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representable by a utility function u when

(1.2)
x � y ⇐⇒ u(x) ≤ u(y),
x ≺ y ⇐⇒ u(x) < u(y),
x ∼ y ⇐⇒ u(x) = u(y),

where the second and third equivalences follow from the first.
The theory of preference relations was put together by economists with some use

of convex analysis but not its extensions into modern variational analysis, as in [15].
Here we draw on such mathematical advances to see what more can be gleaned from
commonly employed axioms, specifically the following:

(A1) for all x, y ∈ G, either x � y or x � y (or both).

(A2) if x � y and y � z, then x � z.

(A3) the set
{
(x, y) ∈ G×G

∣∣x � y
}
is closed in IRg

+ × IRg
+.

(A4) if x ∈ G and y ≥ x, y 6= x, then y ∈ G and y � x.

(A5) for every x ∈ G, the set P (x) =
{
y ∈ G

∣∣ y � x
}
is convex.

(A6) for x ∈ intG, P (x) has only one supporting hyperplane at x.

The microeconomics textbook of Mas-Colell, Whinston and Green [14] provides
valuable resources for this subject. Already from (A1) and (A2), it is known for
instance that the preference relation can indeed be represented by a utility function
u, which (A3) makes continuous. Under (A4), u(x) must increase with any increase
in any goods component of x. Economists often get by with weaker versions of
monotonicity, in which u(x) just never decreases when goods components increase,
and never reaches a maximum, but (A4) will lead us down a more interesting path.
The convexity axiom (A5) makes u be quasi-concave in having upper level sets
that are convex, while the hyperplane axiom (A6) makes it be quasi-smooth by
eliminating kinks on the surfaces of those sets.

Because x ∼ y corresponds to u(x) = u(y), it’s clear that “∼” is an equivalence
relation for which the equivalence classes are the level sets u = constant in G.
These are identifiable through (A4) as the boundaries of the convex sets P (x) in
(A5), inasmuch as

(1.3) P (x) = P (x′) when x ∼ x′

in consequence of (A2). Any other utility function u′ for the same preferences has
to have these same level sets and therefore can differ from u only by a rescaling
function, namely

(1.4) u∗(x) = θ(u(x)) for some θ that is continuous and increasing.

A question then is whether rescaling, along with plausible supplements to the as-
sumptions (A1)–(A6) on the preference relation that economists could generally be
comfortable with, might enable representation by a utility function having superior
properties than those already prescribed. This is the core motivation behind our
investigations here.

An example is whether a preference relation can be represented by a utility func-
tion that is concave, instead of just quasi-concave. Concavity would be far more
advantageous for numerical work in optimization as well as in equilibrium models
of variational inequality type, as developed in [9–12]. For econometric purposes
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in which an agent’s preferences are probed through discrete experiments, modeling
with concave utility does always suffice, as demonstrated by Brown and Shannon [3]
(2008). Studies of when concavity can be counted on in theory have been under-
taken in the past by de Finetti [7] (1949), Fenchel [8] (1956), Aumann [1] (1975),2

Debreu [5] (1976), and most definitively Kannai [13] (1977).3 However, loose ends
have remained in identifying elementary features of a preference relation that ensure
at least regional representation by a “natural” utility function that is unique up to
the choice of units of measurement.

Another example is whether a preference relation can be represented by a utility
function that is moreover differentiable. Continuous differentiability of first-order
or second-order is often assumed for convenience, but can that meaningfully be tied
to added conditions akin to (A1)–(A6)? Efforts so far have centered on methods of
differential geometry that instead require complicated partial differential equations
to be satisfied; see for instance Debreu [6] and the history reviewed there. This
relates back to the concavity question, because that can benefit from already having
C2 utility at hand.

On a more fundamental level there is the question of whether a preference relation
can induce marginal preference relations that apply infinitesimally to goods vector
comparisons.

It will be established here, perhaps surprisingly, that marginal preferences (exist-
ing in a precise sense) are guaranteed by (A1)–(A6) even when there is no everywhere
differentiable utility representation. On the other hand, simple necessary and suf-
ficient conditions on the preference relation, not invoking equations of differential
geometry, will be presented that characterize when a C1 or a C2 utility representa-
tion does surely exist. In the C2 case under the assumption that the preference sets
P (x) are strongly convex (a bit beyond strictly convex in also having reliably curved
boundaries),4 it will be shown that a concave utility representation is available over
any compact subset of IRg

++. Moreover it can be taken to be minimally concave,
which makes it be unique up to affine rescaling, i.e., up to just a change of units of
measurement, like switching in temperature between Celcius and Fahrenheit.

The concept of a minimally concave utility representation started with de Finetti
[7] and was later taken up by Debreu [5] and finally Kannai [13]. It has several equiv-
alent descriptions, one of them being a concave utility representation from which
all other concave utility representations can be derived by rescaling as in (1.4) with
a function θ that is concave.5 Previous work established the existence of a mini-
mally concave utility representation in various complicated circumstances, difficult

2The author is indebted to a referee for bringing this paper to his attention. On the surface it
concerns game theory with a continuum of players, but significant contributions to our topic here
are buried inside.

3More recently, Connell and Rasmusen [4] (2017) have made extensions to domains like Rie-
mannian manifolds.

4Strict convexity was unfortunately termed strong convexity by Debreu in [6], but the distinction
in convex analysis has long been maintained.

5Uniqueness up to affine rescaling follows from this description, because if u1 and u2 are both
minimally concave, there are concave functions θ1 and θ2 such that u2 = θ1 ◦ u1 and u1 = θ2 ◦ u2.
But then θ1 and θ2 are inverse to each other, hence affine, inasmuch as the inverse of an increasing
concave function is an increasing convex function.
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to confirm in practice. That previous work furthermore got minimally concave C2

utility only by making an ad hoc assumption that a C2 utility representation was
available. There is less import then to the existence than for our result, where such
a representation is developed from elementary axioms on the preference relation.

Aumann in [1] implicitly obtained a result similar to ours on the existence of
a concave utility representation, but lacking the claim of minimal concavity with
its accompanying property of uniqueness.6 Where we bring in strong convexity, he
appealed to bounds on Gaussian curvature of hypersurfaces. His only goods space
G is all of IRg

+, and he started by assuming the existence of a utility function that
is not only C2 on IRg

+ but can be extended to be C2 on a neighborhood of IRg
+.

That excludes the very common case in economics where G is taken to be just IRg
++

and, due to (A3), there is no utility representation that extends differentiably, or
perhaps even finitely, to the boundary points of IRg

+.

More will be explained now about the approach we take in this paper. As-
sumptions on the geometry of the convex sets P (x) escape existential controversy,
since that geometry is intrinsic to the preferences and not some artificial mathe-
matical add-on. The quasi-smoothness condition in (A6) belongs to that category.
Economists are content even with stronger versions in which the supporting hyper-
plane at x depends differentiably on x. But there is another aspect of preferences
that relates deeply to “smoothness” as well. Due to (A4), the positive multiples rx
of any goods vector x ∈ IRg

++ have rx � r′x if and only if r ≤ r′, and as r increases,
eventually rx � z for any given z ∈ G. The same holds for the positive multiples
sy of any y ∈ IRg

++, so there is a one-to-one correspondence between values r and s
described by a set Θx,y which is the graph of an increasing function θx,y from (0,∞)
onto (0,∞) that by (A3) is continuous:

(1.5) gph θx,y = Θx,y :=
{
(r, s) ∈ IR2

++

∣∣ rx ∼ sy
}
.

By taking possible differentiability properties of the functions θx,y into account,
we will be able to pin down exactly the conditions on preferences that support
representation by smooth utility functions.

Besides the basic scaling comparisons in (1.5), which are new in being made a
centerpiece of theory, there are comparisons to look at between r and s scales along
line segments

{
x + rξ

∣∣ − ε < r < ε
}
and

{
y + sη

∣∣ − δ < s < δ
}
through points

x ∼ y. Their role in providing useful information about utility can already be seen
in the paper of Kannai [13] and before.

In still more fundamental territory for variational analysis of preferences, unex-
plored until now, properties akin to differentiability will be investigated in terms of
graphical derivatives and coderivatives7 of the convex-set-valued mapping

(1.6) P : x ∈ G 7→ P (x) ⊂ G.

6The result is “implicit” because it’s embedded in more complicated assertions about infinite
collections of preference relations that need to satisfy a number of conditions uniformly in a sense.
It is submerged as Lemma 15.1 in the very lengthy proof of something grander in [1].

7Developed in [15, Chapter 8].
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Such generalized derivatives correspond to tangent cones and normal cones to the
graph of P ,

(1.7) R =
{
(x, y) ∈ G×G

∣∣x � y
}
= gphP,

which is a closed subset of IRg
+ × IRg

+ by (A3). As seen for instance from a utility
representation of the preferences in which, under our axioms, (1.2) holds with u
continuous and increasing with any increase in any of its arguments,

(1.8) R = cl[intR], where intR =
{
(x, y) ∈ IRg

++ × IRg
++

∣∣x ≺ y
}
,

and furthermore

(1.9) [IRg
++ × IRg

++] ∩ bdryR =
{
(x, y) ∈ IRg

++ × IRg
++

∣∣x ∼ y
}
.

Thus, within IRg
++ × IRg

++, the boundary of R is geometrically a hypersurface
separating the open sets where x ≺ y or x � y, which are geometric reflections
of each other under (x, y) ←→ (y, x). The properties of that hypersurface have
obvious significance for understanding the information carried by the preference
relation. What if the boundary in (1.9) is smooth in the first degree, or in the
second degree? If the preferences originate in the mind of a consumer instead of,
say, the robotic management of a production process, wouldn’t such smoothness be
a natural expectation?8

The key to understanding the boundary of R and its possible smoothness is taking
a close look at the pairs (x, y) in (1.9) and the sets

(1.10)
Rτ

x,y =
{
(ξ, η) ∈ IRg × IRg

∣∣ x+ τξ � y + τη
}

= 1
τ

[
R− (x, y)

]
for τ > 0.

