρ(z, x)2 ≥ ρ(z, Pα(x))
2 + c̄ρ(x, Pα(x))

2.

Assume that z∗ ∈ X, δC ∈ (0, 1] and that for each α ∈ A,

B(z∗, δC) ∩ Fix(Pα) ̸= ∅.
The next theorem is the main result of [31].

Theorem 1.1. Let
M > max{1, ρ(θ, z∗)},

δ0, δ1,∈ (0, 1),

ϵ0 = max{(8(4M + 8)(δ0 + δC)c̄
−1)1/2, δ1}

and
n0 = ⌊32M2c̄−1ϵ−2

0 ⌋+ 1.

Assume that {xt}∞t=0 ⊂ X, {αt}∞t=0 ⊂ A,

ρ(x0, θ) ≤ M

and that for each integer t ≥ 0,

δ1 + ρ(xt, Pαt(xt)) ≥ ρ(xt, Pα(xt)), α ∈ A,

ρ(xt+1, Pαt(xt)) ≤ δ0.

Then there exists an integer q ∈ [0, n0 − 1] such that

ρ(xi, θ) ≤ 3M, i ∈ {0, . . . , q}
and

ρ(xq, xq+1) ≤ ϵ0.

Moreover, if an integer q ∈ [0, n0 − 1] and the inequality above holds, then

ρ(xq, Pα(xq)) ≤ 3ϵ0 for each α ∈ A.

In order to study the problem discussed above we can use another framework.
For each x ∈ X, define

T (x) = {Pα(x) : α ∈ A}, x ∈ X.

Now we can study the behavior of the iterative process induced by the map T .
Assume that M ≥ ρ(θ, z∗). For each α ∈ A there is

zα ∈ Fix(Pα)

such that
ρ(z∗, zα) ≤ δC .

Let α ∈ A. Clearly,
ρ(θ, zα) ≤ M + 1.

Assume that
x ∈ B(θ,M).
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We have

ρ(zα, x)
2 ≥ ρ(zα, Pα(x))

2 + c̄ρ(x, Pα(x))
2

and

ρ(zα, Pα(x)) ≤ ρ(zα, x).

By the equations above,

|ρ(zα, x)2 − ρ(z∗, x)|2 ≤ ρ(z∗, zα)(ρ(zα, x) + ρ(z∗, x))

≤ δC(4M + 1), |ρ(zα, Pα(x))
2 − ρ(z∗, Pα(x))|2

≤ ρ(z∗, zα)(ρ(zα, Pα(x)) + ρ(z∗, Pα(x)))

≤ δC(4M + 3)

and

ρ(z∗, x)
2 ≥ ρ(zα, x)

2 − δC(4M + 1) ≥ c̄ρ(x, Pα(x))
2 + ρ(zα, Pα(x))

2 − δC(4M + 1)

≥ c̄ρ(x, Pα(x))
2 + ρ(z∗, Pα(x))

2 − δC(8M + 4).

Thus

ρ(z∗, x)
2 ≥ c̄ρ(x, Pα(x))

2 + ρ(z∗, Pα(x))
2 − δC(8M + 4)

x ∈ B(θ,M).
In this paper we consider a set-mapping T satisfying the equation above and

obtained a generalization of Theorem 1.1.

2. The main result

Let (X, ρ) be a metric space. We use the notation and definitions introduced in
Section 1. Assume that

T : X → 2\{∅},
z∗ ∈ X, M > 1, δM ∈ (0, 1], c̄ ∈ (0, 1) and

(2.1) ρ(z∗, θ) < M.

and that for each x ∈ B(θ, 3M + 2) and each y ∈ T (x),

(2.2) ρ(z∗, x)
2 ≥ ρ(z∗, y)

2 + c̄ρ(x, y)2 − δM .

We prove the following result.

Theorem 2.1. Let

δ0, δ1,∈ (0, 1),

(2.3) ϵ0 = max{2δ0, (8δM c̄−1)1/2, (16c̄−1δ0(4M + 5))1/2, δ1}
and

(2.4) n0 = 1 + ⌊16(2M + 2)2c̄−1ϵ−2
0 ⌋+ 1.

