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with the lower level optimal solution set-valued mapping Ψ defined by

(1.3) Ψ(x) := Argmin
y

{x⊤y |Ay ≤ b},

where x,y ∈ Rn, d ∈ Rm, b ∈ Rl and all the remaining vectors and matrices
are of appropriate dimensions. Note that the matrix A involved in (1.3) does not
depend on the parameter x and the function F is assumed to be twice continuously
differentiable. The term simple bilevel program for this class of problem was coined
in the paper [30], referring to the fact that the upper (resp. lower) level feasible set
is independent from y (resp. x). However, it is important to mention that the same
expression was initially used in [11] to name a completely different class of problem,
that can be traced back to [31] and has been investigated in various publications;
see, e.g., [4, 21,42,43].

It is clear that the lower level problem (1.3) is linear (w.r.t. y), but with a left-
hand-side perturbation. However, problem (1.2) is still a significantly difficult class
of problem; to have a taste of this, consider the following example, where F is any
real-valued function and x and y are one-dimensional:

(1.4)
min
x,y

F (x,y)

s.t. x ∈ [−1, 1], y ∈ Argmin {xy | y ∈ [0, 1]}.

The feasible set of the problem is depicted in the following picture:

Clearly, the feasible set of problem (1.4), represented by the thick line segments, is
the union of convex polyhedral sets; but it is not a convex set itself. Hence, finding a
global optimal solution for problem (1.2)–(1.3) is generally not an easy task. This is
why our focus in this paper will be on computing stationary points of the problem,
which can potentially be locally optimal.

Note that if we replace the lower level problem (1.3) with the following one, where
the perturbation is instead in the right-hand-side, we get a much easier optimization
problem:

(1.5) Ψ(x) := Argmin
y

{c⊤y |Ay ≤ x}.

Problem (1.5) is fully convex, in the sense that the objective and constraint func-
tions are convex in (x,y). Thanks to this, some specific algorithms work well for
(1.2), (1.5), but cannot be implemented on (1.2), (1.3); cf. [12, Chapter 3]. Also,
the optimal value function of problem (1.5) is convex and (1.2), (1.5) is partially
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calm [34]. The latter properties are critical in addressing problem (1.2), (1.5) the-
oretically and numerically. But unfortunately, they cannot hold for (1.2), (1.3).
This probably justifies why problem (1.2), (1.5) has been at the center of attention
in the development of solution algorithms for linear bilevel programs; see, e.g., [5]
for the most recent literature review on the subject. Note that the approach to be
developed in this paper can be applied to problem (1.2), (1.5) as well.

There are various practical bilevel programs with linear lower-level problems that
are not covered by the model (1.2), (1.5). Among them, we have some network op-
timization problems that are commonly studied and used in operations research,
such as the shortest path, transportation, minimal-cost network-flow, and toll opti-
mization (also known as optimal toll-setting or network pricing) problems [3,19,29].
This last class of problem will be used in Section 5 to illustrate the practical imple-
mentation of the algorithm developed in this paper.

To tackle problem (1.2), (1.3), we consider its Karush-Kuhn-Tucker (KKT) re-
formulation, as the required lower level convexity and regularity are both auto-
matically satisfied [13]. Then, using a certain tractable transformation process, we
construct a partial exact penalization of problem (1.2), (1.3) and show its close link
with the KKT reformulation; cf. Section 3. In the context of this penalized prob-
lem, we investigate a local convergence method (see, e.g., [20, 36, 39]) in Section 4,
where sufficient conditions ensuring its convergence are established and developped
a smoothed-regularized Newton method. The method is then implemented on the
toll optimization problem in Section 5.

It is important to recall that Newton-type methods based on the KKT or value
function reformulations of general versions of the bilevel optimization problem (1.2),
(1.3) have been studied recently in [24, 25, 47]. These works typically require the
partial calmness property, which does not necessarily hold for problem (1.2), (1.3);
cf. [34]. Moreover, for this problem specifically, very little work tailored to it has
been done in the literature. We are aware of the paper [15], where an algorithm
based on the optimal value reformulation to compute local and global optimal so-
lutions is derived. In [16] the authors propose an approach to solve (1.2), (1.3) in
the discrete case through the optimal value reformulation approach as well. For a
more general version of the problem, the authors in [30] design smoothing projected
gradient algorithm for simple bilevel programs with a nonconvex lower level pro-
gram using the optimal value reformulation approach. The main difference between
those approaches and the one that we are proposing is on the reformulation used
to replace the original problem into a single-level optimization problem. In fact,
while we use the KKT reformulation, the other works apply the concept of partial
calmness through the optimal value reformulation to derive necessary optimality
conditions of (1.2), (1.3). A comparison between both reformulations can be found
in [47].

Before, we go deep in the analysis as described above, we start with some pre-
liminary elements in the next section.

2. Preliminaries

Here, we introduce some preliminary concepts that will be used later in this
paper. First, note that a function Φ : Rn → Rm is said to be locally Lipschitz
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continuous around x0 ∈ Rn if there exist α > 0 and L > 0 such that the following
condition holds:

∀x,x′ ∈ x0 + αBRn : ‖Φ(x)− Φ(x′)‖Rm ≤ L‖x− x′‖Rn .

We denote by BRn the closed unit ball in Rn and the number L is called the Lipschitz
constant. Φ will be said to be locally Lipschitz continuous if it is locally Lipschitz
continuous around every point of Rn. It is said to be Lipschitz continuous if the
above inequality holds with α = ∞. Recall that any convex function is locally
Lipschitz continuous on the relative interior of its domain.

Consider a locally Lipschitz continuous function Φ : Rn → Rm. According to
Rademacher’s theorem [7], Φ is differentiable almost everywhere. Let DΦ denote
the set of all the points where Φ is differentiable. Then, we can define the Bouligand
subdifferential of Φ at x ∈ Rn by

∂BΦ(x) := {C ∈ Rm×n |C = lim
k→∞

∇Φ(xk), xk → x, xk ∈ DΦ}.
The generalised Jacobian of Φ in the sense of Clarke [7] is given by

∂Φ(x) := conv ∂BΦ(x),

where conv stands for the convex hull. The postulated local Lipschitz continuity
property of Φ around x guarantees that the set ∂Φ(x) is nonempty and compact.
If Φ is a convex function, then ∂Φ(x) coincides with the subdifferential in the sense
of convex analysis.

Next we introduce the notion of semismoothness introduced in [35] and extended
to vector-valued functions in [37, 39]. A function Φ : Rn → Rm is said to be
semismooth at a given point x if Φ is directional differentiable at x and for any
C ∈ ∂Φ(x+ h),h → 0

Φ(x+ h)− Φ(x)−Ch = o(‖h‖).
The function Φ is said to be strongly semismooth at x if Φ is semismooth at x and
it holds that

Φ(x+ h)− Φ(x)−Ch = O(‖h‖2), ∀C ∈ ∂Φ(x+ h),h → 0.

Any continuously differentiable function is obviously semismooth. But this is not
necessarily the case for a locally Lipschitz continuous function [35]. However, piece-
wise linear functions are strongly semismooth and a special case from such a class,
that will be of a particular interest in this paper is t 7→ max(0, t). Its Clarke
subdifferential can be obtained as

v ∈ ∂max(0, t) ⇐⇒ v ∈


{1} if t > 0,

{0} if t < 0,

[0, 1] if t = 0.

Throughout the paper, we use Rn
+ and Rn×m to denote the cone of n-dimensional

real-valued vectors with nonnegative components and the set of real-valued matrices
with n rows and m columns, respectively. Furthermore we denote by 0, I, and e the
null matrix, the identity matrix and the vector of ones of appropriate dimension,
respectively. Boldface lower-case letters represent vectors and boldface upper-case
letters represent a matrix.
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3. Single-level reformulation

Considering problem (1.2), (1.3), it is obvious that its lower level problem is both
convex and linear w.r.t. the lower level variable y. Hence, the KKT reformulation
of the problem can be written as follows without any additional requirement:

(3.1)

min
x,y,z

F (x,y)

s.t. Dx ≤ d, A⊤z+ x = 0,
Ay ≤ b, z ≥ 0, z⊤(Ay − b) = 0.