These sets focus on the local aspects of preferences around x in relation to those
around y, starting from having x ∼ y, and the question is what happens to them
as τ ↘0. By definition, the general tangent cone to R at (x, y) is the outer limit in
the sense of set convergence,9

(1.11) TR(x, y) = lim sup
τ ↘ 0

Rτ
x,y,

whereas the regular tangent cone is the inner limit in which also (x, y) is approached
by pairs (x′, y′),

(1.12) T̂R(x, y) = lim inf
(x′,y′)→(x,y)

τ ↘ 0

Rτ
x′,y′ .

Both cones are alway closed, and the regular one is always convex.10 The equality
of the two is called Clarke regularity ; it entails (1.11) holding as the limit as τ ↘0,
not just the outer limit, which itself is called derivability . To what extent might R
be Clarke regular or at least derivable at (x, y), and what would that say about the
preferences?

8In the literature on preferences, little can be seen about this beyond an investigation by Debreu
within [6]. His conclusions there seem erroneous, however; see the comment after the proof of
Theorem 4.4 below.

9For background on Kuratowski-Pompeiu set convergences, see [15, Chapter 4].
10Variational geometry of tangent and normal cones is laid out in [15, Chapter 6].
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Derivability at (x, x) is especially attractive, because Rτ
x,x satisfies the axioms

(A1)–(A6) for a preference relation �τ
x among vectors ξ and η in the set Gτ

x,x =
1
τ [G− x], given by

(1.13) ξ �τ
x η ⇐⇒ x+ τξ � x+ τη.

It’s easy to see moreover that (A1)–(A5), at least, are sure to be preserved if Rτ
x,x

approaches a limit as τ ↘0, during which Gτ
x,x grows to include all of IRg × IRg.

Thus, TR(x, x) is in that case the graph of another preference relation.

Definition 1.1 (marginal preferences). The given preference relation will be said
to exhibit marginal preferences at a point x ∈ G if the tangent cone TR(x, x) to R
at (x, x) is derivable, so that TR(x, x) is itself the graph of a preference relation in
IRg × IRg:

(1.14) ξ �x η ⇐⇒ (ξ, η) ∈ TR(x, x).

In Section 2 it will be demonstrated that marginal preferences are exhibited at
all points x ∈ IRg

++ and are linear in nature, being tied to the hyperplanes in (A6).
These marginal preferences are moreover consistent, in that they vary continuously
from one point to another.

The meaning of this can easily be visualized by taking the view that, within IRg
++,

the preference relation corresponds to a “continuous nest” of upward-opening convex
sets with kinkfree boundaries. Focus on a point x there and imagine what might
happen in zooming in on it and seeing those sets locally in finer and finer detail.
The result establishes that, in the limit, what will emerge is again a “continuous
nest,” but it will be of half-spaces whose hyperplane boundaries are parallel to the
hyperplane supporting P (x) at x in (A6).

Also in Section 2, first-order smoothness of the given preference relation will
be defined in terms of an assumption on the scaling functions θx,y in (1.5) and
shown to characterize when that relation is representable by utility functions that
are continuously differentiable on IRg

++. That will then allow us to tie marginal
preferences to marginal utility as expressed through partial derivatives of a utility
function. But in fact, the marginal preferences only depend on ratios among those
partial derivatives, and those ratios emerge from the preference geometry itself.

For (x, y) in (1.9) with x 6= y, with relation graphed by Rτ
x,y no longer exhibits the

transitivity in (A2). Nonetheless, it conveys significant information about scaling
and trade-offs, and the property of derivability remains of interest.

Definition 1.2 (marginal co-preferences). The given preference relation will be
said to exhibit marginal co-preferences at a pair of points x ∈ G, y ∈ G, with x ∼ y,
x 6= y, if the tangent cone TR(x, y) to R at (x, y) is derivable. The notation then
will be

(1.15) ξ �x,y η ⇐⇒ (ξ, η) ∈ TR(x, y)

and naturally extended to the variants

(1.16)
ξ ∼x,y η when both ξ �x,y η and η �y,x ξ,
ξ ≺x,y η when ξ �x,y η but not η �y,x ξ,

although the transivity of an actual preference relation is lacking.
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The co-preference relation ξ ≺x,y η, for instance, has the interpretation that, in
an “infinitesimal sense,” in starting from goods vectors x and y that are deemed
equivalent and shifting x to x + τξ while shifting y to y + τη, the second will be
preferable to the first.

Unlike marginal preferences, marginal co-preferences are not automatically avail-
able on the basis of just (A1)-A6). In Section 3, we identify the troublespot and
show that it disappears for preference relations that meet our prescription for first-
order smoothness. The connection between co-preferences and normal cones to the
boundary of R is developed next. The main result is that first-order smoothness
of the preference relation is equivalent to first-order smoothness of the boundary of
R plus the absence of a kind of “singularity.” Such singularity corresponds to the
preference mapping P failing at some point x to enjoy a fundamental set-valued
version of localized Lipschitz continuity.

Section 4 extends the results on first-order smoothness of preferences to results
on second-order smoothness. With C2 utility then available as a springboard, the
existence of a minimally concave utility representation is brought out in Theorem
4.7 for preferences that are strongly convex, a natural sharpening of the condition
of strict convexity already well appreciated in economics. Although the existence
is obtained in that simple context only over an arbitrarily large compact subset
of IRg

++, an extra condition is given after the proof of Theorem 4.7 under which
the existence would extend to IRg

++ itself. The shortcoming there is that the extra
condition, like that of Kannai for C2 case in [13], postulates the finiteness of various
maxima taken over unbounded sets and therefore has a global character which
escapes easy verification.

2. Marginal preferences and basic utility

The utility rescaling in (1.4), while potentially a route to improvement, could also
take a nice function u and make it worse. Poor properties of the rescaling function
θ, such as kinkiness, could lead to utility properties that are arbitrary and have no
source in the preferences themselves.

To provide a platform for coming developments, it will help to single out first a
mode of utility representation that avoids such pitfalls. We do this as follows by
fixing any positive goods vector as a yardstick to compare with other goods vectors.
This isn’t a new idea, but our systematic use of it will break new ground.

Theorem 2.1 (basic utility functions). For any vector e>> 0 and any x ∈ G, there
is a unique value t ≥ 0 such that te ∼ x. Let that value be denoted by ue(x). Then
ue is a utility function for the given preferences having the special property that

(2.1) ue(te) = t for all t > 0

and the descriptions

(2.2) ue(x) = min
{
t
∣∣ te � x

}
, and for x ∈ IRg

++ also ue(x) = max
{
t
∣∣ te � x

}
.

The utility function ue′ for an alternative vector e′>> 0 relates to ue by

(2.3) ue′(x) = θe,e′
(
ue(x)

)
, with θe,e′ as defined in (1.5).
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More broadly, any utility function u representing the given preferences has u(te)
continually increasing in t and therefore relates to ue through

(2.4) u(x) = θ(ue(x)) and ue(x) = θ−1(u(x)), where θ(t) = u(te).

In particular, u = ue if and only if u(te) = t for all t > 0.

Proof. The preferences in G induce preferences on the set
{
te
∣∣ t > 0

}
that, under

(A1), (A2), (A3) and (A4), must correspond to the real-number ordering of the
values t. It’s not possible to have te ∼ t′e with t′ 6= t or, through (A2), to have
te ∼ x for more than one value of t. For any x ∈ G there exists high enough t
such that te ≥ x, and then te � x by (A4). Accordingly there must be, by (A3),
a lowest t with te � x, in which case te ∼ x. In taking that t as ue(x) we meet
the prescription for the function ue and confirm that it satisfies the minimization
formula in (2.2).

When x ∈ IRg
++, there exists t such that te ≤ x and therefore te � x by (A4).

Then likewise there must be a highest t with te � x, and for that t necessarily
te ∼ x by (A2). That verifies the maximization formula in (2.2).

For e′ in comparison to e, ue′(te) gives the t′ such that t′e′ ∼ te, and that by
definition in (1.5) is the value θe,e′(t). Since t = ue(x) means te ∼ x, while t′ = ue′(x)
means t′e′ ∼ x, the conversion in (2.3) is correct.

The assertions in the theorem about other utility functions u follow simply from
the general fact that all utility representions are derivable from each other by rescal-
ing in the manner of (1.4). □

The case of ue with e = (1, 1, . . . , 1), at least, has long been familiar in microe-
conomics. It has been put to use, for instance, in demonstrating the existence of
a continuous utility representation by way of arguments like those in the proof of
Theorem 2.1, as in the textbook [14, pp. 47-47]. What’s different here will be our
emphasis on general e and the spectrum of relationships in (2.3) and (2.4).

We will call ue the basic utility function associated with e. Its properties reflect,
and fully embody, those of the given preference mapping P and its graph R. Nothing
is added or lost in working with ue, although that could not be said of passing to
a representation by any arbitrary utility function u. Of course, the choice of e is
arbitrary, but that can be viewed in the bigger picture of considering alternative
choices e′. In particular, all aspects of the rescaling functions θe,e′ in (2.3) are firmly
grounded in P and R, and any condition that might be placed on them to secure
advantageous behavior is a condition on preferences themselves, not an extraneous
mathematical construct.

Temporarily fixing a particular basic utility function ue can help in working with
the preference sets P (x), which really only depend on the equivalence classes under
“∼” as in (1.3). Clearly

(2.5)
P (x) = Ue(t) for t = ue(x), where
Ue(t) =

{
y
∣∣ue(y) ≥ t

}
=

{
y
∣∣ y � te

}
.

