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space. May we develop a minimal integrity basis theory for second order tensors
in the Minkowski space or a flat Riemannian space? Such a theory will help us to
understand more about invariants in the Minkowski and Riemannian spaces and
thus provides a tool for the physics theories in these spaces.

This paper is devoted to this purpose. We study minimal integrity bases of second
order tensors in an n-dimensional flat Riemannian space V for n ≥ 2.

Though Riemannian spaces are much more complicated compared with Euclidean
spaces, spectral theory is still valid in Riemannian spaces. Thus, we start our work
by defining eigenvalues, eigenvectors and characteristic polynomials for second order
tensors in such an n-dimensional Riemannian space.

In the next section, we define invariants, polynomial invariants, integrity bases,
minimal integrity bases for tensors in V . We show that the number of invariants of
each degree in a minimal integrity basis is fixed.

In Section 3, we define powers and traces of second order tensors in V . We show
that for a second order symmetric or antisymmetric tensor A, for each degree k ≥ 1,
there is only one independent invariant trace(Ak). Any other invariant of degree k
is proportional to trace(Ak). Furthermore, we show that trace(Ak) = 0 if k is odd
and A is antisymmetric.

We define eigenvalues, eigenvectors and characteristic polynomials for second
order tensors in V in Section 4. We show that the coefficients of the characteristic
polynomial of a second order tensor A in V are polynomial invariants of A. In
this way, we show that if A is symmetric, then {trace(Ak) : k = 1, . . . , n} is a
minimal integrity basis of invariants of A, if A is symmetric and traceless, then
{trace(Ak) : k = 2, . . . , n} is a minimal integrity of invariants of A, and if A is
antisymmetric, then {trace(A2k) : 2 ≤ 2k ≤ n} is a minimal integrity of invariants
of A. We also show that the coefficients of their characteristic polynomials also
form their minimal integrity bases.

In Section 5, we study the special cases in the Minkowski space and applications
in electrodynamics, etc. Section 6 is the conclusion section of this paper.

2. Basic definitions

We use the notation of [17]. The summation convention is used. Suppose that V
is an n-dimensional real flat Riemannian space for n ≥ 2, with a metric tensor gij ,
where gij = gji and det(gij) ̸= 0. The inverse of gij is gij such that

gijgjk = δi·k,

where δi·k is the Kronecker symbol such that

δi·j = δ·ji =

{
1 if i = j,
0 otherwise.

Let A, . . . , G be tensors in V . A function f(A, . . . , G) is called an invariant of
A, . . . , G if its value is not changed under any smooth nonsingular transformation of
the coordinates. We now explain this definition in more detail. Assume that in the

coordinate system {xi}, A has the form Ai...j
k...l. Then in another coordinate system
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{xi′} after a smooth nonsingular transformation, A should have the form

Ai′...j′

k′...l′ = Ai...j
k...lp

i′
i . . . pj

′

j p
k
k′ . . . p

l
l′ ,

where

pi
′
i =

∂xi
′

∂xi
, pii′ =

∂xi

∂xi′
, pii′p

i′
j = δi·j .

See Page 132 of [17] for these expressions. If

f(A, . . . , G) = f(Ai...j
k...l, . . . , G

r...s
t...u) = f(Ai′...j′

k′...l′ , . . . , G
r′...s′
t′...u′),

then f is called an invariant of A, . . . , G.
If f is resulted by tensor operations of A, . . . , G and some real scalars, then f

is called a polynomial invariant of A, . . . , G. If f is resulted by contractions of
A, . . . , G, multiplied with some real scalars, where each of A, . . . , G can be used
several times, then f is called a monomial invariant. The degree of a monomial
invariant is the times of A, . . . , G appearing there. A monomial invariant is called
an irreducible monomial invariant if it is not a product of monomial invariants
of lower degrees. The sum of monomial invariants with the same degree is a ho-
mogeneous polynomial invariant. The sum of irreducible monomial invariants
with the same degree is an irreducible homogeneous polynomial invariant.
A homogeneous polynomial invariant with degree 1 is called a linear invariant.
Then, a polynomial invariant is always the sum of some homogeneous polynomial
invariants with different degrees.