Reference [13] provides a detailed analysis of the relationship between this refor-
mulation and the original problem (1.2), (1.3). One of the main issues in solving
problem (3.1) with standard continuous optimization techniques is the presence of
the complementarity conditions

(3.2) (b−Ay)i ≥ 0, zi ≥ 0, zi (b−Ay)i = 0 for i = 1, . . . , l

in the feasible set, which causes the failure of well-known constraint qualifications
(see, e.g., [18]). To deal with this issue here, we start by considering the reformula-
tion

(3.3) min
(ri,si)∈Ti

rizi + si(b−Ay)i = 0 for i = 1, . . . , l,

of the complementarity conditions (3.2), where, for i = 1, . . . , l, the set Ti is defined
by

(3.4) Ti := {(ri, si) ∈ R2 | ri ≥ 0, si ≥ 0, ri + si = 1}.

Note that the transformation (3.3) obviously follows in an equivalent way from (3.2),
since (3.2) is identical to min (zi, (b−Ay)i) = 0 for i = 1, . . . , l.

Based on (3.3), we consider the following penalization of (3.1):

(Pα) min
x,y,z

F (x,y) + απ(y, z) s.t. (x,y, z) ∈ Z1,

where α > 0 represents the penalization parameter and the function π and set Z1

are respectively defined as follows:

π(y, z) :=
∑l

i=1 min
(ri,si)∈Ti

rizi + si(b−Ay)i ≥ 0,

Z1 := {(x,y, z) |Dx ≤ d, Ay ≤ b, A⊤z+ x = 0, z ≥ 0}.

To establish the relationship between (Pα) and (3.1), let T :=
∏l

i=1 Ti and let Z∗
1

be the set of vertices of the polyhedra Z1.
We suppose in the rest of the paper, unless stated otherwise, that there exists at

least one optimal solution of the bilevel optimization problem which belongs to the
set Z∗

1 . We then have the following result inspired by [32, Proposition 3.1].

Proposition 3.1. Assume that for all α > 0, problem (Pα) possesses an optimal
solution which belongs to Z∗

1 . Then there exists a scalar ᾱ > 0 such that for all
α ≥ ᾱ the following two statements are valid:

(i) Any global optimal solution (x̄α, ȳα, z̄α) of problem (Pα) which belongs to
Z∗
1 solves problem (3.1) globally.
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(ii) Any global optimal solution (x̄, ȳ, z̄) of problem (3.1) optimally solves prob-
lem (Pα) globally.

Proof. For (i), we start by noting that any global solution (x̄α, ȳα, z̄α) of (Pα) which
belongs to Z∗

1 and satisfy π(ȳα, z̄α) = 0 solves (3.1) globally. In fact let (x,y, z) be
a feasible point of (3.1). We have

F (x,y) = F (x,y) + απ(y, z) ≥ F (x̄α, ȳα) + απ(ȳα, z̄α) = F (x̄α, ȳα).

Hence it suffices to show that for all sufficiently large α, every global solution
(x̄α, ȳα, z̄α) of (Pα) which is an extreme point of Z1 satisfies π(ȳα, z̄α) = 0. We
suppose that this is not true. Then there exist sequences {αk} → ∞ and {Xk :=
(xk,yk, zk)}k ⊆ Z∗

1 where Xk is optimal solution of (Pα) and π(yk, zk) > 0. Due
to the fact that the set of extreme points Z∗

1 is finite we have

β := inf
k

π(yk, zk) > 0 and ρ := inf
k

F (xk,yk) > −∞.

Then for any feasible point (x,y, z) of (3.1) it holds that

F (x,y) ≥ F (xk,yk) + αkπ(yk, zk) ≥ ρ+ αkβ.

Therefore, for k → ∞ we get F (x,y) = ∞ and this is a contradiction. Consequently
there exists a scalar ᾱ > 0 such that for all α ≥ ᾱ any optimal solution of (Pα)
which belongs to Z∗

1 solves (3.1).
As for (ii), let ᾱ > 0 be the penalization parameter whose existence has been

proved in the first assertion of this proof. Let (x̄, ȳ, z̄) be a global optimal solution
of (3.1). Let α ≥ ᾱ and X̄α := (x̄α, ȳα, z̄α) be a global optimal solution of (Pα)
which belongs to Z∗

1 (such point exists from our assumption). Then (x̄α, ȳα, z̄α)
solves (3.1) from the first-proved assertion. We want to show that (x̄, ȳ, z̄) solves
(Pα). For any feasible solution Xα = (xα,yα, zα) of (Pα), for α ≥ ᾱ,

F (xα,yα) + απ(yα, zα) ≥ F (x̄α, ȳα) + απ(ȳα, z̄α)

= F (x̄α, ȳα)

= F (x̄, ȳ)

= F (x̄, ȳ) + απ(ȳ, z̄),

where the first and second equality are due to the fact that on the first hand X̄α

belongs to Z∗
1 (see also the first assertion) and on the second hand (x̄α, ȳα, z̄α) and

(x̄, ȳ, z̄) solve (3.1). Therefore the point (x̄, ȳ, z̄) solves (Pα). □
Remark 3.2. One way to ensure the existence of solution of (Pα) which belongs
to Z∗

1 is to assume that the function F is concave, the set Z1 is nonempty and
F is bounded below on Z1. In fact since the set Z1 is a polyhedral containing no
lines (it is not difficult to verify it since Z1 is supposed to have at least one extreme
point) and that for all α, the mapping (x,y, z) 7→ F (x,y) + απ(y, z) is concave,
we conclude using Corollary 32.3.4 in [41] or [1, Theorem 3.4.7] that (Pα) is well
defined and there exists an optimal solution which belongs to Z∗

1 .

Proposition 3.3. Assume that for all α > 0, problem (Pα) possesses an optimal
solution which belongs to Z∗

1 . Then there exists a scalar ᾱ > 0 such that for all
α ≥ ᾱ, the following two assertions hold:



NEWTON-TYPE METHOD FOR BILEVEL PROGRAMS 1443

(i) Any local optimal solution (x̄α, ȳα, z̄α) of (Pα) which belongs to Z∗
1 solves

(3.1) locally.
(ii) Any local optimal solution (x̄, ȳ, z̄) of problem (3.1) solves (Pα) locally if

from any sequence, (x̄n
α, ȳ

n
α, z̄

n
α), of feasible points of problem (Pα) that con-

verges to (x̄, ȳ, z̄), there exists a sequence (ỹn
α, z̃

n
α) converging to (ȳ, z̄) such

that (x̄n
α, ỹ

n
α, z̃

n
α) is feasible for (3.1) and F (x̄n

α, ȳ
n
α) = F (x̄n

α, ỹ
n
α).

Proof. Let ᾱ > 0 as given in the first part of the proof of Proposition 3.1.
For (i), let (x̄α, ȳα, z̄α) be a given local solution of (Pα). Then (x̄α, ȳα, z̄α) is also

a local solution of (3.1). In fact we suppose that it is not true. Then there exists
a sequence of feasible points (x̄n, ȳn, z̄n)n for (3.1) converging to (x̄α, ȳα, z̄α) such
that F (x̄n, ȳn) < F (x̄α, ȳα) for all n ∈ N. Since (x̄n, ȳn, z̄n) is feasible for (3.1), we
get π(ȳn, z̄n) = 0. Therefore, we have the following inequalities, which lead to a
contradiction:

F (x̄n, ȳn) + απ(ȳn, z̄n) = F (x̄n, ȳn) < F (x̄α, ȳα) ≤ F (x̄α, ȳα) + απ(ȳα, z̄α).

About the feasibility of (x̄α, ȳα, z̄α) for (3.1), we can show (similarly as in the proof
of Proposition 3.1) that for all sufficiently large α, every local solution (x̄α, ȳα, z̄α)
of (Pα) which is an extreme point of Z1 satisfies π(ȳα, z̄α) = 0.

In the case of (ii), let (x̄, ȳ, z̄) be a local optimal solution of (3.1). We suppose
by contradiction that (x̄, ȳ, z̄) is not a local optimal solution of (Pα). Then there
exists a sequence of feasible points (x̄n

α, ȳ
n
α, z̄

n
α)n of (Pα) converging to (x̄, ȳ, z̄) such

that

F (x̄n
α, ȳ

n
α) + απ(ȳn

α, z̄
n
α) < F (x̄, ȳ) + απ(ȳ, z̄), ∀n ∈ N.