With this in hand, we can proceed to say more about axiom (A6) and what it
entails.
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Theorem 2.2 (existence and consistency of marginal preferences). The marginal
preference relation ξ �x η in (1.14) is available at every x ∈ IRg

++ in the sense that
the outer limit in (1.11) is always manifested as a full limit and the axioms (A1)–
(A6) are again satisfied with respect to ξ and η in place of x and y. The marginal
preferences have the linear utility representation

(2.8) ξ �x η ⇐⇒ n(x)·ξ ≤ n(x)·η

and are consistent in the sense that n(x) depends continuously on x.

Proof. The consistency claim at the end can be taken care of first. It is based on
the fact that convergence of a sequence of convex sets brings with it graphical con-
vergence of the normal cone mappings associated with those sets as the subgradient
mappings associated with their indicator functions [15, 12.35]. We apply this to the
sets Ue(t), which depend continuously on t because Ue(t

′) increases to become Ue(t)
as t′ ↘ t, whereas Ue(t

′) shrinks to Ue(t) as t
′ ↗ t. In terms of sequences indexed by ν,

the rule assures in particular that, as tν → t and xν ∈ Ue(t
ν) approaches x ∈ Ue(t),

all limits of sequences of vectors vν selected from the normal cones NUe(tν)(x
ν) must

be in NUe(t)(x). Here the normal cones, at points xν and x in IRg
++, are the rays gen-

erated by the vectors −n(xν) and −n(x). The limit property therefore just comes
down to n(xν)→ n(x).

Without loss of generality in the rest, we can focus on the case of x = e, inasmuch
as e can be freely chosen anywhere from IRg

++. For any τ > 0, the preference
relation in (1.13) then corresponds to ue(e+ τξ) ≤ ue(e+ τη) and thus has a utility
representation by the function ξ → ue(e+τξ), or as will suit us better, the difference
quotient function

(2.9) ũτe(ξ) = [ue(e+ τξ)− ue(e)]/τ, with ũτe(se) = s by (2.1),

its domain being 1
τ [G− e] with interior consisting of the vectors ξ >> (−1/τ)e. The

corresponding upper level sets

(2.10)
Ũ τ
e (s) =

{
η
∣∣ ũτe(η) ≥ s

}
for s ∈ (−τ−1,∞),

having se as a point on the boundary,

capture the preference relation ∼τ
e , and the question is what happens to them as

τ ↘0. We have

(2.11)

η ∈ Ũ τ
e (s) ⇐⇒ τ−1[ue(e+ τη)− 1] ≥ s

⇐⇒ e+ τη ∈ Ue(1 + τs)
⇐⇒ η ∈ τ−1[Ue(1 + τs)− (1 + τs)e] + se

= τ−1[P ((1 + τs)e)− (1 + τs)e] + se.

Thus, as τ ↘0 with s fixed, the set Ũ τ
e (s) will approach a limit if and only if that

holds for the set τ−1[P ((1 + τs)e)− (1 + τs)e]. Observe that, for any ε > 0,

(2.12) ε−1[P ((1 + τs)e)− (1 + τs)e] ⊂
{
η
∣∣n((1 + τs)e)·η ≥ 0

}
,

with the set on the right being the unique supporting half-space to the set on the
left at the origin, which is a common boundary point of both sets. We know from
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earlier that P ((1 + τs)e), as Ue(1 + τs), depends continuously on τ , so as τ ↘0 in
(2.12) with ε fixed, both sides in (2.12) converge with

(2.13)
lim
τ ↘ 0

ε−1[P ((1 + τs)e)− (1 + τs)e] = ε−1[P (e)− e]

⊂
{
η
∣∣n(e)·η ≥ 0

}
= lim

τ ↘ 0

{
η
∣∣n((1 + τs)e)·η ≥ 0

}
.

Any decrease in ε causes the convex sets to which it is attached in (2.13) to grow
larger, because they are all anchored at the origin. Since τ eventually falls below
any ε as τ ↘0, it follows that

(2.14)

ε−1[P (e)− e] ⊂ lim inf
τ ↘ 0

τ−1[P ((1 + τs)e)− (1 + τs)e]

⊂ lim sup
τ ↘ 0

τ−1[P ((1 + τs)e)− (1 + τs)e]

⊂
{
η
∣∣n(e)·η ≥ 0

}
.

But the limit of ε−1[P (e)− e] as ε↘0 is the tangent cone to P (e) at e, equal to the
half-space

{
η
∣∣n(e)·η ≥ 0

}
. Therefore, the inner and outer limits in (2.14) must

coincide with the half-space on the right. Applying this in (2.11), we see that, for
all s,

(2.15)
lim
τ ↘ 0

Ũ τ
e (s) =

{
se+ η

∣∣n(e)·η ≥ 0
}
=

{
ξ
∣∣n(e)·(ξ − se) ≥ 0

}
=

{
ξ
∣∣ n(e)·ξ ≥ [n(e)·e]s

}
=

{
ξ
∣∣ [n(e)·e]−1n(e)·ξ ≥ s

}
.

Thus, the marginal preferences exist and correspond to the nest of closed half-spaces
that are the upper level sets of the linear function

ξ 7→ [n(e)·e]−1n(e)·ξ.
That function then gives a utility representation, but so too does the simpler func-
tion ξ 7→ n(e)·ξ, as claimed in (2.8). □

Theorem 2.2 reveals a sort of universal “geometric differentiability” of the prefer-
ence relation, but we can also inquire about differentiability of the associated basic
utility functions. The following concept will have a big role in this.

Definition 2.3 (smooth preferences, first-order). The preference relation will be
said to be first-order smooth if, along with the quasi-smoothness already stipulated
in (A6), it has the property that the basic scaling functions θx,y in (1.5) are not just
continuous, but have derivatives θ′x,y(r) that are continuous in r and y.

It has to be noted that some reseachers in economics, such as Debreu [5] and
Aumann [1] speak of preferences being “smooth” only when they satisfy stronger
conditions which imply that the associated demand mappings are single-valued and
continuously differentiable. To our thinking, it would be better then to speak instead
of demand-smooth preferences.

Theorem 2.4 (first-order smoothness of basic utility). If the preference relation
is first-order smooth, the basic utility function ue for any choice of e>> 0 will be
continuously differentiable on IRg

++, and conversely. Gradients are given by

(2.16) ∇ue(x) = µe(x)n(x), where µe(x) =
θ′x,e(1)

n(x)·x
> 0, hence ∇ue(x)>> 0.
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Proof. More can be gleaned from the set limits determined in the proof of Theorem
2.2. The hypograph of the difference quotient function ũτe in (2.9) can be described

in terms of its upper level sets Ũ τ
e (s) in (2.10) as

(2.17) hypo ũτe =
⋃

s>− 1
τ

(Ũ τ
e (s), s), where U τ

e (s
′) ⊃ U τ

e (s) when s′ > s.

We saw in (2.15) that U τ
e (s) converges for each s as τ ↘0 to

{
ξ
∣∣ne(e)·ξ ≥ s

}
, where

ne(e) = n(e)/[n(e)·e].

But then we see in (2.17) that hypo ũτe converges to the hypograph of the linear
function ξ 7→ ne(e)·ξ. This hypoconvergence11 covers the property in terms of
sequences indexed by ν that

ne(e)·ξ = lim
ν→∞

ũτ
ν

e (ξν)

= lim
ν→∞

[ue(e+ τνξν)− ue(e)]/τ
ν when τν ↘0, ξν → ξ,

which means that ue is differentiable at e with ∇ue(e) = ne(e).
To verify that ue is differentiable also at other points of IRg

++, not just at e,
we can denote that point by e′ and apply the formula in (2.3) in the reverse form
of rescaling ue′ by θe′,e to get ue. Because θe′,e is continuously differentiable by
assumption, that yields

∇ue(x) = θ′e′,e(ue′(x))∇ue′(x) if ue′ is differentiable at x.

The argument already given for the differentiablity of ue at e holds equally well,
though, for ue′ at e

′, where ue′(e
′) = 1 by (2.1). It tells us that ∇ue′(e′) = ne′(e

′).
Thus, ue is differentiable at e′ and

(2.18) ∇ue(e′) = θ′e′,e(1)ne′(e
′) = [θ′e′,e(1)/n(e

′)·e′]n(e′).

This furnishes the gradient formula in (2.16) by taking e′ = x.
The assumed continuous dependence of θ′x,e(1) on x guarantees by this formula

and the continuous dependence of n(x) on x in Theorem 2.2 that ∇ue(x) in (2.16)
depends continuously on x. Necessarily θ′x,e(1) > 0, because the increasing functions
θx,e and θe,x are inverse to each other, and their derivatives at 1, when they both
exist, must therefore be reciprocals of each other. Of course, ne(x)·x > 0 as well,
inasmuch as both vectors have all positive components, so the claim in (2.16) that
µe(x) > 0 is valid.

Conversely, if all the basic utility functions associated with the preferences are
continuously differentiable, then the functions θe,e′ in (2.3) will be continuously
differentiable with their derivatives depending continuously also on e and e′. But
e and e′ are just stand-ins for the general x and y in IRg

++ in (1.5). The property
in Definition 2.3 will thus be at hand, with the preference relation therefore being
deemed first-order smooth. □

11The results in variational analysis ordinarily focus on epiconvergence, as in [15, Chapter 7],
but their hypoconvergence counterparts are obvious.
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Corollary 2.5 (first-order smoothness of general utility). A preference relation is
first-order smooth if and only if it can be represented by a utility function u that is
continuously differentiable on IRg

++ with its gradient ∇u(x) never 0, in fact always
>> 0.

Proof. If the preference relation is first-order smooth, its representations by basic
utility functions ue fit the prescription according to the theorem. On the other
hand, if there is a representation by a continuously differentiable u with nonzero
gradients, we know that, for any e>> 0, the function t→ u(te) will be continuously
differentiable with positive derivatives. By taking the inverse of that function to be
θ and passing to θ ◦u, we get an alternative 1 utility function having (θ ◦u)(te) = t.
But then θ ◦ u = ue by (2.4), so the conclusion is that every basic utility function
is C1, and by the theorem, the preference relation is then first-order smooth. □

Note that a first-order smooth preference relation can also be represented by a
C1 utility function having gradients sometimes zero: take u(x) = θ(ue(x)) for a C1

increasing function θ such that θ′(t) is sometimes zero. Thus, being representable
by C1 utility might not quite imply first-order smoothness of preferences as in
Definition 2.3.