Assume that {xt}∞t=0 ⊂ X,

(2.5) ρ(x0, θ) ≤ M

and that for each integer t ≥ 0,

(2.6) B(xt+1, δ0) ∩ {y ∈ T (xt) : ρ(xt, y) + δ1 ≥ ρ(xt, ξ), ξ ∈ T (xt)} ̸= ∅.
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Then there exists an integer q ∈ [1, n0] such that

ρ(xt, θ) ≤ 3M + 2, t ∈ {0, . . . , q}
and

ρ(xq, xq+1) ≤ ϵ0.

Moreover, if an integer q ≥ 0 and the inequality above holds, then

T (xq) ⊂ B(xq, 3ϵ0).

Proof. By (2.5), for each integer t ≥ 0 there exists

(2.7) yt ∈ T (xt) ∩B(xt+1, δ0)

such that

(2.8) ρ(xt, yt) + δ1 ≥ ρ(xt, ξ), ξ ∈ T (xt).

In view of (2.7),

(2.9) y0 ∈ T (x0).

By (2.2), (2.5) and (2.9),

(2.10) ρ(z∗, x0) ≥ ρ(z∗, y0)
2 + c̄ρ(x0, y0)

2 − δM .

Equations (2.1), (2.5) and (2.10) imply that

(2.11) ρ(z∗, y0) ≤ ρ(z∗, x0) + 1 ≤ 2M + 1.

It follows from (2.1), (2.7) and (2.11) that

(2.12) ρ(z∗, x1) ≤ 2M + 2, ρ(θ, x1) ≤ 3M + 3.

Assume that s is a natural number and that for each integer k ∈ [1, s],

(2.13) ρ(xk, xk+1) > ϵ0.

Assume that
k ∈ {1, . . . , s}

and

(2.14) ρ(xk, z∗) ≤ 2M + 2.

(In view of (2.12), our assumption holds for k = 1.) By (2.3), (2.7) and (2.14),

(2.15)
ρ(xk, yk) ≥ ρ(xk, xk+1)− ρ(xk+1, yk)

> ϵ0 − δ0 ≥ ϵ0/2.

Equations (2.1) and (2.14) imply that

(2.16) ρ(xk, θ) ≤ ρ(xk, z∗) + ρ(z∗, θ) ≤ 3M + 2.

It follows from (2.2), (2.3), (2.7), (2.15) and (2.16) that

(2.17)

ρ(z∗, xk)
2 ≥ ρ(z∗, yk)

2 + c̄ρ(xk, yk)
2 − δM

≥ ρ(z∗, yk)
2 + c̄ϵ0/

24− δM

≥ ρ(z∗, yk)
2 + c̄ϵ0/

28.

In view of (2.14) and (2.17),

(2.18) ρ(z∗, yk) ≤ ρ(z∗, xk) ≤ 2M + 2.
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By (2.17) and (2.18),

(2.19) ρ(z∗, xk+1) ≤ ρ(z∗, yk) + ρ(yk, xk+1) ≤ 2M + 3.

By (2.7), (2.18) and (2.19),

(2.20)

|ρ(z∗, yk)2 − ρ(z∗, xk+1)
2|

≤ |ρ(z∗, yk)− ρ(z∗, xk+1)|(ρ(z∗, yk) + ρ(z∗, xk+1))

≤ ρ(xk+1, yk)(4M + 5)

≤ δ0(4M + 5).

Equations (2.3), (2.17) and (2.20),

ρ(z∗, xk+1)
2 ≤ ρ(z∗, yk)

2 + δ0(4M + 5) ≤ ρ(z∗, xk)
2 − c̄ϵ20/8 + δ0(4M + 5)

≤ ρ(z∗, xk)
2 − c̄ϵ20/16.

In view of (2.21),

ρ(z∗, xk+1) ≤ ρ(z∗, xk).

Thus by induction we showed that for each k ∈ {1, . . . , s+ 1},

ρ(z∗, xk) ≤ 2M + 2, ρ(θ, xk) ≤ 3M + 2

and that for each k ∈ {1, . . . .s}.

(2.21) ρ(z∗, xk+1)
2 ≤ ρ(z∗, xk)

2 − c̄ϵ20/16.