Since (x̄, ȳ, z̄) is feasible for (3.1), we get π(ȳ, z̄) = 0. We can then deduce that
F (x̄n

α, ȳ
n
α) < F (x̄, ȳ) because π(ȳn

α, z̄
n
α) ≥ 0. Moreover, we can find a sequence

(ỹn
α, z̃

n
α) converging to (ȳ, z̄) such that (x̄n

α, ỹ
n
α, z̃

n
α) is feasible for (3.1) and

F (x̄n
α, ȳ

n
α) = F (x̄n

α, ỹ
n
α).

This contradicts the fact that (x̄, ȳ, z̄) is a local optimal solution of (3.1).
□

Below, we present an example where the assumptions in the second part of The-
orem 3.3 are satisfied.

Example 3.4. Consider the bilevel program

(3.5)
min
x,y

−x2 + 1

s.t. y ∈ Ψ(x) = Argmin
y

{xy | 0 ≤ y ≤ 1}.

An optimal solution of the related KKT reformulation is given by (0, 1, 0, 0) and
we can observe that for any sequence (x̄n

α, 1, (z̄α)
n
1 , (z̄α)

n
2 ) of feasible points of the

related (Pα) converging to (0, 1, 0, 0), the sequence (x̄n
α, 1, 0, (z̄α)

n
1−x̄n

α) is feasible for
the the KKT reformulation and converges to (0, 1, 0, 0) as well. We have obviously
F (x̄n

α, 1) = F (x̄n
α, ȳ

n
α).

In order to render (Pα) more tractable, we use the following result to get rid of
the min operator in π, appearing in its objective function.
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Proposition 3.5. For any α > 0, problem (Pα) is globally equivalent to

(Qα) min
x,y,z,r,s

F (x,y) + α(r⊤z+ s⊤(b−Ay)) s.t. (x,y, z, r, s) ∈ Z1 × T

and the following assertions hold:

(i) From any local optimal solution (x̄α, ȳα, z̄α) of problem (Pα), the point
(x̄α, ȳα, z̄α, r̄α, s̄α), with the component (r̄α, s̄α) ∈ Argmin π(ȳα, z̄α), is local
optimal solution of (Qα) as well.

(ii) From any local optimal solution (x̄α, ȳα, z̄α, r̄α, s̄α) of problem (Qα) with
(r̄α, s̄α) ∈ Argmin π(y, z) for all (x,y, z) ∈ Z1, the point (x̄α, ȳα, z̄α) is a
local solution of problem (Pα).

Proof. The initial statement on the global equivalence between problems (Pα) and
(Qα) is obvious. As for (i), let (x̄α, ȳα, z̄α) be a local optimal solution of problem
(Pα). We want to show that (x̄α, ȳα, z̄α, r̄α, s̄α) with (r̄α, s̄α) ∈ Argmin π(ȳα, z̄α) is
also a local optimal solution of problem (Qα). We suppose by contradiction that it
is not true. Therefore, there exists a sequence of feasible points (xn

α,y
n
α, z

n
α, r

n
α, s

n
α)n

for (Qα) converging to the point (x̄α, ȳα, z̄α, r̄α, s̄α) such that for all n ∈ N,

F (xn
α,y

n
α) + α((rnα)

⊤znα + (snα)
⊤(b−Ayn

α)) < F (x̄α, ȳα) + α(r̄⊤α z̄α + s̄⊤α (b−Aȳα)).

It is clear that for all n ∈ N, (xn
α,y

n
α, z

n
α) is feasible for (Pα) and we get

F (xn
α,y

n
α) + απ(yn

α, z
n
α) ≤ F (xn

α,y
n
α) + α((rnα)

⊤znα + (snα)
⊤(b−Ayn

α))

< F (x̄α, ȳα) + α(r̄⊤α z̄α + s̄⊤α (b−Aȳα))

= F (x̄α, ȳα) + απ(ȳα, z̄α).

Then the point (x̄α, ȳα, z̄α) does not solves (Pα) locally and this is absurd.
As for (ii), let (x̄α, ȳα, z̄α, r̄α, s̄α) be a local optimal solution of problem (Qα).

We show that (x̄α, ȳα, z̄α) is a local optimal solution of problem (Pα) by making
use of the assumption and by observing that from any feasible point (xα,yα, zα) of
(Pα) in a neighbourhood V of (x̄α, ȳα, z̄α), the point (xα,yα, zα, r̄α, s̄α) is feasible
for problem (Qα) and belongs to V.

□
In the sequel we give an example, where the assumption in (ii) holds.

Example 3.6. We examine the following bilevel program

min
x,y

−x2 − y

s.t. x ≥ 0, y ∈ Ψ(x) = Argmin
y

{xy | y ≤ 1}.

The penalized reformulation is given by

min
x,y,z

−x2 − y + α(min
r,s

{rz + s(1− y) | r + s = 1, r, s ∈ [0, 1]})
s.t. x ≥ 0, x+ z = 0, y ≤ 1, z ≥ 0.

The corresponding problem (Qα) is then

min
x,y,z,r,s

−x2 − y + α(rz + s(1− y))

s.t. x ≥ 0, x+ z = 0, y ≤ 1, z ≥ 0
r + s = 1, r, s ∈ [0, 1]
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An optimal solution of the latter problem is (0, 1, 0, 1, 0) and we can easily check
that (1, 0) ∈ Argmin π(y, z) for any (x, y, z) ∈ Z1.

Combining Propositions 3.1, 3.3 as well as Proposition 3.5 it follows clearly that
(3.1) is globally equivalent to (Qα) if a global optimal solution (x̄α, ȳα, z̄α) of prob-
lem (Pα) belongs to Z∗

1 . With respect to the local solutions, we obtain the following
proposition.

Proposition 3.7. Assume that for all α > 0, problem (Pα) possesses an optimal
solution which belongs to Z∗

1 . There exists a scalar ᾱ > 0 such that for all α ≥ ᾱ
the following two assertions hold:

(i) From any local optimal solution (x̄α, ȳα, z̄α, r̄α, s̄α) of (Qα), (x̄α, ȳα, z̄α)
solves (3.1) locally if (x̄α, ȳα, z̄α) ∈ Z∗

1 and (r̄α, s̄α) ∈ Argminπ(y, z) for
all (x,y, z) ∈ Z1.

(ii) Suppose that (x̄, ȳ, z̄) is local optimal solution of (3.1), then (x̄, ȳ, z̄, r̄, s̄)
with (r̄, s̄) ∈ Argmin π(ȳ, z̄) solves (Qα) locally if from any sequence of
feasible points of (Pα), (x̄n

α, ȳ
n
α, z̄

n
α) converging to (x̄, ȳ, z̄), there exists a

sequence (ỹn
α, z̃

n
α) converging to (ȳ, z̄) such that (x̄n

α, ỹ
n
α, z̃

n
α) is feasible for

(3.1) and F (x̄n
α, ȳ

n
α) = F (x̄n

α, ỹ
n
α).

To close this section, note that (3.3) is not the only way to reformulate the
complementarity conditions (3.2). Various other transformations are possible; see
[26] for a large number of such functions and related properties. However, unlike
most reformulations that can be found in the latter reference, (3.3) enables problem
(Pα) to be transformed into the smooth optimization problem (Qα).

It is possible to use the bilinear function (y, z) 7−→ z⊤(Ay − b) as penalization
term in (Pα), see, e.g., [44, 47]. However, its utilization requires the fulfilment of
the partial calmness condition, introduced in [45], which unfortunately does not
necessarily hold for (1.2), (1.3).

It is also worth mentioning that exact penalization has been widely used in the
context of bilevel programs with lower level problem of the form (1.5). But it is
unclear whether the corresponding results are applicable to (1.2), (1.3). The most
recent overview of the topic can be found in [14].

4. The semismooth Newton-type method

Based on the relationship between (3.1) and (Qα), we construct a framework in
this section to compute the stationary points of the latter problem using a regu-
larized Newton method. To begin the process, we write the necessary optimality
conditions for (Qα) by means of the standard Lagrange multipliers rule for smooth
optimization problems. As the feasible set of this problem is only described by
linear constraints, no constraint qualification is needed.