A set of polynomial invariants {f1, . . . , fr} of tensors A, . . . , G is called an in-
tegrity basis of A, . . . , G, if any polynomial invariant f is a polynomial of f1, . . . , fr.
It is further called a minimal integrity basis of A, . . . , G, if none of f1, . . . , fr can
be expressed as a polynomial of the other r−1 invariants. According to Hilbert [21],
A, . . . , G always have a finite integrity basis. Also, we may only consider integrity
bases consisting of homogeneous polynomial invariants. Thus, we may talk about
degrees of invariants in a minimal integrity basis.

Proposition 2.1. Suppose that A, . . . , G are tensors in V . Then for any positive
integer m, the number of invariants of degree m in any minimal integrity basis of
A, . . . , G is fixed.

Dixmier and Lazard [6] also made an observation on this proposition. We now
sketch the proof of this proposition. Given a minimal integrity basis L of A, . . . , G,
we may always replace each homogeneous polynomial invariant in L by an irre-
ducible homogeneous polynomial invariant with the same degree. Thus, we may
assume that L consists of only irreducible homogeneous polynomial invariants. Let
M be the set of all irreducible homogeneous polynomial invariants of A, . . . , G, with
degree m. Then M is a linear space. By linear algebra, any base of M has the same
cardinality, which is the dimension of M . On the other hand, the irreducible ho-
mogeneous polynomial invariants of A, . . . , G, in L with degree m, forms a base of
M .
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3. Traces of powers of second order tensors in V

There are four kinds of forms of second order tensors in V : a second order
contravariant tensor Aij , a second order covariant tensor Aij , a second order mixed

tensor A·j
i , where the covariant index comes first, and a second order mixed tensor

Ai
·j , where the contravariant index comes first. Their transposes are defined as:

(Aij)⊤ = Aji, (Aij)
⊤ = Aji, (A·j

i )
⊤ = Aj

·i, (Ai
·j)

⊤ = A·i
j .

If

Aij = (Aij)⊤ = Aji,

then Aij is called a second order symmetric contravariant tensor. If

Aij = −(Aij)⊤ = −Aji,

then Aij is called a second order antisymmetric contravariant tensor. Similarly, if

Aij = (Aij)
⊤ = Aji,

then Aij is called a second order symmetric covariant tensor. If

Aij = −(Aij)
⊤ = −Aji,

then Aij is called a second order antisymmetric covariant tensor. There is no second
order mixed symmetric or antisymmetric tensor since switching indices of a mixed
tensor would change its type.

Note that we may convert these different kinds of second order tensor forms from
one to another, such as

A·j
i = Aikg

kj .

Also we see that the contravariant form of a second order tensor is symmetric or
antisymmetric if and only if its covariant form is symmetric or antisymmetric respec-
tively. Thus, we may say that a second order tensor is symmetric or antisymmetric
if its contravariant form /covariant form is symmetric or antisymmetric respectively.

The products between vectors and second order tensors follow tensor algebra.
The product of two second order mixed tensors also follow tensor algebra. In this
way, we may define the squares of second order tensors

(A·j
i )

2 = A·k
i A

·j
k , (Ai

·j)
2 = Ai

·kA
k
·j , (Aij)2 = AikgklA

lj , (Aij)
2 = Aikg

klAlj .

We may define higher powers of second order tensors similarly.

The trace of a second order tensor Aij or Aij or A·j
i or Ai

·j is defined as

A·i
i = Ai

·i = Aijgij = Aijg
ij .