It follows from (2.4), (2.12) and (2.21) that

(2M + 2)2 ≥ ρ(z∗, x1)
2 ≥ ρ(z∗, x1)

2 − ρ(z∗, xs+1)
2

=

s∑
k=1

(ρ(z∗, xk)
2 − ρ(z∗, xk+1)

2)

≥ 16−1c̄ϵ20s

and

s ≤ 16(2M + 2)2c̄−1ϵ−2
0 ≤ n0 − 1.

This implies that there exists an integer q ∈ {1, . . . , n0} such that

(2.22) ρ(xq, xq+1) ≤ ϵ0

and

ρ(θ, xk) ≤ 3M + 2, k ∈ {0, . . . .q}.
Assume that q ∈ {0, 1, . . . , } and that (2.22) holds. It follows from (2.7) and

(2.22) that

ρ(yq, xq) ≤ ϵ0 + δ0

and that for each ξ ∈ T (xq),

ρ(xq, ξ) ≤ ρ(xq, yq) + δ1 ≤ ϵ0 + δ0 + δ1 ≤ 3ϵ0.

Theorem 2.1 is proved. □
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3. An extension

We use all the notation introduced in Sections 1 and 2 and assume that all the
assumptions made in Section 2 holds.

Theorem 3.1. Let

(3.1) M > M̄ > max{1, ρ(θ, z∗)}, r0 ∈ (0, 1], δ0, δ1 ∈ (0, 1),

(3.2) {z ∈ X : ρ(z, ξ) ≤ r0, ξ ∈ T (z)} ⊂ B(θ, M̄),

(3.3) ϵ0 := max{2δ0, (8δM c̄−1)1/2, (16c̄−1δ0(4M + 5))1/2, δ1} ≤ r0/3

and

(3.4) n0 = ⌊16(2M + 2)2c−1ϵ−2
0 ⌋+ 1.

Assume that {xt}∞t=0 ⊂ X,

(3.5) ρ(x0, θ) ≤ M

and that for each integer t ≥ 0,

(3.6) B(xt+1, δ0) ∩ {y ∈ T (xt) : ρ(xt, y) + δ1 ≥ ρ(xt, ξ), ξ ∈ T (xt)} ̸= ∅.
Then for each integer t ≥ 0,

(3.7) ρ(xt, θ) ≤ 3M + 2

and there exists a strictly increasing sequence of natural numbers {qp}∞p=1 such that

(3.8) 1 ≤ qp ≤ n0

and that for each integer p ≥ 1,

(3.9) 1 ≤ qp+1 − qp ≤ n0,

(3.10) ρ(xqp , xqp+1) ≤ ϵ0

and

(3.11) ρ(xqp , ξ) ≤ 3ϵ0, ξ ∈ T (xq).

Proof. By Theorem 2.1, there exists an integer

q1 ∈ [1, n0]

such that
ρ(xq1 , xq1+1) ≤ ϵ0, T (xq1) ⊂ B(xq1 , 3ϵ0)

and
ρ(xt, θ) ≤ 3M + 2, t ∈ {0, . . . , q1}.

Together with (3.2) this implies that

ρ(xq1 , θ) ≤ M̄ ≤ M.

Assume that k ≥ 1 is an integer and we defined natural numbers qp, p = 1, . . . , k
such that (3.8) holds, for each integer p ∈ {1, . . . , k} \ {k}, (3.9) holds and (3.10)
and (3.11) hold for p = 1, . . . , k and

ρ(xi, θ) ≤ 3M + 2, i = 0, . . . , qk.
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(Clearly our assumption holds for k = 1.) It follows from (3.2) and (3.11) that

ρ(xqk , θ) ≤ M̄ ≤ M.

By Theorem 2.1 applied to {xi}∞i=qk
there exits an integer

qk+1 ∈ [1 + qk, n0 + qk]

such that

ρ(xi, θ) ≤ 3M + 2, i ∈ {qk, . . . , qk+1},
ρ(xqk+1

, xqk+1+1) ≤ ϵ0

and

T (xqk+1
) ⊂ B(xqk+1

, 3ϵ0).

Thus by induction Theorem 3.1 is proved. □
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