Theorem 4.1. Let (x,y, z, r, s) ∈ R2n+3l be a local optimal solution of problem
(Qα) for a fixed value of α > 0. Then, there exist λ1 ∈ Rm

+ , λ6 ∈ Rn, λi ∈ Rl
+,
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i = 2, 3, 4, 5, λ7 ∈ Rl such that

0 = ∇xF (x,y) +D⊤λ1 + λ6,(4.1a)

0 = ∇yF (x,y)− αA⊤s+A⊤λ2,(4.1b)

0 = αr+Aλ6 − λ3,(4.1c)

0 = αz+ λ7 − λ4,(4.1d)

0 = α(b−Ay) + λ7 − λ5,(4.1e)

0 = A⊤z+ x,(4.1f)

0 = r+ s− e,(4.1g)

0 = λ⊤
1 (Dx− d), Dx ≤ d, λ1 ≥ 0,(4.1h)

0 = λ⊤
2 (b−Ay),b−Ay ≥ 0, λ2 ≥ 0,(4.1i)

0 = λ⊤
3 z, λ3 ≥ 0, z ≥ 0,(4.1j)

0 = λ⊤
4 r, λ4 ≥ 0, r ≥ 0,(4.1k)

0 = λ⊤
5 s, λ5 ≥ 0, s ≥ 0.(4.1l)

Next, we transform these conditions into a complete system of equations using
the following lemma.

Lemma 4.2 (see, e.g., [28]). For the vectors y,λ ∈ Rn, the system of complemen-
tarity conditions y ≤ 0, λ ≥ 0, λ⊤y = 0 is equivalent to max{0,λ + ty} − λ = 0
for any t > 0.

In the process of computing points satisfying (4.1a)-(4.1l), the reformulation of
the complementary conditions in Lemma 4.2 has a number of advantages. At first,
as it will be clear in the sequel (see, e.g., Theorem 4.10), the possibility to choose
any value of t > 0 provides a level of freedom and flexibility, which can be crucial
in solving the resulting system. Also, according to [23], reformulating the comple-
mentarity conditions with linear functions by means of the Lemma 4.2 can enable
the Newton-type method to exhibit the finite termination property while equally
demanding slightly weaker assumptions for superlinear convergence. Furthermore,
Lemma 4.2 can enable the application of the Newton method, to be studied here,
to problem in infinite dimensions (e.g., bilevel optimal control problems attracting
more and more attention [2]), through slant differentiability that generalizes the
notion of semismoothness [6, 28].

To solve (4.1a)-(4.1l) in the case where the upper level objective function F is
affine linear one, that is, if F (x,y) := k⊤

1 x + k⊤
2 y + k3, k1,k2 ∈ Rn and k3 ∈ R,

Lemma 4.2 allows us to rewrite it as

(4.2)
B1Y +B2Γ = v,

Γ−max(0,Γ+ t ·Υ) = 0,
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where t > 0 is a vector and the max operator is understood componentwise. The
given matrices and variables involved in system (4.2) are respectively defined by

B1 :=



0 0 0 0 0
0 0 0 0 −αA⊤

0 0 0 αI 0
0 0 αI 0 0
0 −αA 0 0 0
I 0 A⊤ 0 0
0 0 0 I I


, B2 :=



D⊤ 0 0 0 0 I 0
0 A⊤ 0 0 0 0 0
0 0 −I 0 0 A 0
0 0 0 −I 0 0 I
0 0 0 0 −I 0 I
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

v :=



−k1

−k2

0
0

−αb
0
e


, Υ :=



Dx− d
Ay − b

−z
−r
−s
0
0


, Y :=


x
y
z
r
s

 , and Γ :=



λ1

λ2

λ3

λ4

λ5

λ6

λ7


.

Here, we suppose with no loss of generality that λ6,λ7 ≥ 0, otherwise for e.g. if
λ7 < 0, we consider the variable λ′

7 = −λ7 and modify the matrix B2. On the
other hand, if the matrix B2 has a full column rank and (B2)−1B1 is a P-matrix,
then it can be possible to develop a locally and globally convergent semismooth
Newton scheme to solve (4.2); see, e.g., [27]. However, to expand the number of
applications of problem (1.2) (see, e.g., next section), we would like the upper level
objective function to be a more general twice continuously differentiable function.
In this case, solving (4.1a)-(4.1l) is equivalent to finding the zeros of the equation

(4.3) Φα,t(u) :=



∇xF (x,y) +D⊤λ1 + λ6

∇yF (x,y)− αA⊤s+A⊤λ2

αr+Aλ6 − λ3

αz+ λ7 − λ4

α(b−Ay) + λ7 − λ5

A⊤z+ x
r+ s− e

λ1 −max(0,λ1 + t1(Dx− d))
λ2 −max(0,λ2 + t2(Ay − b))

λ3 −max(0,λ3 + t3(−z))
λ4 −max(0,λ4 + t4(−r))
λ5 −max(0,λ5 + t5(−s))



= 0

with variable u := (x,y, z, r, s,λ1,λ2,λ3,λ4,λ5,λ6,λ7) ∈ R3n+8l+m.
Clearly, t > 0 is a parameter in the system of equations in (4.3) that we solve, and

theoretically, any positive value should be fine when solving the system. However,
as our end-goal is to compute a point that can potentially solve the original bilevel
optimization problem, a suitable choice might be necessary.

It can easily be checked that (4.3) is a square (3n + 8l + m) × (3n + 8l + m)
system of equations. Additionally, it is well-known that the involved max function
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is semismooth. Hence, we can solve the system by means of a generalized Newton
method; see, e.g., [38, 39,46].

Theorem 4.3. [39] Fix α > 0, t > 0 and consider a point ū such that Φα,t(ū) = 0.
Assume that all V ∈ ∂Φα,t(ū) are nonsingular. Then every sequence generated by

(4.4) ūk+1 = ūk − (Ck)−1Φα,t(ūk), Ck ∈ ∂Φα,t(ūk), k = 0, 1, 2, . . .

is superlinearly convergent to ū, provided that the starting point ū0 is sufficiently
close to ū. Moreover the strongly semismoothness of ∇F implies that the conver-
gence rate is quadratic.

Proof. Follows from [39] and by noting that the structure of Φα,t ensures that it
is semismooth since the upper level objective function F is assumed to be twice
continuously differentiable and hence, ∇F is semismooth. Furthermore, Φα,t is
strongly semismooth considering the twice continuous differentiability of ∇F and
the nature of the max operator involved in the function. □

Next, we derive sufficient conditions enabling the nonsingularity of all elements
of the generalized Jacobian of Φα,t. For that, we first provide an upper estimate of
the generalized Jacobian of Φα,t in the sense of Clarke.

Theorem 4.4. Fixing α > 0 and t > 0, the function u 7→ Φα,t(u) (4.3) is strongly
semismooth at any point u and any matrix from the generalized Jacobian ∂Φα,t(u)
can be written as

∇2
xxF (x,y)∇2

yxF (x,y) 0 0 0 D⊤ 0 0 0 0 I 0

∇2
yxF (x,y) ∇2

yyF (x,y) 0 0 −αA⊤ 0 A⊤ 0 0 0 0 0
0 0 0 αI 0 0 0 −I 0 0 A0
0 0 αI 0 0 0 0 0 −I 0 0 I
0 −αA 0 0 0 0 0 0 0 −I 0 I
I 0 A⊤ 0 0 0 0 0 0 0 0 0
0 0 0 I I 0 0 0 0 0 0 0

−t1p1 ·D 0 0 0 0 q1 · I 0 0 0 0 0 0
0 −t2p2 ·A 0 0 0 0 q2 · I 0 0 0 0 0
0 0 t3p3 · I 0 0 0 0 q3 · I 0 0 0 0
0 0 0 t4p4 · I 0 0 0 0 q4 · I 0 0 0
0 0 0 0 t5p5 · I 0 0 0 0 q5 · I 0 0


with the operation · understood as componentwise multiplication and the vectors
pi,qi, i ∈ {1, . . . , 5} are defined such that

pj
1 ∈ ∂max(0, ·)(λ1 + t1(Dx− d))j , p

k
2 ∈ ∂max(0, ·)(λ2 + t2(Ay − b))k

pk
3 ∈ ∂max(0, ·)(λ3 − t3z)k,p

k
4 ∈ ∂max(0, ·)(λ4 − t4r)k,

pk
5 ∈ ∂max(0, ·)(λ5 − t5s)k, (j, k) ∈ {1, . . . ,m} × {1, . . . , l},
qi := e− pi, i ∈ {1, . . . , 5},

Proof. It suffices to calculate the generalized derivative of the last five components
of Φα,t(u) (4.3). On the other hand, we mention that the reasoning below will be
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done only for the equation

Q(u) := λ1 −max(0,λ1 + t1(Dx− d))

and this can be repeated for the fourth other equations. For that we observe that
for i = 1, . . . ,m

Qi(u) =

{
λi
1 if λi

1 + t1(Dx− d)i ≤ 0,

−t1(Dx− d)i if λi
1 + t1(Dx− d)i > 0.