Hence, we may simply denote it as trace(A). Since

A·i′
j′ = A·i

j p
i′
i p

j
j′ ,

under any smooth nonsingular transformation, trace(A) is a linear invariant of a
second order tensor A. A second order tensor is called a traceless tensor if its trace
is equal to zero. A second order antisymmetric tensor is always traceless as for such
a tensor A we have

trace(A) = Aijgij = −Ajigji = −trace(A).
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Since

Ajigij = Aijgji = Aijgij ,

any linear invariant of a second order tensor A is proportional to its trace. Then
trace(Am) is a monomial invariant of A with degree m. In general, for m ≥ 2,
there are more than one linearly independent monomial invariants. For example, in
general,

AijgjkA
lkgli ̸= trace(A2) = AijgjkA

klgli.

However, we have the following theorem.

Theorem 3.1. Suppose that A is a second order symmetric tensor or a second order
antisymmetric tensor in V . Then any irreducible homogeneous polynomial invariant
of A with degree m, where m is a positive integer, is proportional to trace(Am). If
A is antisymmetric and m is odd, then trace(Am) = 0.

Proof. Consider the case that m = 2. Let f be an irreducible monomial invariant
of A, with degree 2. Then f is proportional to one of the following three forms:

trace(A2) = AijgjkA
klgli,

AijgjkA
lkgli

and

AjigjkA
lkgli.

If A is symmetric, then

AijgjkA
lkgli = AjigjkA

lkgli = AijgjkA
klgli = trace(A2).

If A is antisymmetric, then

AijgjkA
lkgli = −AijgjkA

klgli = −trace(A2)

and

AjigjkA
lkgli = AijgjkA

klgli = trace(A2).

Thus, any irreducible monomial invariant of A with degree 2 is proportional to
trace(A2). Since an irreducible homogeneous polynomial invariant is a sum of irre-
ducible monomial invariants, it is also proportional to trace(A2). We may see that
the above proof can be extended to m > 2.

Now let m be odd and A be antisymmetric. Then

trace(Am) = trace(A⊤)m = −trace(Am).

Thus,

trace(Am) = 0.

The proof is complete. □
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4. Eigenvalues and eigenvectors of second order tensors

We now extend V to an n-dimensional complex flat Riemannian space VC such
that we may study eigenvalues and eigenvectors of second order tensors in V .

Definition 4.1. Consider a second order real mixed tensor Ai
·j . If there exist a

λ ∈ C and a nonzero contravariant vector xj ∈ VC such that

Ai
·jx

j = λxi,(4.1)

then λ is called an eigenvalue of Ai
·j and xj is called an eigenvector associated with

the eigenvalue λ. (λ, xj) is called an eigenpair of Ai
·j .

Remark 4.2. (4.1) can be replaced by its contravariant form:

Aijxj = λgikxk.(4.2)

In fact, if (4.1) holds, then

Aijxj = Aijgjkx
k = Ai

·jx
j = λxi = λgijxj ,

i.e., (4.2) holds; and if (4.2) holds, then

Ai
·jx

j = Aikgkjx
j = Aikxk = λgikxk = λxi,

i.e., (4.1) holds.
Equation (4.1) can also be replaced by its mixed form:

A·j
i xj = λxi,

or its covariant form:

Aijx
j = λgikx

k.

The eigenvalue equation (4.1) is a tensor equation. Hence eigenvalue λ is an
invariant of the second order tensor A. However, the eigenvalue λ is not a polynomial
invariant of A, and may not be real.

From (4.1) it follows that

(λδi·j −Ai
·j)x

j = 0.(4.3)

Since xj ̸= 0, it follows from (4.3) that

ϕ(λ) := det(λδi·j −Ai
·j) = 0.

The one dimensional polynomial ϕ(λ) is called the characteristic polynomial of the
second order tensor A. We may write that

ϕ(λ) = λn +

n∑
k=1

(−1)kak(A)λn−k.

According to the relationship between the coefficients and roots of a polynomial,
ak(A), k = 1, . . . , n, are real polynomial invariants of A. In particular,

a1(A) = trace(A),

and we may define an(A) as the determinant of A, i.e.,

an(A) = det(A).
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We see that the Cayley-Hamilton theorem still holds for A, i.e.,

ϕ(Ai
·j) ≡ (Ai

·j)
n +

n∑
k=1

(−1)kak(A)(Ai
·j)

n−k = 0i·j ,

where

(Ai
·j)

0 = δi·j .