Corollary 2.6 (nonsmooth representations of first-order smooth preferences). For
a preference relation that is first-order smooth, a utility function that is continuously
differentiable along any single ray

{
te
∣∣ t > 0

}
must be continuously differentiable

on all of IRg
++.

Only a utility function u having the form u(x) = θ(ue(x)) for a rescaling function
θ that lacks continuously differentiability somewhere in (0,∞) can fail to have this
property. In that case there is at least one equivalence set of vectors x under “∼”
where the gradient ∇u(x) is missing at every x.

Proof. This is immediate from Theorem 2.4 by way of (2.4). □
It might be wondered whether the extra property in Definition 2.3 needs ex-

plicitly to be assumed in order to arrive at the smoothness in Theorem 2.4 and
Corollaries 2.5 and 2.6. Is it maybe automatic already from (A1)–(A6)? Here is a
counterexample.

Example 2.7 (a preference relation with kinky rescaling). Let the goods space G
consist of all the vectors x = (x1, x2) ≥ (0, 0) in IR2. For t ≥ 1, let L(t) be the
line in IR2 through (t, t) with slope −m(t), where m is an increasing, continuously
differentiable function with m(1) = 1, m′(1) > 1, such that m(t) → ∞ as t → ∞
but slowly enough that the intercept of L(t) with the x1-axis, which starts at 1,
likewises increases and goes to ∞ as t→∞. For t ∈ (0, 1), just let L(t) be the line
through (t, t) with slope −1. For each t ∈ (0,∞) and x ∈ L(t), define u(x) = t.

Then u is a utility function for a preference relation “�” that satisfies (A1)–(A6).
In fact, u = ue for e = (1, 1). But for goods vectors x>> 0 in the same equivalence
set at e, the scaling function θx,e has different right and left derivatives at the origin
and thus fails to be differentiable there.

Detail. The construction makes it obvious that (A1)–(A6) are fulfilled, and be-
cause (t, t) ∈ L(t), it yields u(te) = t for e = (1, 1). Then u = ue by (2.4). Now fix
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any positive vector y in L(1) that differs from e, i.e.,

(2.19) fix y1 > 0 and y2 > 0 with y1 + y2 = 2 but y1 6= 1, y1 6= 1.

The scaling function θy,e, which by definition in (1.5) assigns to each s > 0 the t
such that sy ∼ te, is the function s 7→ ue(sy) = u(sy). It has t = θy,e(s) if and only
if sy ∈ L(t), and this also describes the inverse relationship, s = θe,y(t), with s = 1
corresponding to t = 1. For values of s and t below 1, the relations reduce to s = t
because the lines in question are parallel, so values above 1 are the key. Then the line
L(t), in passing through (t, t) and having slope −m(t), contains (x1, x2) if and only
if (x2 − t) = −m(t)(x1 − t), or equivalently m(t)x1 + x2 = t(1 +m(t)). Specializing
to x = sy, we see that t = θy,e(s) correponds to s[m(t)y1 + y2] = t(1 +m(t)) and
allows us easily to express s as a function of t:

(2.21) θe,y(t) =
t(1 +m(t))

m(t)y1 + y2
when t ∈ [1,∞).

This has derivative

θ′e,y(t) =
(1 +m(t) + tm′(t))(m(t)y1 + y2)− t(1 +m(t))m′(t)y1

(m(t)y1 + y2)2

which at t = 1 stands for a right derivative rather than a two-sided derivative and,
because m(1) = 1 and m′(1) > 1, calculates out through (2.19) as

(1 + 1 +m′(1))(y1 + y2)− (1 + 1)m′(1)y1
(y1 + y2)2

= 1 +m′(1)
1− y1

2
6= 1.

In contrast, the left derivative does equal 1, inasmuch as θe,y(t) = t for t ≤ 1. Thus
θe,y has a kink at 1, and the same must be true of its inverse θy,e.

3. Marginal co-preferences and graphical smoothness

Theorem 2.2 guarantees the availability of marginal preferences in Definition 1.1
just on the basis of (A1)–(A6), but there is no such universal availability of the
marginal co-preferences in Definition 2.2, and it’s not hard to see why. Marginal
preferences can be visualized as emerging when we zoom in on the picture of prefer-
ences around a point x, but in the case of co-preferences we have to keep an eye on
two different points, x and y. The view will settle down eventually around either
one, but co-preferences require a sort of coordination in the view, and there could
be a mismatch then in the rate of zooming.

The way to understand that is through a comparison of scales which resembles
that in (1.5) but involves instead the unit vectors n(x) and n(y) at points x and y
in IRg

++ such that x ∼ y but x 6= y. Because the components of n(x) are all positive,
and likewise n(y),

(3.1)

{
(r, s)

∣∣x+ rn(x) ∼ y + sn(y)
}

is the graph of a continuous
increasing function γx,y from an interval around r = 0 to an
interval around s = 0, having the property that γx,y(0) = 0.

The key is the “marginal” behavior of γx,y at 0.



1490 R. T. ROCKAFELLAR

It will also be necessary, however, to take into account special local representa-
tions of utility, as follows:

(3.2) vx(ξ) = the unique t such that x+ ξ ∼ x+ tn(x)

for ξ in a small-enough neighborhood of 0. Then locally

(3.3) x+ ξ � x+ ξ′ ⇐⇒ vx(ξ) ≤ vx(ξ
′).

Similarly for vy(η) at y.

Theorem 3.1 (availability of marginal co-preferences). For x>> 0 and y >> 0 with
x ∼ y but x 6= y, marginal co-preferences will be exhibited when the function γx,y in
(3.1) is differentiable at 0. They will then have the representation

(3.4) ξ �x,y η ⇐⇒ n(x)·ξ ≤ γ′x,y(0)n(y)·η.

Proof. Looking at x + τξ and y + τη for small τ > 0, we see that x + τξ ∼ x +
vx(τξ)n(x) through (3.2) and y + τη ∼ y + vy(τη)n(y). On the other hand x +
vx(τξ)n(x) ∼ y + γx,y

(
vx(τξ)

)
n(y) by (3.1). Then

x+ τξ � y + τη ⇐⇒ y + γx,y
(
vx(τξ)

)
n(y) � y + vy(τη)n(y),

so the set Rτ
x,y in (1.10) that we want to actually to converge to the tangent cone

TR(x, y), which its outer limit in (1.11), has the description that

(3.5)
(ξ, η) ∈ Rτ

x,y ⇐⇒ γx,y
(
vx(τξ)

)
≤ vy(τη)

⇐⇒ τ−1γx,y
(
τ [τ−1(vx(τξ)]

)
≤ τ−1vy(τη).

Applying what we know about marginal preferences in Theorem 2.2 to (3.2), and
likewise with vy(η) replacing vx(ξ), we see that

(3.6) τ−1vx(τξ)→ n(x)·ξ and τ−1vy(τη)→ n(y)·η as τ ↘0.

At the same time, the differentiability assumed for γx,y at 0, where its value is 0, tells
us that, for any expression ρ(τ) that converges to a value ρ(0) as τ ↘0, we will have
τ−1γx,y

(
τρ(τ)

)
→ γ′x,y(0)ρ(0). Through (3.6), therefore, the function inequality on

the right of (3.5) transforms to the one on the right of (3.4). In that process the
sets defined by those inequalities themselves converge. That means that the tangent
cone TR(x, y) is indeed derivable and is decribed by (3.4), as claimed. □

Theorem 3.1 reveals how the foundation for marginal co-preferences might be
disrupted if the difference quotients behind the differentiability of γx,y at 0 failed to
converge. In fact an example of just such behavior can be gleaned from Example
2.7 as a case where there are left and right derivatives with a gap between them.

However, Theorem 3.1 also reveals a potential source of discomfort even with the
solid result that it provides. What if the derivative γ′x,y(0) in (3.4) equals 0? Then
we would have ξ �x,y η corresponding just to n(x)·ξ ≤ 0, without any involvement
from η at all! Could that really happen? Yes, by the example coming next.

Example 3.2 (singular co-preferences). In G = IR2
++, let

C =
{
x = (x1, x2) ∈ G

∣∣x1x2 ≥ 1
}

and e = (1, 1). For t > 0, let U(t) = G ∩ (ρ(t)e + t−1[C − e]) for an increasing,
continously differentiable function ρ from (0,∞) onto (0,∞) having ρ(1) = 1 and
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ρ′(1) = 0. Then {U(t)}t>0 is a nest of closed convex sets serving as the preference
sets for a preference relation that satisfies (A1)–(A6). A utility function for that
relation is obtained by taking u(x) for x ∈ G to be the unique t such that x lies on
the boundary of U(t); this corresponds to e+ t[x− ρ(t)e] lying on the boundary of
C, so that

(3.7) u(x) = t ⇐⇒
(
tx1 + [1− tρ(t)]

)(
tx2 + [1− tρ(t)]

)
= 1.

Specialize the function γx,y of (3.1) to x ∼ e, y = e. Then γ′x,y(0) = 0.

Detail. Observe first that, as t increases, t−1[C − e] continually shrinks and goes
in the limit to IR2

+. At the same time, ρ(t)e continually progresses “towards the
northeast.” The combination of those properties underlies the claim that the sets
U(t) form a continuous nest of the kind required for a preference relation; u is then
a continuous function that increases in both arguments, and so forth.