Therein, λi
1 (resp. (Dx − d)i, Qi(u)) is the i-th component of λ1 (resp. Dx − d,

Q(u)). We see that the function Qi is differentiable when λi
1 + t1(Dx− d)i > 0 or

when λi
1+t1(Dx−d)i < 0. However it is not differentiable when λi

1+t1(Dx−d)i =
0. Hence, by setting Di to be the i-th row of D we get

∂Qi(u) =


Mi := (0, . . . , 0, 1, 0, . . . , 0) if λi

1 + t1(Dx− d)i < 0,

Ni = (−t1D
i, . . . , 0, . . . , 0) if λi

1 + t1(Dx− d)i > 0,

conv(Ni,Mi) if λi
1 + t1(Dx− d)i = 0

=

ξiN
i + (1− ξi)M

i

∣∣∣∣∣∣∣∣
ξi = 1 if λi

1 + t1(Dx− d)i > 0,

ξi = 0 if λi
1 + t1(Dx− d)i < 0,

ξi ∈ [0, 1] if λi
1 + t1(Dx− d)i = 0

 .

Therefore,

∂Q(u) =

p1 ·N+ (e− p1) ·M

∣∣∣∣∣∣∣∣∣∣

ξi = 1 if λi
1 + t1(Dx− d)i > 0,

ξi = 0 if λi
1 + t1(Dx− d)i < 0,

ξi ∈ [0, 1] if λi
1 + t1(Dx− d)i = 0,

p1 = (ξ1, . . . , ξn)
⊤


with M and N respectively defined by

(4.5)
M :=

(
0 0 0 0 0 I 0 0 0 0 0 0

)
,

N :=
(
−t1D 0 0 0 0 0 0 0 0 0 0 0

)
,

and p1·N corresponds to the matrix whose rows are obtained from the multiplication
of the ith row of N and the vector p1. The same notation holds similarly for
(e− p1) ·M. □

Observe that it is also possible to compute the generalized derivative of Φα,t by
using the following chain rule

∂(g ◦ h)(x) = ∂g(h(x))∂h(x),

where g : Rm1 → R1 is convex and h : Rm2 → Rm1 is continuously differentiable,
see [7, Theorem 2.6.6]. Both procedures lead to the same result.

Next, we identify some scenarios, where the nonsingularity assumption on ∂Φα,t

required in the convergence Theorem 4.3 is satisfied. To proceed, we consider the
functions

h1(x,y, z, r, s) := Dx− d, h2(x,y, z, r, s) := Ay − b,

h3(x,y, z, r, s) := −z, h4(x,y, z, r, s) := −r, h5(x,y, z, r, s) := −s,
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and the following sets, for i = 1, . . . , 5:

Pi := {j ∈ {1, . . . , ki} | 0 < (λi + tihi(x,y, z, r, s))j}

Qi := {j ∈ {1, . . . , ki} | 0 > (λi + tihi(x,y, z, r, s))j}

with

k1 = m, k2 = k3 = k4 = k5 = l.

Theorem 4.5. Let ū be a point that satisfies the optimality conditions in Theorem
4.1. Suppose that the matrix A (with l = n) is invertible and ∇2

xxF (x̄, ȳ) has full
column rank. Furthermore, assume that the sets P1, P3, P5, Q2, and Q4 are empty.
Then, all the elements of ∂Φα,t(ū) are nonsingular.

Proof. Choosing an arbitrary matrix C ∈ ∂Φα,t(ū) and considering the homoge-

neous linear system Cd = 0, with a suitably partitioned vector d := (di)
12
i=1,

∇2
xxF (x̄, ȳ)d1 +∇2

yxF (x̄, ȳ)d2 +D⊤d6 + d11 = 0,(4.6)

∇2
xyF (x̄, ȳ)d1 +∇2

yyF (x̄, ȳ)d2 − αA⊤d5 +A⊤d7 = 0,(4.7)

αd4 +Ad11 − d8 = 0,(4.8)

αd3 + d12 − d9 = 0,(4.9)

−αAd2 + d12 − d10 = 0,(4.10)

d1 +A⊤d3 = 0,(4.11)

d4 + d5 = 0,(4.12)

−t1p1 ·Dd1 + (e− p1)d6 = 0,(4.13)

−t2p2 ·Ad2 + (e− p2)d7 = 0,(4.14)

t3p3d3 + (e− p3)d8 = 0,(4.15)

t4p4d4 + (e− p4)d9 = 0,(4.16)

t5p5d5 + (e− p5)d10 = 0.(4.17)

Since the sets P1, P3, P5, Q2, Q4 are empty, we get from the definitions of p1,
p3, p5, p2, and p4 that p1 = p3 = p5 = 0 and p2 = p4 = e. It follows then from
(4.12)–(4.17) and the invertibility of A that d6 = 0 = d2 = d8 = d4 = d5 = d10.
Inserting these values in (4.8) and in (4.6) leads to d11 = 0 = d1 since the matrix
∇2

xxF (x̄, ȳ) has full column rank. The reuse of the invertibility of A in (4.7) and
(4.11) gives d7 = 0 = d3. The equations (4.9)–(4.10) lead to d12 = 0 = d9.

□

Example 4.6. Consider the bilevel optimization problem

(4.18)
min
x,y

−16x+ 3x2 + 3y2

s.t. 1 ≤ x ≤ 8
3 , y ∈ Ψ(x) = Argmin

y
{xy | y ≥ 0}.

The optimal solution of problem (4.18) is (x̄, ȳ) = (83 , 0). One can check that the
assumption of Proposition 3.1 is satisfied. Therefore there exists a scalar ᾱ > 0
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such that for all α ≥ ᾱ we can find (r̄, s̄) ∈ T such that the point (83 , 0,
8
3 , r̄, s̄) solves

the problem

(4.19)
min

x,y,z,r,s
−16x+ 3x2 + 3y2 + α(rz + sy)

s.t. 1 ≤ x ≤ 8
3 , y ≥ 0, x = z ≥ 0, r + s = 1, r ≥ 0, s ≥ 0.

The optimal solution of (4.19) is (83 , 0,
8
3 , 0, 1). The corresponding calculations show

that the point

ū = (x̄, ȳ, z̄, r̄, s̄, λ̄1, λ̄2, λ̄3, λ̄4, λ̄5, λ̄6, λ̄7) =

(
8

3
, 0,

8

3
, 0, 1, 0, 0, α, 0,

8

3
α, 0, 0, 0

)
solves the optimality conditions (4.1a)-(4.1l). Furthermore, it is clear that the ma-
trices A = −1 and ∇2

xxF (x̄, ȳ) are invertible, and the following implications hold

λ̄1 + t1(Dx̄− d) ≤ 0 =⇒ p1 = 0, λ̄3 − t3z̄ < 0 =⇒ p3 = 0,
λ̄2 + t2(Aȳ − b) > 0 =⇒ p2 = 1, λ̄5 − t5s̄ < 0 =⇒ p5 = 0

λ̄4 − t4r̄ > 0 =⇒ p4 = 1

Therefore, based on Theorem 4.5, all elements of ∂Φα,t(ū) are nonsingular for any
value of α ≥ ᾱ.

Obviously, requiring the invertibility of A in Theorem 4.5 is a very strong as-
sumption, as it can imply that the lower level has a unique feasible point. In the
sequel, we present a scenario where we avoid to impose this assumption.

Theorem 4.7. Let ū be a point satisfying the optimality conditions given in The-
orem 4.1. Suppose that the matrix ∇2

yyF (x̄, ȳ) has full column rank. Furthermore,
we assume that the followings sets P1, P2, P5, Q3, and Q4 are empty. Then, all the
elements of ∂Φα,t(ū) are nonsingular.