We now have the following theorem.

Theorem 4.3. If A is a second order symmetric tensor in V , then {trace(Ak) :
k = 1, . . . , n} is a minimal integrity basis of A, and {ak(A) : k = 1, . . . , n} is
another minimal integrity basis of A. If A is a second order symmetric and traceless
tensor in V , then {trace(Ak) : k = 2, . . . , n} is a minimal integrity basis of A, and
{ak(A) : k = 2, . . . , n} is another minimal integrity basis of A. If A is a second
order antisymmetric tensor in V , then

ak(A) = 0,

when k is odd, {trace(A2k) : 2 ≤ 2k ≤ n} is a minimal integrity basis of A, and
{ak(A) : 2 ≤ 2k ≤ n} is another minimal integrity basis of A.

Proof. Suppose that A is a second order symmetric tensor in V . Let L0 = {trace(Ak) :
k = 1, . . . , n}. Suppose that f is an irreducible homogeneous polynomial invariant
of degree m. Then by Theorem 3.1, f is proportional to trace(Am). By the Cayley-
Hamilton theorem, Am is a polynomial of A,A2, . . . , An. Thus, f is a polynomial
of the invariants of L0. This shows that L0 is an integrity basis of A. As trace(Ak)
for k = 1, . . . , n, are irreducible monomial invariants, we see that L0 is a minimal
integrity basis. It is known that trace(Ak) is a polynomial of a1(A), . . . , ak(A) for
k = 1, . . . , n [20], {ak(A) : k = 1, . . . , n} is also an integrity basis of A. By Theorem
2.1, it is also a minimal integrity basis of A.

The conclusions for a second order symmetric and traceless tensor follow directly.
We also know that ak(A) is a polynomial of trace(A), . . . , trace(Ak) [20]. If k

is odd and A is antisymmetric, by Theorem 3.1, we have ak(A) = 0. The other
conclusions can be proved similarly as above. □

As Theorem 3.1 is not true for general second order tensors in V , this theorem
is also not true for general second order tensors in V .

5. The Minkowski space

Let V be the Minkowski space. Then n = 4. Instead of using i = 1, 2, 3, 4,
people use α = 0, 1, 2, 3 in the Minkwski space, where α = 0 corresponds the time
component ct with c as the speed of light, and α = 1, 2, 3 corresponds the space
components. The metric tensor in the Minkowski space V has the form

G = gαβ = gαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 =

(
1 0⊤

0 −I

)
,

where 0 is the zero 3-vector, and I is the identity 3-tensor.
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The contravariant form of a second order antisymmetric tensor in V has the form

Aαβ =


0 −e1 −e2 −e3
e1 0 −b3 b2
e2 b3 0 −b1
e3 −b2 b1 0

 .

The most well-known example of such a second order antisymmetric tensor is the
electromagnetic tensor in electrodynamics [3, 8, 17]. Then

e =

 e1
e2
e3


is the electric field 3-vector and

b =

 b1
b2
b3


is the magnetic field 3-vector. The characteristic polynomial of Aαβ is

ϕ(λ) = λ4 + a2(A)λ
2 + a4(A),

where a2(A) = −1
2trace(A

2) and a4(A) = det(A). We have

(Aαβ)2 = AαγgγσA
σβ

=


e21 + e22 + e23 e2b3 − e3b2 −e1b3 + e3b1 e1b2 − e2b1
e2b3 − e3b2 −e21 + b23 + b22 −e1e2 − b1b2 −e1e3 − b1b3
−e1b3 + e3b1 −e1e2 − b1b2 −e22 + b23 + b21 −e2e3 − b2b3
e1b2 − e2b1 −e1e3 − b1b3 −e2e3 − b2b3 −e23 + b21 + b22

 ,

a2(A) = −1

2
trace(A2) = −1

2
AαγgγσA

σβgβα = b · b− e · e

and

a4(A) = det(A) = (e · b)2.
By Theorem 4.3, {e · e − b · b, (e · b)2} is a minimal integrity basis of Aαβ . This
shows that e · e and b · b are not invariants in V , but e · e− b · b is an invariant in
V , and it forms a minimal integrity basis of the electromagnetic tensor Aαβ , with
another invariant (e · b)2. In [3, 8], e · b is called a pseudoscalar invariant. It is
invariant under the Lorentz transformations whose determinants are equal to 1. In
a certain sense, a pseudoscalar invariant is corresponding to a hemitropic invariant
in [21].