Because e lies on the boundary of C = U(1), and x ∼ e, we have x also on
that boundary with u(x) = u(e) = 1, where n(x) = (x2, x1)/|(x1, x2)| and n(e) =
(1, 1)/|(1, 1)|. The function γx,e has

(3.8) gph γx,e =
{
(r, s)

∣∣u(e+ sn(e)) = u(x+ rn(x))
}
,

and our claim about its derivative at 0 means that the ratio of s to r approaches 0
as (r, s)→ (0, 0) in this graph.

To confirm this, we can work with t alongside of r and s and view the equation
in (3.8) as the double equation u(e+ sn(e)) = t and u(x+ rn(x)) = t in which for

convenience in taking a = 1/|(1, 1)| = 1/
√
2 and b = 1/|(x1, x2)| = 1/

√
x21 + x22, we

have

(3.9) e+ sn(e) = (1 + as)e, x+ rn(x) = (x1 + rbx2, x2 + rbx1).

From the basic construction, it’s evident then that

(3.10) u(e+ sn(e)) = t ⇐⇒ n((1 + as)e) = t ⇐⇒ 1 + as = ρ(t).

On the other hand from (3.7) and (3.9),

u(x) = t ⇐⇒ (t[x1 + rbx2] + [1− tρ(t)])(t[x2 + rbx1] + [1− tρ(t)]) = 1.

This could explicitly be solved for r as a function of t, but there is no need for that,
because we can get a hold on the derivative of that function by differentiating on
both sides of the equation:

(3.11)
0 = ([x1 + rbx2] + tbx2

dr
dt − ρ(t)− tρ′(t))(t[x2 + rbx1] + [1− tρ(t)])

+ ([x2 + rbx1] + tbx1
dr
dt − ρ(t)− tρ′(t))(t[x1 + rbx2] + [1− tρ(t)]).

Since t = 1 corresponds to (r, s) = (0, 0), we can find out what happens to s/r as
(r, s) → (0, 0) by evaluating the ratio of ds/dt to dr/dt at t = 0. By setting r = 0
and t = 1 in (3.11), we get

0 = (x1 + bx2
dr
dt − 1)x2 + (x2 + bx1

dr
dt − 1)x1

= 2x1x2 + b(x21 + x22)
dr
dt − x1 − x2,

where x1x2 = 1 by choice and x21 + x22 = b−2 by definition, and therefore

dr

dt
= b(x1 + x2 − 2) 6= 0 when t = 0,
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because x1 + x2 > 2 when x1x2 = 1 but x1 6= x2. From (3.10), however, we have

ds

dt
= a−1ρ′(t) = 0 when t = 0.

Thus the ratio of ds
dt to dr

dt is indeed 0 when t = 0.

What accounts for this strange possibility? It turns out to signal the absence
of a desirable Lipschitz-type property of the preference mapping P . To get to an
understanding of that, we need to turn to an investigation of the normal cones to
the set R = gphP at its boundary points in (1.9), along with the tangent cones
already introduced in (1.11) and (1.12).

For our purposes, instead of going back to the definitions themselves, we can skip
ahead to general tangent-normal relationships [15, Chapter 6], starting with the fact
that, in terms of the tangent cone TR(x, y), the regular normal cone to R at (x, y)
is given by

(3.12) N̂R(x, y) :=
{
(p,−q) ∈ IRg × IRg

∣∣ (p,−q)·(ξ, η) ≤ 0, ∀(ξ, η) ∈ TR(x, y)
}
.

The general normal cone is then

(3.13) NR(x, y) := lim sup
(x′,y′)→(x,y)

N̂R(x
′, y′) ⊃ N̂R(x, y).

The regular tangent cone relates to the general normal cone by

(3.14) T̂R(x, y) =
{
(ξ, η) ∈ IRg × IRg

∣∣ (p,−q)·(ξ, η) ≤ 0, ∀(p,−q) ∈ NR(x, y)
}
.

Because of (A4), the tangent cones in our context satisfy

(3.15) TR(x, y) ⊃ T̂R(x, y) ⊃ IRg
− × IRg

+,

and that guarantees through (3.12) that

(3.16) p ≥ 0 and q ≥ 0 for all (p,−q) ∈ NR(x, y).

It might be thought that because the monotonicity in (A4) is strict — any in-
crease in any single goods component increases utility — the pairs (p,−q) 6= (0, 0)
in NR(x, y) would have p>> 0 and q >> 0, but Example 3.2 shows there can be
exceptions. In Theorem 3.1, the co-preference relation ξ �x,y η refers to (ξ, η)
belonging to TR(x, y), and the characterization of co-preferences in (3.4) says that

(3.17) (ξ, η) ∈ TR(x, y) ⇐⇒
{

(ξ, η)·(p,−q) ≤ 0 for
p = n(x) and q = γ′x,y(0)n(y).

Then (p,−q) ∈ N̂R(x, y) by (3.12), hence also (p,−q) ∈ NR(x, y) by (3.13). But in
Example 3.2 we have an instance of this in which p>> 0, yet q = 0.

This phenomenon fits a fundamental pattern in the theory of set-valued map-
pings concerned with graphical derivatives and co-derivatives [15, Chapter 8]. The
graphical derivative of the preference mapping P at x for an element y of P (x) is
by definition the mapping DP (x |y) : IRg →→ IRg such that

(3.18) η ∈ DP (x |y)(ξ) ⇐⇒ (ξ, η) ∈ TR(x, y),

whereas the graphical coderivative D∗P (x |y) : IRg →→ IRg has

(3.19) p ∈ D∗P (x |y)(q) ⇐⇒ (p,−q) ∈ NR(x, y).



PREFERENCE RELATIONS AND UTILITY 1493

The condition that

(3.20) p ∈ D∗P (x |y)(0) =⇒ p = 0,

as a way of forbidding combinations (p,−q) ∈ NR(x, y) with p ≥ 0 but q = 0, is well
understood in the general theory and recognized for its major implications [15, 9.40].

Here it will connect up with a property of the set-valued mapping P called sub-
Lipschitz continuity in variational analysis [15, 9E]. For this we draw on the notation
that

(3.21) IB = closed unit ball in IRg.

Definition 3.3 (sub-Lipschitz continuity of preferences). Preferences will be called
sub-Lipschitz continuous if for every closed, bounded subset B ⊂ IRg

++ there exists
κ > 0 and such that

(3.22) P (x′) ∩B ⊂ P (x) + κ|x′ − x|IB for all x, x′ ∈ B.

This property would be Lipschitz continuity without the truncation of P (x′) to
P (x′)∩B. That truncation is important for general reasons in dealing with mappings
having unbounded values like P , but because P is convex-valued, the sub-Lipschitz
continuity in Definition 3.3 is equivalent actually to the Lipschitz continuity of the
mappings PB : x ∈ B 7→ P (X) ∩B for convex B by [15, 9.33].

Instead of the Euclidean unit ball in (3.21), the unit cube could be employed
with |x′ − x| replaced then in (3.22) by the norm ||x′ − x||∞. That would be
more natural for goods vectors, but further specialization is also in the offing. We
know that, for any e>> 0, the sets P (x) for x ∼ te are the same, namely equal
to Ue(t) = P (te). Instead of the unit cube, we can just as well appeal to [−e, e],
and instead of general B we can focus on intervals [t0e, t1e] with 0 < t0 < t1. We
can also take advantage of having Ue(t

′) ⊃ Ue(t) when t′ < t. That way, the sub-
Lipschitz continuity in Definition 3.3 can be construed equivalently as requiring for
each interval [t0, t1] ⊂ (0,∞) the existence of κ > 0 such that

(3.23) Ue(t
′) ∩ [t0e, t1e] ⊂ Ue(t)− κ|t′ − t|e when t0 ≤ t′ < t ≤ t1.

Another ingredient of the theorem we are leading up to is first-order smoothness
of R, which likewise is tied to normal cones. We saw in (3.17) a situation in which
the tangent cone TR(x, y) is a half-space, and this can be pursued as a property of
interest in itself.

Definition 3.4 (first-order graphical smoothness of preferences). Preferences will
be called first-order smooth graphically if, at each boundary point (x, y) of R =
gphP within IRg

++ × IRg
++, the tangent cone TR(x, y) is a half-space, and the unit

normal to that half-space depends continuously on (x, y).

We combine this now into a definitive statement about first-order smoothness
from more than one angle.

Theorem 3.5 (first-order smoothness versus first-order graphical smoothness). The
preferences are first-order smooth if and only if they are sub-Lipschitz continuous
and first-order graphically smooth. Then, for any C1 utility function u with nonzero
gradients and any boundary point (x, y) of R in IRg

++ × IRg
++,

(3.24) NR(x, y) is the ray generated by (∇u(x),−∇u(y)),
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and co-preferences are guided by

(3.25) ξ �x,y η ⇐⇒ ∇u(x)·ξ ≤ ∇u(y)·η.

Proof. Starting from the assumption that the preference relation is first-order
smooth, we have at our disposal in Corollary 2.5 a C1 utility function u with nonzero
gradients. For such a function, the set Rτ (x, y) in (1.10) consists of the pairs (ξ, η)
such that u(x+ τξ) ≤ u(y + τη) and thus has the description

(3.26)
Rτ

x,y =
{
(ξ, η)

∣∣φτ (ξ, η) ≤ 0
}
, where

φτ (ξ, η) = 1
τ [u(x+ τξ)− u(x)]− 1

τ [u(y + τη)− u(y)].

This takes advantage of u(x) equaling u(y) because x ∼ y. The differentiability
of u makes φτ converge uniformly on bounded sets to the nonzero linear function
φ(ξ, η) = ∇u(x)·ξ − ∇u(y)·η. The sets defined by the inequalities in (3.26) cor-
respondingly converge to the closed half-space for that linear function. This tells
us that the tangent cone TR(x, y) is derivable and equals that half-space, having
(∇u(x),−∇u(y)) as outward normal. Then from (3.12), the regular normal cone

N̂R(x, y) is the ray generated by (∇u(x),−∇u(y)), and it depends continuously on
x and y.