Proof. Proceeding as in the proof of Theorem 4.5, it follows from the emptiness of
the sets P1, P2, P5, Q3, Q4 and (4.12)–(4.17) that d6 = 0 = d7 = d3 = d4 = d5 =
d10 because p1 = p2 = p5 = 0 and p3 = p4 = e. Inserting these values in (4.7)
and (4.11) leads to d1 = 0 = d2 given that the matrix ∇2

yyF (x̄, ȳ) is supposed to
have full column rank. Inserting again these values in (4.6), (4.8)–(4.10) imply that
d11 = 0 = d8 = d9 = d12. □
Example 4.8. Consider the bilevel optimization problem

(4.20)

min
x,y

2(x1 + x2) + x21 + y21 + y22

s.t. x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥ 0,

y ∈ Ψ(x) = Argmin
y

{x⊤y | y1 = y2}.

One can observe that the matrix

A =

(
1 −1
−1 1

)
is not invertible and that an optimistic solution of problem (4.20) is (x̄, ȳ) = (0, 0, 0, 0).
One can check that the assumption of Proposition 3.1 is satisfied. Therefore, there
exists a scalar ᾱ > 0 such that for all α ≥ ᾱ, the point

ū = (x̄, ȳ, z̄, r̄, s̄,λ1,λ2,λ3,λ4,λ5,λ6,λ7)
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with (r̄, s̄) = (0, 0, 1, 1), λ1 = (0, 0), λ2 = (0, 0), λ3 = (0, 0), λ4 = (0, 0), λ5 =
(0, 0), λ6 = (−2,−2), λ7 = (0, 0), and z̄ = (0, 0) solves the optimality conditions
(4.1a)-(4.1l). Furthermore, it is clear that the matrix

∇2
yyF (x, y) =

(
2 0
0 2

)

is full column rank, and the following implications hold

λ1 + t1(Dx̄− d) ≤ 0 =⇒ p1 = 0, λ3 − t3z̄ ≥ 0 =⇒ p3 = e,

λ2 + t2(Aȳ − b) ≤ 0 =⇒ p2 = 0, λ4 − t4r̄ ≥ 0 =⇒ p4 = e,

λ5 − t5s̄ ≤ 0 =⇒ p5 = 0.

Therefore, all the assumptions of Theorem 4.7 are fulfilled for ū and any α ≥ ᾱ.

Remark 4.9. The following observations can be made:

(1) The assumptions on the emptiness of Pi and Qi, for
i ∈ {1, . . . , 5} can be reflected in some situations, where the solution w.r.t.
the corresponding constraint is nondegenerate or not. For example, P1 = ∅
means that λ1+t1(Dx−d) ≤ 0. Clearly, if Dx−d < 0, we get the emptiness
of P1 from the complementarity conditions. Thus, the strict complementar-
ity condition of some constraints is sufficient to ensure the emptiness of
some sets Pi or Qi for i ∈ {1, . . . , 5}.

(2) There could be a chance that the combination of the MPCC-LICQ (linear
independence constraint qualification for mathematical program with com-
plementarity constraints) and MPCC-SOSC (strong second-order sufficient
condition for mathematical program with complementarity constraints) could
work; we have thought about this, but no obvious connection seems appar-
ent. The topic will be further investigated in the future. However, as we
have seen, the assumptions of Theorems 4.4 and 4.5 are satisfied in Exam-
ples 4.1 and 4.2 but one can easily check that MPCC-LICQ is satisfied w.r.t.
Example 4.1 (even MPCC-SOSC) but not w.r.t. Example 4.2.

We cannot rely on the square of Φα,t in order to provide a suitable globalization
due to the presence of the function max. This is one of the main challenges of
this local convergence and we are aware that the Fischer-Burmeister function [22]
could come into play when replacing the complementarity conditions in Theorem
4.1 instead using lemma 4.1. But as mentioned in comments after Lemma 4.1, our
primary goal in this paper is to explore the approach considered in the paper, which,
to the best of our knowledge, has not been considered before in the context of bilevel
optimization. Later on, we will see a way to construct a globalized algorithm for
solving (4.3).
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To implement the equation (4.4), we should be able to calculate an element of
∂Φα,t(uk). Our task here is therefore to show how this can be accomplished. To
proceed, we define for ti > 0, i = 1, . . . , 5, the function X : R3n+8l+m → R4l+m such
that each u := (x,y, z, r, s,λ1,λ2,λ3,λ4,λ5,λ6,λ7) assigns

X(u) = (X1(u) . . . X5(u))⊤.

Therein,

X1(u) := λ1 + t1(Dx− d), X3(u) := λ3 − t3z, X5(u) := λ5 − t5s.

X2(u) := λ2 + t2(Ay − b), X4(u) := λ4 − t4r.

Theorem 4.10. Let u := (x,y, z, r, s,λ1,λ2,λ3,λ4,λ5,λ6,λ7) ∈ R3n+8l+m. The
following matrix is an element of ∂Φα,t(u).

H :=



∇2
xxF (x,y) ∇2

yxF (x,y) 0 0 0 D⊤ 0 0 0 0 I 0

∇2
yxF (x,y) ∇2

yyF (x,y) 0 0 −αA⊤ 0 A⊤ 0 0 0 0 0
0 0 0 αI 0 0 0 −I 0 0 A 0
0 0 αI 0 0 0 0 0 −I 0 0 I
0 −αA 0 0 0 0 0 0 0 −I 0 I
I 0 A⊤ 0 0 0 0 0 0 0 0 0
0 0 0 I I 0 0 0 0 0 0 0

K1 0 0 0 0 K̃1 0 0 0 0 0 0

0 K2 0 0 0 0 K̃2 0 0 0 0 0

0 0 K3 0 0 0 0 K̃3 0 0 0 0

0 0 0 K4 0 0 0 0 K̃4 0 0 0

0 0 0 0 K5 0 0 0 0 K̃5 0 0



.

K1 := − t1
2

(
D+ sgn(X1(u)) ·D

)
, K2 := − t2

2

(
A+ sgn(X2(u)) ·A

)
Ki := ti

2

(
I+ sgn(Xi(u)) · I

)
, i = 3, 4, 5,

K̃i := 1
2

(
I− sgn(Xi(u)) · I

)
, i = 1, . . . , 5.

Proof. Observe that the first 3n+ 4l components of Φα,t are differentiable. Hence,
we focus our attention on the components which contain the max operator. In
order to prove that H ∈ ∂Φα,t(u), we will build a sequence of points (ũk)k and

(˜̃uk)k, where Φα,t is differentiable at the points u+ εkũ and u+ εk ˜̃uk and it holds

∇Φα,t(u + εkũ) → H1 and ∇Φα,t(u + εk ˜̃uk) → H2 for k → ∞. After that we will
show that H is an element of the convex hull of H1 and H2. Let

∆ :=
{
i ∈ {1, . . . , 4l +m} | Xj

i (u) = 0, for at least one j ∈ {1, . . . , 5}
}
.

We consider some vectors

ũ := (x̃, ỹ, z̃, r̃, s̃, λ̃1, λ̃2, λ̃3, λ̃4, λ̃5, λ̃6, λ̃7)

and
˜̃u := (˜̃x, ˜̃y, ˜̃z, ˜̃r, ˜̃s,

˜̃
λ1,

˜̃
λ2,

˜̃
λ3,

˜̃
λ4,

˜̃
λ5,

˜̃
λ6,

˜̃
λ7)

from R3n+8l+m, such that ũi = 0 = ˜̃ui for i /∈ ∆ and ũi = 1, ˜̃ui = −1 for i ∈ ∆.
For ease of reference we will treat only one equation since the same reasoning can

be analogously applied on the other equations.
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If there exists i0 ∈ {1, . . . , 4l+m} such that Xj
i0
(u) 6= 0, for all j = 1, . . . , 5. We

get for example X1
i0
(u) 6= 0. Then Φα,t

3n+4l+i0
is differentiable at u and we get from

the proof of Theorem 4.4, cf. (4.5), that

∂Φα,t
3n+4l+i0

(u) =

{
Ni0 if X1

i0
(u) > 0,

Mi0 if X1
i0
(u) < 0.

This gives the row H3n+4l+i0 since sgn(X1
i0
(u)) = ±1 and K1

i0
= −t1Di0 , K̃

1
i0
= 0 if

X1
i0
(u) > 0 and K1

i0
= 0, K̃1

i0
= I if X1

i0
(u) < 0.