Another example of a second order antisymmetric tensor in the Minkowski space
is the acceleration tensor in covariant theory of gravitation [9]. Then e and b here
are the acceleration field strength 3-vector and the solenoidal acceleration 3-vector.

The contravariant form of a second order symmetric tensor in V has the form

Aαβ =

(
d p⊤

p −T

)
,

where d is the (0, 0) component of A, p is a 3-vector, and T is a symmetric 3-tensor.
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The most well-known example of a second order symmetric and traceless tensor
A is the electromagnetic stress-energy tensor in electrodynamics [3,17]. In this case,
d is the energy density and p is the Poynting vector, and T is the Maxwell stress
tensor. In this case, we have a1(A) = trace(A) = 0. The characteristic polynomial
of Aαβ is

ϕ(λ) = λ4 + a2(A)λ2 − a3(A)λ3 + a4(A),

where

a2(A) = −1

2
trace(A2) = −1

2

[
d2 − 2p⊤p+ trace(T2)

]
,

a3(A) =
1

3
trace(A3) =

1

3

[
d3 − 3dp⊤p− 3p⊤Tp+ trace(T3)

]
and

a4(A) = det(A)

=
1

8

[
trace(A2)

]2 − 1

4
trace(A4)

= −d4 + 12p⊤p− 4d2p⊤p− 2(p⊤p)2 + (trace(T2))2

+2d2trace(T2)− 4p⊤p · trace(T2) + 8dp⊤Tp

+4p⊤T2p− trace(T4).

We also have

d = trace(A) + trace(T) = trace(T),

which is always nonnegative.
An example of a second order symmetric tensor is the stress-energy tensor in

gravitation theory [11]. In this case, we have

a1(A) = trace(A) = d− trace(T),

a2(A) =
1

2

[
(trace(A))2 − trace(A2)

]
=

1

2

[
2p⊤p− 2d · trace(T) + (trace(T))2 − trace(T2)

]
,

a3(A) =
1

6

[
(trace(A)3 − 3trace(A)trace(A2) + 2trace(A3)

]
=

1

6

[
−3d(trace(T))2 − (trace(T))3 − 3dtrace(T2)

+6p⊤p · trace(T)− 3trace(T)trace(T2)− 6p⊤Tp+ 2trace(T3)
]
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and

a4(A) = det(A)

=
1

24
(trace(A))4 +

3

8
trace(A)trace(A3)− 1

4
[trace(A)]2 trace(A2)

+
1

8

[
trace(A2)

]2 − 1

4
trace(A4)

=
1

24

[
4d(trace(T))3 + (trace(T))4 − 12d · trace(T)trace(T2)

+12p⊤p(trace(T))2 − 6(trace(T))2trace(T2) + 8d · trace(T3)

−24p⊤Tp · trace(T) + 8trace(T)trace(T3) + 3(trace(T2))2

−12d2p⊤p+ 24p⊤p− 12p⊤p · trace(T2)

−12(p⊤p)2 + 24p⊤T2p− 6trace(T4)
]
.

We do not go to more details.

6. Conclusions

In this paper, we studied the invariant theory for second order tensors
in an n-dimensional flat Riemannian space. Very basic definitions such as eigen-
value/eigenvector etc were built. We further studied the invariants and minimal
integrity bases for second order tensors. In particular, we showed that if A is a
second order symmetric tensor in an n-dimensional flat Riemannian space V , then
{trace(Ak) : k = 1, . . . , n} is a minimal integrity basis of A, and {ak(A) : k =
1, . . . , n} is another minimal integrity basis of A, where ak(A) are the coefficients of
the characteristic polynomial of A. Applications in electrodynamics were addressed.
Some future possible works include the invariant theory of fourth order tensors in
a Riemannian space.