That fits the prescription for first-order graphical smoothness and precludes hav-
ing (p,−q) ∈ NR(x, y) with p 6= 0 but q = 0. Then D∗P (x |y)(0) = {0}, which
according to [15, 9.40] is equivalent to the mapping P having what is called the
Aubin property at x for y. That being true for all pairs (x, y) ∈ IRg

++ × IRg
++,

we have P locally sub-Lipschitz continous on the basis of [15, 9.38, 9.31], so the
criterion for sub-Lipschitz continuity of preferences in Definition 3.3 is met.

Working backwards now from such sub-Lipschitz continuity combined with first-
order graphical smoothness, the sub-Lipschitz continuity forbids through [15, 9.31,
9.38, 9.40] the existence of (p,−q) ∈ NR(x, y) with p 6= 0 but q = 0, while the
first-order graphical smoothness in particular makes NR(x, y) be a ray generated by
a pair (p,−q) such that the co-preference relation ξ �x,y η corresponds to p·ξ ≤ q·η.
Likewise the co-preference relation η �y,x ξ has a representation q′·η ≤ p′·ξ, but
it’s obvious from the definitions that ξ ∼x,y η is equivalent to η ∼y,x ξ, with the
indiference relations corresponding to the equations p·ξ = q·η and q′·η = p′·ξ, hence
p′ = p and q′ = q. In other words, having NR(x, y) be the ray generated by (p,−q)
corresponds to having NR(y, x) be the ray generated by (q,−p). That symmetrically
precludes having q 6= 0 but p = 0.

We can normalize by making NR(x, y) be the ray generated by a pair denoted by
(p(x, y),−q(x, y)) with |p(x, y)| = 1. The assumed first-order graphical smoothness
makes p(x, y) and q(x, y) depend continuously on the boundary pair (x, y) in IRg

++×
IRg

++ with both nonzero vectors being ≥ 0, at least, by (3.16).
Now fix any e>> 0 and view the minimization formula for ue in (2.2) in inf-

projection mode as

(3.27)
ue(x) = mint>0 φe(x, t), where
φe(x, t) = t+ δR(Ae(x, t)) for Ae : (x, t) 7→ (x, te).

Subgradient calculus can be applied to this in order to determine subgradients of
ue and confirm that ue really is differentiable. First, we apply such calculus to φe,
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using the sum rule in [15, 8.8(c)] and the chain rule in [15, 10.6] to see that its
general subdradients and horizon subgradients satisfy

(3.28)
∂φe(x, t) ⊂

{
(0, 1) +A∗

e(p,−q)
∣∣ (p,−q) ∈ ∂δR(Ae(x, t))

}
,

∂∞φe(x, t) ⊂
{
(0, 0) +A∗

e(p,−q)
∣∣ (p,−q) ∈ ∂∞δR(Ae(x, t))

}
,

where A∗
e is the adjoint of the linear transformation Ae and takes (p,−q) to (p,−q·e).

Here both ∂δR(x, y) and ∂∞δR(x, y) are just the normal cone NR(x, y), which we
know to consist of all the multiples λ(p(x, y),−q(x, y)), λ ≥ 0. The inclusions (3.28)
reduce therefore to

(3.29)
∂φe(x, t) ⊂

{
(λp(x, y), 1− λq(x, y)·e)

∣∣λ ≥ 0
}
,

∂∞φe(x, t) ⊂
{
(λp(x, y),−λq(x, y)·e)

∣∣λ ≥ 0
}
.

Next we appeal to the rule associated with (3.27) that

(3.30)
∂ue(x) ⊂

{
p
∣∣ ∃ t ∈ argmin with (p, 0) ∈ ∂φe(x, t)

}
,

∂∞ue(x) ⊂
{
p
∣∣ ∃ t ∈ argmin with (p, 0) ∈ ∂∞φe(x, t)

}
,

[15, 10.13]. The minimum in (3.27) is achieved uniquely by t = ue(x).
Putting these things together, we ask first whether ∂∞ue(x) might contain a

vector p 6= 0. By the horizon subgradient inclusions in (3.29) and (3.30), that
would entail the existence of λ > 0 such that (p, 0) = λ(p(x, y), q(x, y)·e), where
y = te for t = ue). That’s impossible because q(x, te)·e > 0, due to having e>> 0
and q(x, te) ≥ 0, q(x, te) 6= 0. Thus, ∂∞ue(x) is just {0}. But that characterizes ue
as being Lipschitz continuous on a neighborhood of 0 [15, 9.13]. Then ∂ue(x) is a
nonempty, bounded set [15, 9.13].

What might that set contain? The general subgradient inclusions in (3.29) and
(3.30) narrow the possibilities down to vectors λp(x, te) with λ > 0 and such that 1−
λq(x, te)·e = 0, which comes down to λ = 1/q(x, te). Thus, ∂ue(x) is the singleton
consisting of the vector obtained by dividing p(x, ue(x)e) by q(x, ue(x)e)·e > 0,
with both of those depending continuously on x. Singleton subgradient sets for
Lipschitz continuous functions indicate strict differentiability with the vector in
question being the gradient [15, 9.18]. In summary, ue is differentiable at x with
the gradient depending continuously on x. This has been established for any e>> 0
and x ∈ IRg

++, so we can conclude from Theorem 2.4 that the preface relation is
first-order smooth. □

4. Second-order smoothness and concavity

So far, our results have exploited two aspects of first-order smoothness of the
preference relation in partnership. The first is the supporting hyperplane axiom
(A6) and the second is the scaling property in Definition 2.3. The first got translated
into the availability of the unit vectors n(x) in (2.6), which in fact automatically
then depend continuously on x, as seen in Theorem 2.2. The second started from
the continuity of the basic scaling functions θx,y in (1.5), which comes from (A3),
and then upped that to the continuous differentiability of those functions, with the
derivatives depending continuously also on (x, y). We look now at a partnership of
second-order enhancements of those two properties.
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Definition 4.1 (smooth preferences, second-order). The preference relation will be
said to be second-order smooth if the following pair of conditions holds:

(a) the unit normals n(x) to the supporting hyperplanes in (A6) depend in a
continuously differentiable way on x ∈ IRg

++.
(b) the scaling functions θx,y for positive x and y have the derivatives θ′x,y(r)

that are continuously differentiable in r and y.

Condition (a) already has a significant history in economics in connection with
“demand-smooth” preferences, as for instance in Debreu’s paper [6]. Condition (b),
however, is brought to the fore only here, in contrast to the equations of differential
geometry imposed in [5].

Theorem 4.2 (smooth utility, second-order). The preference relation is second-
order smooth if and only if it can be represented by a utility function u that is
twice-continuously differentiable on IRg

++ with its gradient ∇u(x) never 0. In partic-
ular, the basic utility functions ue associated with a second-order smooth preference
relation serve to represent it that way.

Proof. The formula in (2.16) for the gradients of a basic utility function ue reveals
immediately that those gradients, known to be nonzero always, will be continuously
differentiable with respect to x in the presence of the properties in Definition 4.1.
In the other direction, if the preferences can be represented by a utility function
u with the properties described, then those properties carry over to every basic
utility function ue through the relationships in (2.4) of Theorem 2.1. The mutual
rescalings in (2.3) of Theorem 2.1 confirm then, since any positive vectors x and
y can be taken as e and e′, that part (b) of Definition 4.1 is fulfilled. Because
n(x) = ∇u(x)/|∇u(x)|, part (a) of Definition 4.1 is fulfilled as well. □

Utility functions have very often been assumed to be C2 for convenience in mi-
croeconomics, but without the axiomatic support provided now by Theorem 4.2
through the properties in Definition 4.1. Those properties solidify exactly what it
needed in terms of “substitution” effects among goods that economists have anyway
understood must somehow underlie second-order smoothness.12 Here we are able to
furnish not only the characterization in Theorem 4.2 but also, next, its counterpart
in terms of the graph of the preference relation.

Definition 4.3 (second-order graphical smoothness of preferences). The prefer-
ences will be called second-order smooth graphically if, at boundary points (x, y)
of R = gphP in IRg

++ × IRg
++, the tangent cone TR(x, y) is a half-space with unit

normal depending continuously differentiably on (x, y).

This condition means that the boundary is a second-order smooth hypersurface,
an embedded C2 manifold of dimension 2g − 1 in IRg

++ × IRg
++.

Theorem 4.4 (second-order smoothness versus second-order graphical smooth-
ness). Preferences are second-order smooth if and only if they are sub-Lipschitz
continuous and second-order graphically smooth.

12On page 49 of the textbook [14], for example, it says that: “Intuitively, what is required is
that the indifference sets be smooth surfaces that fit together nicely so that the rates at which com-
modities substitute for each other depend differentiably on the consumption levels.” No specifics
were offered, however.
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Proof. This is quickly derived as an extension of Theorem 3.5 enabled by Theorem
4.2. The only question to resolve is how the behavior of normal cones in Definition
4.3 relates equivalently to the differentiability of utility gradients ∇u(x). But the
answer to that is obvious from (3.14). □

What we call second-order graphical smoothness was investigated in 1972 by De-
breu in [5]. In a framework like ours where preferences satisfy (A1)–(A6), he argued
it was equivalent to the existence of a utility representation that is C2. However,
that’s not consistent with the combination of Theorems 4.2 and 4.4, because the
sub-Lipschitz continuity that is essential there (in going back to Theorem 3.5) is
left out.

The challenge we take up next is determining when the preference relation can be
represented by a utility function that is actually concave. There has been broadly
based work on that in the past, as explained in Section 1, but here we are con-
centrating on preferences that satisfy the axioms (A1)–(A6) and furthermore are
second-order smooth in the sense of Definition 4.1. That makes available, through
Theorem 4.2, representations by C2 utility functions u. Then Hessian matrices
∇2u(x) are at hand as supplements to the gradient vectors ∇u(x). Concavity of u
is characterized by ∇2u(x) being negative-semidefinite for x ∈ IRg

++.
The key idea is producing a concave utility function u as θ ◦ ue from a quasi-

concave basic utility function ue that is C2 by virtue of Theorem 4.2. For this
to work, the rescaling function θ must itself be concave and C2, inasmuch as
θ(ue(te)) = θ(t). That greatly narrows down the search.