Otherwise, suppose that for all i ∈ {1, . . . , 4l + m}, Xj
i (u) = 0, for some j =

1, . . . , 5. Assume, without loss of generality that X1(u) = 0 (because we can apply
the same reasoning on all j = 1, . . . , 5) then sgn(X1(u)) = 0 (it is worth mentioning
that this definition of sgn should be understood componentwise). We consider the

sequences ũk
i := ũi + εk, ˜̃uk

i := ui + εk, k ∈ N, and εk ↓ 0. It holds

X1(u+ εkũ) = (λ1 + εkλ̃1) + t1(D(x+ εkx̃)− d)

= λ1 + t1(Dx− d)︸ ︷︷ ︸
=0

+εkλ̃1 + t1ε
kDx̃

= εk(λ̃1 + t1Dx̃) > 0 for t1 small enough since λ̃1 = 1.

In the same vein, we have X1(u+εk ˜̃u) = εk(
˜̃
λ1+ t1D˜̃x) < 0 for t1 small enough

since
˜̃
λ1 = −1. Consequently, the mapping Φα,t

1 : u 7→ λ1−max(0,λ1+ t1(Dx−d))

is at the points u+ εkũ and u+ εk ˜̃u differentiable and we get

∇Φα,t
1 (u+ εk ˜̃u) →

k→∞

(
0 0 0 0 0 I 0 0 0 0 0 0

)
:= H1

∇Φα,t
1 (u+ εkũ) →

k→∞

(
−t1D 0 0 0 0 0 0 0 0 0 0 0

)
:= H2

and clearly the matrix

(−t1
2 D 0 0 0 0 1

2I 0 0 0 0 0 0
)

belongs to the convex hull of H1 and H2. We end the proof by handling analogously
the other equations as suggested some lines before.

□

On the other hand, the particularity of the matrix H constructed in the previous
theorem is the fact that it is the limit of the gradient of the following differentiable
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approximation

(4.21) Φα,t
ε (u) :=



∇xF (x,y) +D⊤λ1 + λ6

∇yF (x,y)− αA⊤s+A⊤λ2

αr+Aλ6 − λ3

αz+ λ7 − λ4

α(b−Ay) + λ7 − λ5

A⊤z+ x
r+ s− e

λ1 − 1
2(X

1(u) +
√
(X1(u))2 + ε)

λ2 − 1
2(X

2(u) +
√
(X2(u))2 + ε)

λ3 − 1
2(X

3(u) +
√
(X3(u))2 + ε)

λ4 − 1
2(X

4(u) +
√
(X4(u))2 + ε)

λ5 − 1
2(X

5(u) +
√
(X5(u))2 + ε)



of the function Φα,t. Since for ε > 0 and x ∈ R,

1

2
(x+

√
x2 + ε) −→ max(0, x) as ε −→ 0.

We recall that the square and the square-root applied on vectors in (4.21) are

understood componentwise. It can easily be checked that the gradient of Φα,t
ε can

be written as

∇Φα,t
ε (u) =



∇2
xxF (x,y) ∇2

yxF (x,y) 0 0 0 D⊤ 0 0 0 0 I 0

∇2
yxF (x,y) ∇2

yyF (x,y) 0 0 −αA⊤ 0 A⊤ 0 0 0 0 0
0 0 0 αI 0 0 0 −I 0 0 A 0
0 0 αI 0 0 0 0 0 −I 0 0 I
0 −αA 0 0 0 0 0 0 0 −I 0 I
I 0 A⊤ 0 0 0 0 0 0 0 0 0
0 0 0 I I 0 0 0 0 0 0 0

G1 0 0 0 0 G̃1 0 0 0 0 0 0

0 G2 0 0 0 0 G̃2 0 0 0 0 0

0 0 G3 0 0 0 0 G̃3 0 0 0 0

0 0 0 G4 0 0 0 0 G̃4 0 0 0

0 0 0 0 G5 0 0 0 0 G̃5 0 0



,

where

G1 :=
−t1
2

(D+ (X1 ÷ L1) ·D), Gi :=
ti
2
(I+ (Xi ÷ Li) · I), i = 3, 4, 5,

G2 :=
−t2
2

(A+ (X2 ÷ L2) ·A), G̃i :=
1

2
(I− (Xi ÷ Li) · I), i = 1, . . . , 5.
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Here, for i = 1, . . . , 5, we define Li := (Li
j)

θi
j=1 with Li

j :=
√
Xi

j + ε and θ1 =

m, θi = l, for i = 2, . . . , 5. The signs ÷ and · are used to denote the componentwise
division and multiplication, respectively.

The above observation implies that we have two options to evaluate an element
from the generalized Jacobian of the function Φα,t in (4.4): either we compute
a subgradient of Φα,t directly if possible or we make use of the derivative of the
approximation function Φα,t

ε (which is differentiable, hence more tractable) for small
values of ε and by letting ε go to 0. For the numerical application of the method,
we use the following algorithm.

Algorithm 1 : Newton algorithm

Step 0: Choose k = 0, u0 = (x0,y0, z0,λ0
1,λ

0
2,λ

0
3,λ

0
4,λ

0
5,λ

0
6,λ

0
7), δ > 0, t > 0,

ε > 0, β ∈ (0, 1/2), τ0 = 1, α1 ∈ (0, 0.5) and α > 0.

Step 1: Compute Φα,t
ε (uk). If ‖Φα,t

ε (uk)‖ ≤ δ, stop.

Step 2: Select an element Ck ∈ ∂Φα,t
ε (uk) and compute dk such that

(4.22) Ckdk +Φα,t
ε (uk) = 0.

Step 3: While

Ψα,t
ε (uk − τk∇Ψα,t

ε (uk)) > Ψα,t
ε (uk) + α1τk∇Ψα,t

ε (uk)⊤dk,

set τk = βτk, with Ψα,t
ε (u) := 1

2‖Φ
α,t
ε (u)‖2.

Step 4: Update uk = uk + τkd
k.

Step 5: Set k = k + 1 and go to Step 1.

The convergence and interesting features of this algorithm have been well inves-
tigated in [10].

Remark 4.11. (1) If the equation (4.22) is not solvable or if the nonsingularity
assumption for Φα,t e.g. in Theorem 4.7 is violated, there is a standard trick
in numerical optimization which consists to add a factor of the identity ma-
trix to the corresponding matrix from the generalized Jacobian ∂Φα,t. This
often leads to a matrix which is nonsingular and is a good approximation of
the corresponding element of the Clarke subdifferential.

(2) As mentioned in the introductory part, the method developed in this section
to solve (1.2), (1.3) can be applied to (1.2), (1.5). In fact, for the latter
problem, the counterpart of the KKT reformulation (3.1) can be obtained
similarly, without any additional assumption. Hence, we can deduce the op-
timality conditions and derive a similar generalized derivative as in Theorem
4.4.
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5. Application to the toll-setting problem

We consider the bilevel optimization formulation of the toll-setting problem in
transportation. Our aim is to show how the theory discussed in the previous section
can be used to solve the problem. First, let us provide a brief description of the
problem; for more details, see, e.g., [3, 19, 29]. In this problem, the upper level
decision-maker corresponds to a road authority or the owner of a highway system
which is allowed to set tolls on a subset of the links of the network. As for the lower
level decision-maker, it is represented by the collection of network users minimizing
their travel cost. It is assumed that for a toll selection from the road authority,
the network users behave selfishly by trying to minimize their own travel cost.
Therefore, the road authority desiring to maximize his/her revenues from tolls will
solve the bilevel program

(5.1)

max
Ta

∑
a∈A1

Taya

s.t. ∀a ∈ A1 : Ta ≥ la,

min
ya

∑
a∈A1

(ca + Ta)ya +
∑

a∈A2
caya

∀i ∈ N , ∀(j, k) ∈ OD :
∑

a∈i+ yjka −
∑

a∈i− yjka =


1 if i = k1,

−1 if i = k2,

0 otherwise,

∀a ∈ A : ya =
∑

(j,k)∈OD
djkyjka ,

∀a ∈ A, ∀(j, k) ∈ OD : yjka ≥ 0,

where the involved data and variables are defined as follows:

A1: subset of the tolled links,
A: set of the links,
A2: A \ A1,
Ta: toll for link a ∈ A1,
ca: (fixed) travel cost for link a (a ∈ A), exclusive of toll,
N : set of nodes,
i+: set of links exiting from node i ∈ N ,
i−: set of links ending at node i ∈ N ,
OD: set of origin-destination node pairs,

yjka : traffic flow from origin j to destination k on link a, (j, k) ∈ OD,
a ∈ A,

djk: proportion of traffic flow demand between origin j and destination
k,

la: lower bound on toll for link a (a ∈ A1),
ya: traffic flow for link a ∈ A.
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Problem (5.1) can be written as

(5.2)

max
xa

∑
a∈A1

(xa − ca)ya

s.t. ∀a ∈ A1 : xa ≥ la + ca, ∀a ∈ A2 : xa = ca,

min
ya

∑
a∈A xaya

∀i ∈ N , ∀(j, k) ∈ OD :
∑

a∈i+ yjka −
∑

a∈i− yjka =


1 if i = j,

−1 if i = k,

0 otherwise,

∀a ∈ A : ya =
∑

(j,k)∈OD
djkyjka ,

∀a ∈ A, ∀(j, k) ∈ OD : yjka ≥ 0,

if we make the variable change

xa :=

{
ca + Ta if a ∈ A1,

ca if a ∈ A2,

in order to keep the variable pattern used so far for problem (1.2), (1.3).
Following the discussion in the previous section, the optimality conditions result-

ing from the application of Theorem 4.1 to problem (5.2) can be written in the form
(4.3) with

∂F (x,y)

∂xa
=

{
ya if a ∈ A1,

0 otherwise,

∂F (x,y)

∂ya
=

{
xa − ca if a ∈ A1,

0 otherwise.

As for the feasible set of the lower level problem in (5.2), it can be rewritten as
A1y = b1, y ≥ 0 with

A1 :=



Aj1k1 0 0 . . . 0 0
0 Aj2k2 0 . . . 0 0
...

. . .
. . .

. . . 0 0
0 . . . 0 AjM−1kM−1

0 0
0 . . . 0 0 AjMkM 0

dj1k1I dj2k2I . . . djM−1kM−1I djMkM I −I


, y :=

(
yjka
ya

)
a,j,k

,

b1 :=

(
bijsks
0

)
s

∀s = 1, . . . ,M, ∀(js, ks) ∈ OD, ∀i ∈ N : bijsks =


1 if i = js,

−1 if i = ks,

0 otherwise.
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The matrix Ajsks , s = 1, . . . ,M represents the incidence matrix of the graph with
origin js and destination ks. Here we have set M := |OD| to be the number of
start-destination node pairs. We want to draw the attention of the reader on the
fact that, for each individual graph an equation of the traffic flow condition can
be omitted, i.e. a row in A1 belonging to the matrix Ajk and the corresponding
component in the vector b1 can be deleted, since the systems of equations are over-
determined for a single flow. Furthermore the number of variables can reduce if the
vehicles from node j to node k are allowed to use during their journey only the road
which are useful.

To get the lower level feasible set in the format in (1.2), (1.3), the above described
system A1y = b1, y ≥ 0 is completely transformed into inequality conditions.
In the same vein, the matrix D from the upper level constraint is constructed by
replacing the equality constraints by inequalities. It is obtained from the constraints
−xa ≤ −la − ca for a ∈ A1 and xa ≤ ca, −xa ≤ −ca for a ∈ A2. This means that
for all j ∈ A,

Dij :=


−δij if i ∈ A1,(

δij

−δij

)
if i ∈ A2,

di :=


−la − ca if i ∈ A1,(

ca

−ca

)
if i ∈ A2.

It is worth recognizing that transforming an equality into two inequalities is not
computationally ideal. Nevertheless, we do so here just to be faithful to the model
(1.2), (1.3) and the corresponding analysis conducted in the previous sections.

Figure 1. Network 1 (network with 5 nodes)

Here in the context of problem (5.2), we can easily observe that Theorems 4.5
and 4.7 are not applicable since ∇2

xxF (x,y) and ∇2
yyF (x,y) are not full column

rank matrices. However, it is possible to prove that if the matrix A is invertible
and the following inequalities hold X1(ū) < 0, X2(ū) > 0, X3(ū) > 0, X4(ū) > 0,
and X5(ū) < 0, then the matrix H is nonsingular.

To illustrate the application of the proposed method to (5.2), we consider the
examples of networks in Figure 1 and 2, which are taken from [9].
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Figure 2. Network 2 (network with 6 nodes)

The origin-destination nodes for Network 1 (resp. Network 2) is (1, 5) (resp.
{(1, 2), (5, 6)}). The formulation of the toll problem related to these networks re-
spectively leads to bilevel programming problems explicitly written as

max
x,y

(x3 − 5)y3 + x4y4 + x8y8

s.t. ∀a ∈ A2, xa = ca,
∀a ∈ A1, x3 ≥ 5, x4 ≥ 0, x8 ≥ 0,
min
y

x⊤y

y1 + y2 + y3 = 1,
y8 + y7 + y3 = 1,
y4 + y5 − y1 = 0,
y6 + y7 − y2 − y4 = 0,
y8 − y5 − y6 = 0,
yi ≥ 0, ∀i = 1, . . . , 8,

and

max
x,y

1
2x4y4

s.t. ∀a ∈ A2, xa = ca,
x4 = x8,
min
y

x⊤y

y1 + y2 = 1,
y5 + y7 = 1,
y2 = y3 = y4,
y5 = y6 = y8,
yi ≥ 0, ∀i = 1, . . . , 8.

We have A1 = {3, 4, 8} and A2 = {1, 2, 5, 6, 7} for Network 1 and A1 = {4} and
A2 = {1, 2, 3, 5, 6, 7} for Network 2. The variables y8 and y4 in the mathematical
formulation of the toll problem related to the Network 2 denote y124 and y564 , re-
spectively, and the travel cost ca for each link (a ∈ A) can be obtained on each
corresponding network.

To proceed, we consider the parameters: t(1) = 0.045, t(2) = 0.049, t(3) =
0.025, t(4) = 0.005, t(5) = 0.0025, ε = 0.01, δ = 10−6.

For these examples, the algorithm stops when the iteration index k reaches 3 in
Network 1 and 10 in Network 2. As starting point for Network 1, we choose

x0 = (2, 6, 5, 5, 4, 2, 6, 5), y0 = (0, 1, 0, 0, 0, 1, 0, 0), z0 = Ay0 − b = λ2 = λ3,
r0 = λ4 = λ7 = 0l×1, s0 = e = λ5, λ1 = |Dx0 − d|, λ6 = 0n×1,

and for α = 0.45, we obtain F (x∗,y∗) = −7.0346 and f(x∗,y∗) = 12.9927, while
the known values in the literature are F (x∗,y∗) = −7 and f(x∗,y∗) = 12, see [8].
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For Network 2, we choose

x0 = (8, 2, 1, 0, 3, 1, 6, 0), y0 = 0n×1, z0 = Ay0 − b = λ2 = λ3,
r0 = λ4 = λ7 = 0l×1, s0 = e = λ5, λ6 = 0n×1,

as a starting point and for α = 4.791, we get the values F (x∗,y∗) = −11.7003 and
f(x∗,y∗) = 34.0099. The values known in the literature are as follows: F (x∗,y∗) =
−11 and f(x∗,y∗) = 34; see [8].

As you can observe the choice of the parameters t and α have been done randomly
and the one of starting points has been deduced from the one of [8]. Selecting
any parameters t and α would work in terms of solving the system of equations
(4.3). However, as you would be aware, solving this system does not necessary
ensure that we get an optimal (local/global) of our original bilevel program. Hence,
to select the initialization framework of the algorithm that can ensure that we
get an optimal solution of problem (1.2)–(1.3), some care would be needed. The
sensitivity/robustness of our method in terms of the initialization framework will
be part of future work that we are considering for this method.

6. Conclusion

We considered a bilevel problem involving a linear lower level problem whose
objective function is influenced by leader decision variables and the lower-level con-
straints are independent of the upper-level decisions. Using the KKT conditions, we
proposed an equivalent penalty single-level problem to which we applied a smoothed-
regularized Newton method that yields stationary points of the problem which are
potentially locally optimal. We provided sufficient conditions ensuring local con-
vergence of the method and applied the globalized algorithm to the toll-setting
problem.
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