References

[1] H. Aslaksen, E.-C. Tan and C.-B. Zhu, Invariant Theory of Matrices, In: Symmetries in
Science, VIII, pp.13, Plenum, New York, 1995.

[2] H. Aslaksen, E.-C. Tan and C.-B. Zhu, Invariant theory of special orthogonal groups, Pacific
J. Math. 168 (1995), 207–215.

[3] C. A. Brau, Modern Problems in Classical Electrodynamics, Oxfornd University Press, New
York, 2004.

[4] T. Crilly, The rise of Cayley’s invariant theory (1841-1862), Historia Math. 13 (1986), 241–
254.

[5] T. Crilly, The decline of Cayley’s invariant theory (1863-1895), Historia Math. 15 (1988),
332–347.

[6] J. Dixmier and D. Lazard, Minimum number of fundamental invariants for the binary form
of degree 7, J. Symbolic Comput. 6 (1988), 113–115.

[7] A. Einstein, H. A. Lorentz, H. Minkowski and H. Weyl, The Principal of Relativity, Dover
Publications, New York, 1952.

[8] C. A. Escobar and L. F. Urrutia, Invariants if the electromagnetic field, J. Math. Phys. 55
(2014): 032902.

[9] S. G. Fedosin, About the cosmological constant, acceleration field, pressure field and energy,
Jordan J. Phys. 9 (2016), 1–30.



MINIMAL INTEGRITY BASES OF INVARIANTS OF SECOND ORDER TENSORS 1475

[10] H. Kraft and C. Procesi, Classical Invariant Theory: a Primer, http://www.math.unibas.ch/
kraft/Papers/KP-Primer.pdf, Basel, 2000.

[11] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San
Francisco, 1973.

[12] D. Hilbert, Theory of Algebraic Invariants, Cambridge University Press, Cambridge, 1993.
[13] M. Olive and N. Auffray, Isotropic invariants of completely symmetric third-order tensor, J.

Math. Phys. 55 (2014): 092901.
[14] M. Olive, B. Kolev and N. Auffray, A minimal integrity basis for the elasticity tensor, Arch.

Rational Mech. Anal. 226 (2017), 1–31.
[15] K. H. Parshall, Toward a history of ninettenth century invariant theory, In: The History of

Modern Mathematics, Academic Press, Boston, 1989.
[16] C. Procesi, Lie Groups: An Approach through Invariants and Representations, Springer, New

York, 2007.
[17] W. Rindler, Relativity: Special, General, and Cosmological, Second Edition, Oxford University

Press, New York, 2006.
[18] G. F. Smith and G. Bao, Isotropic invariants of traceless symmetric tensors of orders three

and four, Int. J. Eng. Sci. 35 (1997), 1457–1462.
[19] H. Weyl, The Classical Groups: Their Invariants and Representations, Fifteenth printing,

Princeton University Press, Princeton, NJ, 1997.
[20] H. H. Zhang, W. W. Yan and X. S. Li, Trace formulae of characteristic polynomial and

Cayley-Hamilton’s theorem, and applications to Chiral perturbation theory and general relativ-
ity, Commun. Theor. Phys. 49 (2008), 801–808.

[21] Q. S. Zheng, Theory of representations for tensor functions - A unified invariant approach to
constitute equations, Appl. Mech. Rev. 47 (1994), 545–587.

Manuscript received August 2 2022

revised October 10 2023

L. Qi
Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018,
P.R. China;
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong

E-mail address : maqilq@polyu.edu.hk

Z. H. Huang
School of Mathematics, Tianjin University, Tianjin 300350, P.R. China

E-mail address : huangzhenghai@tju.edu.cn