Guidance will come from a look at properties on the interface between convex
geometry and classical differential geometry and how they fit into modern varational
analysis.

Property (a) in Definition 4.1 implies that the boundaries of the convex sets P (x)
are not only C1-smooth hypersurfaces in IRg

++, as was ascertained in Theorem 2.2 to
follow from (A6), but C2-smooth. Curvature aspects of those convex hypersurfaces
are captured at their points x by the second partial derivatives of a C2 utility
function u in restriction to the supporting hyperplane, i.e., by the partial quadratic
forms

(4.1)
ξ ∈ H(x) 7→ ξ·∇2u(x)ξ

|∇u(x)|
, where

H(x) =
{
ξ
∣∣∇u(x)·ξ = 0

}
=

{
ξ
∣∣ ξ ⊥ n(x)

}
.

The equivalent descriptions of the hyperplane H(x) here come from the gradient
formula in Theorem 2.4 and the fact that rescaling a utility function merely changes
its gradient in length, not direction. The reason for dividing by |∇u(x)| in (4.1) is
that structure independent of the particular utility representation is secured in that
way:

(4.2)
if u∗ = θ ◦ u with θ ∈ C2, then for all ξ ∈ H(x),

ξ·∇2u∗(x)ξ

|∇u∗(x)|
=

ξ·∇2u(x)ξ

|∇u(x)|
,
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as seen from calculating the first and second derivatives with respect to τ of u∗(x+
τξ) = θ(u(x+ τξ)) and evaluating them at τ = 0; those steps lead to

(4.3)
∇u∗(x)·ξ = θ′(u(x))∇u(x)·ξ, so |∇u∗(x)| = θ′(u(x))|∇u(x)|,
and ξ·∇2u∗(x)ξ = θ′(u(x))[ξ·∇2u(x)ξ] + θ′′(u(x))[∇u(x)·ξ]2,

from which (4.2) is apparent because the final term drops off when ξ ∈ H(x).
The partial quadratic forms in (4.1) are thus independent of the particular utility
representation and are intrisic companions of the second-order smooth preference
relation itself.13

We could proceed by placing assumptions directly on those partial quadratic
forms, but will instead first recall enhancements of convexity that can be contem-
plated without immediately appealing to smoothness. The simplest is strict con-
vexity of a closed set C; it adds to plain convexity the requirment that the line
segment joining two different boundary points must, except for those points, lie in
intC. This can also be articulated in a local sense, with strict convexity around a
boundary point x̄ of C meaning that the line-segment property holds in a neighbor-
hood of x̄. Such local strict convexity has a dual description in terms of the normal
cones to C in the sense of convex analysis, given by

(4.4) NC(x) =
{
v
∣∣ v·(x′ − x) ≤ 0, ∀x′ ∈ C

}
for x ∈ C,

for which in general (v′ − v)·(x′ − x) ≥ 0 when v ∈ NC(x) and v′ ∈ NC(x
′). It

corresponds namely to having (v′ − v)·(x′ − x) > 0 when v and v′ are nonzero,
unless x′ = x.

Beyond strict convexity, there is strong convexity of C around a boundary point
x̄, which is the property we’ll really need. Its tighter normal cone description is
that

(4.5)
∃σ > 0 and a neighborhood V of x̄ such that
(v′ − v)·(x′ − x) ≥ σ|x′ − x|2 for x, x′ ∈ V when
v ∈ NC(x

′), v′ ∈ NC(x
′), with |v| = 1, |v′| = 1.

Other, primal, descriptions of strong convexity can be furnished that bring in locally
supporting parabolic surfaces, for instance, instead of just hyperplanes, to ensure
reliable “curvature,” but for our purposes the following example is central.

Example 4.5 (strong convexity from a constraint representation). Let C =
{
x
∣∣ f(x) ≤

0
}
for a C2 function f , and let x̄ ∈ C have f(x̄) = 0 and ∇f(x̄) 6= 0. Then C is

strongly convex around x̄ if and only if

(4.6) ξ 6= 0, ∇f(x̄)·ξ = 0 =⇒ ξ·∇2f(x̄)ξ > 0.

Detail. This is a local matter, and we can simplify through a change of coordinates
to posing it with C the epigraph of a function g on IRn that has g(0) = 0 and∇g(0) =
0. That way f(x, α) = g(x) − α on IRn+1 with f(0, 0) = 0 and ∇f(0, 0) = (0,−1).
The condition in (4.6) comes out then as

(4.7) ξ·∇2g(0)ξ > 0 for ξ ∈ IRn with |ξ| = 1

13Another way of reaching the same conclusion through variational analysis alone is to look at
the second-order epi-derivatives of the indicator of the preference set P (x) at x [15, Chapter 13].
That yields the function that agrees on H with the given quadratic expression, but is ∞ outside
of H.
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and corresponds to g being strongly convex at the origin of IRn. The claim is that
this is equivalent to the strong convexity of the epigraph of g around the origin of
IRn+1 in the sense of (4.5).

The normal cone to the epigraph at a point (x, g(x)) has a unique unit element,

c(x)(∇g(x),−1) for c(x) = 1/
√
|∇g(x)|2 + 1. The condition in (4.5) thus requires

the inequality

(4.8)
σ|(x′, g(x′))− (x, g(x))|2 ≤
[c(x′)(∇g(x′),−1)− c(x)(∇g(x),−1)]·[(x′, g(x′))− (x, g(x))]

to hold for x and x′ in a neighborhood of 0. Elaborating the right side of (4.8) as

c(x)[∇g(x′),−1)− (∇g(x),−1)]·[(x′, g(x′))− (x, g(x))]
+[c(x′)− c(x)](∇g(x′),−1)·[(x′, g(x′))− (x, g(x))]

and expressing x′ as x + τξ for τ > 0 and ξ having |ξ| = 1, we are able to onvert
(4.8) into

σ|(τξ, g(x+ τξ)− g(x))|2 ≤
c(x)[(∇g(x+ τξ)−∇g(x), 0)·(τξ, g(x+ τξ)− g(x))
+[c(x+ τξ)− c(x)](∇g(x+ τξ),−1)·(τξ, g(x+ τξ)− g(x)),

where

g(x+ τξ)− g(x) = τ∇g(x)·ξ + o(τ), ∇g(x+ τξ)−∇g(x) = τ∇2g(x)ξ + o(τ).

On dividing by τ2, that yields equivalently

σ
∣∣∣(ξ,∇g(x)·ξ + o(τ)

τ

)∣∣∣2 ≤
c(x)

[
ξ·∇2g(x)ξ + o(τ)

τ

]
+[c(x+ τξ)− c(x)](∇g(x+ τξ),−1)·

(
ξ,∇g(x)·ξ + o(τ

τ

)
.

This brings the question of whether the strong convexity property in (4.5) is satisfied
in our epigraphical setting down to whether the ratio

c(x)
[
ξ·∇2g(x)ξ + o(τ)

τ

]
+ [c(x+ τξ)− c(x)](∇g(x+ τξ),−1)·

(
ξ,∇g(x)·ξ + o(τ

τ

)
∣∣∣(ξ,∇g(x)·ξ + o(τ)

τ

)∣∣∣2 ,

is bounded below by some σ > 0 for all unit vectors ξ when τ is small and x is near
enough to the origin. In view of the boundedness of the term in the denominator
and the fact that c(x+ τξ)− c(x)→ 0 as τ ↘0 and x→ 0, the positive definiteness
in (4.7) is seen to be necessary and sufficient, exactly as claimed.

Strict convexity of preference relations is understood in economics as the en-
hanced version of the convexity axiom (A5) in which

(4.9) y0 � x, y1 � x, y0 6= y1, λ ∈ (0, 1) =⇒ (1− λ)y0 + λy1 � x.

This is a strict convexity property of the sets P (x). We need to replace such strict
convexity by strong convexity.

Definition 4.6 (strongly convex preferences). The preference relation will be called
strongly convex if the sets P (x) are strongly convex everywhere within IRg

++.
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In terms of the description taken here as the definition of strong convexity in
(4.5), we can draw on the fact that the unique unit vector in the normal cone
to P (x) at x is −n(x) to express the property as the local existence, around any
x̄ ∈ IRg

++, of σ > 0 such that

(4.10) x ∼ x̄, x′ ∼ x̄ =⇒ [n(x′)− n(x)]·[x− x] ≤ −σ|x′ − x|2.
However, an alternate characterization is available from Example 4.5 in the case of a
second-order smooth preference relation, for which the sets P (x) can be represented
as

{
x
∣∣u(x) ≥ t

}
for a C2 utility function with nonzero gradients. Then strong

convexity of preferences corresponds to the partial quadratic forms in (4.1) being
always negative-definite, and that is how it will come into play below in technical
arguments below. It is also how strong convexity has entered utility developments
in the past, as seen for instance in Debreu [6].

In the coming statement of our result about the availability of concave utility
representations, minimally concave utility will be important. We referred to this in
Section 1 as indicating a concave u such that every other concave utility function
u∗ can be obtained from u as u∗ = θ ◦ u for a concave rescaling function θ. That
property was introduced by Debreu [5] but called by him least concavity. Kannai [13]
showed through his developments that it was equivalent to the different property
formulated earlier by de Finetti [7], which we needn’t get into here; “minimally”
rather than “least” seems to be the better term.

Kannai in [13, Section 5] pointed out that his method of constructing a concave
utility function, if successful, led to a minimally concave utility when carried out
“in the most natural way.” Here we follow much the same method but, at first
anyway, don’t attempt to concavify over the entire goods space G. We settle instead
for a compact convex subset (arbitrarily large) within IRg

++, where we are able to
demonstrate that strong convexity of preferences gives a sufficient boost to secure
the existence.

Theorem 4.7 (existence of minimally concave utility representations). For a second-
order smooth, strongly convex preference relation, and any compact convex subset
B of IRg

++, there exists a representation by a C2 utility function with nonzero gradi-
ents on IRg

++ that is concave relative to B and minimally so, being unique then up
to affine rescaling.

Proof. We have at our disposal from Theorem 4.2 utility representations that are
C2 and can fix a basic one, ue, targeting as our goal a rescaled C2 utility u(x) =
θ(ue(x)), again with nonzero gradients, that over some region, at least, will be
concave. Because ue(te) = t, we will end up with u(te) = θ(t) in this pattern, so
it’s essential that the function θ be C2 and concave as well as increasing, moreover
with θ′(t) > 0 to ensure that ∇u(x) won’t vanish anywhere.

The concavity of u will correspond to having ξ·∇2u(x)ξ ≤ 0, with the quadratic
form in question being derivable from the one for ue by the calculation we employed
to get (4.3) in confirming (4.2):

(4.11) ξ·∇2u(x)ξ = θ′(ue(x))[ξ·∇2ue(x)ξ] + θ′′(ue(x))[∇ue(x)·ξ]2.
We know from our assumption about the preference relation being strongly convex
that the restriction of this quadratic form to the hyperplane subspace H(x) in (4.1)
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is already negative-definite, yielding ξ·∇2u(x)ξ < 0 there for nonzero ξ. A general
ξ can be articulated as the sum of something in that subspace and a multiple of the
normal vector n(x), which aligns with ∇ue(x), but the particular multiple won’t
matter. We can concentrate therefore on arranging that

(4.12) (ξ +∇ue(x))·∇2u(x)(ξ +∇ue(x)) ≤ 0 for all ξ ∈ H(x).

Plugging this specialization into the formula in (4.11) gives us, since ∇u(x)·ξ = 0
when ξ ∈ H(x),

(ξ +∇ue(x))·∇2u(x)(ξ +∇ue(x))
= θ′(ue(x))[(ξ +∇ue(x))·∇2ue(x)(ξ +∇ue(x))]

+θ′′(ue(x))[∇ue(x)·(ξ +∇ue(x))]2
= θ′(ue(x))[ξ·∇2ue(x)ξ] + 2θ′(ue(x))[ξ·∇2ue(x)∇ue(x)]

+θ′(ue(x))[∇ue(x)·∇2ue(x)∇ue(x)] + θ′′(ue(x))|∇ue(x)|2.
Since the derivatives of θ are positive, and ∇ue(x) 6= 0, the key to (4.12) is having

(4.13)

−θ′′(ue(x))

θ′(ue(x))
|∇ue(x)|2 − [∇ue(x))·∇2ue(x)∇ue(x)]

≥ sup
ξ∈H(x)

{
ve(x)·ξ − ξ·Qe(x)ξ

}
,

where ve(x) = 2∇2ue(x)∇ue(x) and Qe(x) = −∇2ue(x).

This is where the negative-definiteness of the quadratic form on H(x) crucially
comes on stage, because we see in the supremum the operation of calculating the
conjugate of a strongly convex quadratic function on H(x) as a vector space of
dimension g−1 within IRg. For ξ ∈ H(x) the inner product ve(x)·ξ depends only on
the projection of ve(x) on H(x), and the supremum determines its value Ve(x) ≥ 0
at that projection. This value depends continuously on x, so we can rewrite the
desired inequality in (4.13) as

(4.14) −θ′′(ue(x))

θ′(ue(x))
≥ Ve(x) + [∇ue(x)·∇2ue(x)∇ue(x)]

|∇ue(x)|2

with the right side being a continuous function of x. In our search for θ satisfying
this, our attention is focused on having nonpositive θ′′ along with positive θ′, so we
can refine (4.14) to

(4.15) −θ′′(ue(x))

θ′(ue(x))
≥ max

{
0,

Ve(x) + [∇ue(x))·∇2ue(x)∇ue(x)]
|∇ue(x)|2

}
=: We(x).

Consider now a compact convex subset B of IRg
++. Enlarge it to have the vector

interval form [t0e, t1e], which is convenient because then t0 and t1 are the minimum
and maximum values of ue(x) for x ∈ B. Define

(4.16)
λB(t) = max

{
We(x)

∣∣x ∈ B, ue(x) = t
}

for t ∈ [t0, t1],
λB(t) = λB(t0) for t ∈ (0, t0), λB(t) = λB(t1) for t ∈ (t1,∞).

Then λB is a continuous nonnegative function on (0,∞) in terms of which the
targeted condition (4.15), with respect to x ∈ B, becomes

(4.17) −θ′′(t)

θ′(t)
≥ λB(t) for t ∈ [t0, t1], where

θ′′(t)

θ′(t)
=

d

dt
log θ′(t).
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By design, this is necessary and sufficient for u = θ ◦ ue to be concave on B =
[t0e, t1, e]. Now define

(4.18)
θB = the unique C2 concave function on (0,∞) having

−
θ′′B(t)

θ′B(t)
= λB(t) for all t, θB(t0) = 0, θ′B(t0) = 1.

This is obtained by integrating −λB(t) to get log θ′B(t) and then integrating the ex-
ponential of that to get θB(t); the two constants of integration are fixed by specifying
the values of θB and θ′B at t0. Concavity is guaranteed because the nonnegativity of
λB(t) dictates nonpositivity of θ′′B(t) in (4.18). Then uB(x) = θB(ue(x)) furnishes
a C2 utility representation that is concave relative to B.

We argue next that uB is minimally concave in this respect. Consider any other
C2 utility function u that is concave on B. It must be given by θ(ue(x)) for some
C2 concave rescaling function θ, but the claim is that also u(x) = θ∗(uB(x)) for
some C2 concave rescaling function θ∗, in which case necessarily

(4.19) θ(t) = θ∗(θB(t)), θ′(t) = θ′∗(θB(t))θ
′
B(t).

There is no loss of generality in normalizing θ to match θB in having θ(t0) = 0 and
θ′(t0) = 1. That pins down θ∗ to having θ∗(0) = 0 and θ′∗(0) = 1.

To derive the existence of θ∗, we appeal to the fact that θ has to satisfy (4.17),
whereas θB comes from (4.18), and therefore

(4.20)
≥ θ′′(t)

θ′(t)
−

θ′′B(t)

θ′B(t)
=

d

dt
log θ′(t)− d

dt
log θ′B(t)

=
d

dt
log ρ(t) for ρ(t) :=

θ′(t)

θ′B(t)
> 0.

Then ρ is a nonincreasing C1 function for which θ′∗(θB(t)) = ρ(t) by (4.19). Equiv-
alently we have θ′∗(s) = ρ(θ−1

B (s)), hence necessarily

θ′′∗(s) = ρ′(θ−1
B (s)) [θ−1

B ]′(s), or θ′′(θB(t)) =
ρ′(t)

θ′B(t)
.

Then θ′′∗(t) ≤ 0, because ρ′(t) ≤ 0 and θ′B(t) > 0. Obviously θ∗ as a C2 concave
function, increasing and having θ∗(0) = 0 and θ′∗(0) = 1, can be obtained from
this by integrating the expression derived for θ′′∗(s). Thus, uB is minimally concave
relative to B. □

Theorem 4.7 may be compared with a result of Aumann that can be distilled
from a complicated game-theoretic setting in [1, Lemma 15.1] where other issues are
simultaneously juggled for an uncountably infinite collection of preference relations
indexed by a measure space. He limits consideration to the case where the goods
space is all of IRg

+ and simply assumes outright that the preference relation can be
represented by a utility function that can be extended to be C2 on an open set
containing IRg

+.
14 Instead of appealing to strong convexity as we have laid out, he

invokes bounds on the Gaussian curvatures of the boundaries of the sets P (x) (which
is ultimately equivalent, although much more complicated to formulate). He then

14This is a serious restriction which importantly excludes, for instance, the popular preference
relations associated with Cobb-Douglas utilities.
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gets, for any bounded subset B of IRg
+ (not just of IRg

++) a C2 utility representation
on IRg

+ that is concave on B. Whether or not this is minimally concave is not
addressed. The uniquess up to affine rescaling is thereby missed, and with it the
conclusion that cardinal, rather than just ordinal, utility is at hand.

Question 4.8 (global concave utility representations). When can the result in
Theorem 4.7 be extended to obtaining a C2 utility representation that is minimally
concave on all of G, not just relative to arbitrarily large compact convex subsets B
of IRg

++?

Answer. Full information on that is contained in the proof of Theorem 4.7 in
terms of the functions Ve and We developed in (4.14) and (4.15). Define

(4.22) λ(t) = sup
{
We(x)

∣∣x ∈ IRg
++, ue(x) = t

}
for t ∈ (0,∞).

If this function is finite — and continuous — then all the constructions in the
proof of Theorem 4.7 go through perfectly well in a global manner with λ replacing
λB. □

The catch, of course, is knowing that λ(t) < ∞, for which the proof resorted
to truncating from G to the compact subset B. The continuity might conceivably
be tricky as well with the supremum in (4.22) being over an unbounded set. Both
could be taken care of by asking the indifference sets in the preference relation all
to be bounded, but that’s rather special and anyway would need to be combined
with conditions on how those sets meet the boundary of IRg

+.
The good thing is that every aspect of the function λ in (4.22) is inherent in the

preference relation itself, so any assumption about λ would be a condition on the
relation and not an artificial construct. The continuity and boundedness of λ could
just be adopted under some name like “tameness” as the preference relation property
that exactly corresponds to global representability by a C2 concave utility function
which is “natural” in being minimally concave and unique in that up to affine
rescaling. Still, a truly satisfying extension of Theorem 4.7 would require bringing
such a condition down to a property that is more on the surface of preference
behavior and easier to understand.
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