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a weight matrix of the control in the problem’s functional, which represents the
control’s energy expenditure, is singular (but non-zero). Moreover, the differential
system, describing the dynamics of the problem, has delays (point-wise and dis-
tributed) in the state variable. To the best of our knowledge, such a minimum
energy control problem has not yet been studied in the literature. To solve the
considered problem, the regularization method and the asymptotic analysis of the
regularized problem are applied. This approach yields an open-loop optimal control
of the considered singular problem.

The paper is organized as follows. In Section 2, the singular minimum energy
control problem with delayed dynamics is rigorously formulated. In Section 3, a
proper transformation of this problem is carried out. Due to this transformation,
the initially formulated problem is converted to an equivalent singular problem
with undelayed dynamics. Section 4 is devoted to the regularization of the singular
minimum energy control problem with undelayed dynamics. The open-loop solution
(optimal control) of the regularized problem also is presented in this section. In
Section 5, the asymptotic analysis of the solution to the regularized problem is
carried out. Solution of the singular minimum energy control problem is derived
in Section 6. Illustrative example is given in Section 7. In Section 8 one more
example, illustrating a non-uniqueness of solution to the singular minimum energy
control problem in an extended set of admissible controls, is given. Conclusions are
presented in Section 9.

The following main notations and notions are used in the paper:

(1) For an n × m-matrix A, (n ≥ 1, m ≥ 1), its norm is defined as: ∥A∥ △
=∑n

i=1

∑m
j=1 |aij |, where aij , (i = 1, ...n; j = 1, ...,m) are the entries of A.

(2) The upper index ′′T ′′ denotes the transposition either of a vector x (xT ) or
of a matrix A (AT ).

(3) In denotes the identity matrix of dimension n.
(4) L2[t1, t2;Rn] denotes the linear space of all functions x(·) : [t1, t2] → Rn

square integrable in the interval [t1, t2].
(5) M[t1, t2;Rn] denotes the linear space of all pairs

(
x0, φ0(t)

)
, t ∈ [t1, t2],

where x0 ∈ Rn and φ0(·) ∈ L2[t1, t2;Rn].
(6) col(x, y), where x ∈ Rn, y ∈ Rm, denotes the column block-vector of

the dimension n + m with the upper block x and the lower block y, i.e.,
col(x, y) = (xT , yT )T .

(7) diag(A,B), where A and B are matrices of the dimensions n×n and m×m,
is a block-diagonal matrix with the upper left-hand block A and the lower
right-hand block B.

(8) On1×n2 is used for the zero matrix of the dimension n1 × n2, excepting the
cases where the dimension of the zero matrix is obvious. In such cases, the
notation 0 is used for the zero matrix.

2. Problem formulation

The system under the consideration is
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dz(t)

dt
=

N∑
i=0

Ai(t)z(t− hi) +

∫ 0

−h
G(t, τ)z(t+ τ)dτ

+B(t)u(t) + f(t), t ∈ [0, tf ],(2.1)

where for any t ∈ [−h, tf ], z(t) ∈ Rn; for any t ∈ [0, tf ], u(t) ∈ Rr, (r ≤ n), (u
is a control); 0 = h0 < h1 < ... < hN = h are given constant time delays in the
state; tf > 0 is a given final time-instant; for any t ∈ [0, tf ] and τ ∈ [−h, 0], Ai(t),
(i = 0, 1, ..., N), G(t, τ), B(t) are given matrices of corresponding dimensions, and
f(t) ∈ Rn is a given vector; the matrix-valued functions Ai(t), (i = 0, 1, ..., N), B(t)
and the vector-valued function f(t) are continuous in the interval [0, tf ]; the matrix-
valued function G(t, τ) is piece-wise continuous in τ ∈ [−h, 0] for any t ∈ [0, tf ], and
this function is continuous in t ∈ [0, tf ] uniformly with respect to τ ∈ [−h, 0].

Let g0(τ) =
(
z0, φ(τ)

)
∈ M[−h, 0;Rn] and zf ∈ Rn be arbitrary given. Using

these points, we consider the following initial and terminal conditions for the system
(2.1):

(2.2) z(τ) = φ(τ), τ ∈ [−h, 0); z(0) = z0,

(2.3) z(tf ) = zf .

Definition 2.1. Consider the set Uz of all controls u(t) ∈ L2[0, tf ;E
r] such that the

system (2.1) subject to the initial conditions (2.2) and the terminal condition (2.3)
has a solution. The set Uz is called the set of admissible controls for the system
(2.1).

Along with the system (2.1), we consider the functional

(2.4) J
(
u(·)

)
=

∫ tf

0
uT (t)R(t)u(t)dt,

where for any t ∈ [0, tf ], R(t) is a given symmetric matrix of the dimension r × r;
the matrix-valued function R(t) is continuous in the interval [0, tf ].

The minimum energy control problem for the system (2.1) is to find a control
u0(·) ∈ Uz such that

(2.5) J0 △
= J

(
u0(·)

)
≤ J

(
u(·)

)
∀u(·) ∈ Uz.

Remark 2.2. If, for any given g0(τ) ∈ M[−h, 0;Rn] and zf ∈ Rn, the set Uz is not
empty and the matrix R(t) is positive definite for all t ∈ [0, tf ], then the minimum
energy control problem (2.1),(2.4),(2.5) has the solution (see e.g. [12], Theorem 6.1).
Subject to the assumption on a positive definiteness of the matrix R(t), t ∈ [0, tf ],
the minimum energy control problem (2.1),(2.4),(2.5) is called a regular problem.
The necessary condition for the validity of the aforementioned result of [12] is the
invertibility of the matrix R(t) for any t ∈ [0, tf ]. Thus, this result is not applicable
to solution of the minimum energy control problem (2.1),(2.4),(2.5) in the case
where the matrix R(t) is not invertible at least at one point of the interval [0, tf ].
In such a case, the minimum energy control problem (2.1),(2.4),(2.5) is called a
singular problem. In the present paper, we solve this problem in the case where
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the matrix R(t) is positive semi-definite and detR(t) = 0 for all t ∈ [0, tf ]. More
precisely, we assume that the matrix R(t) has the block-diagonal form

(2.6) R(t) = diag
(
R1(t) , O(r−q)×(r−q)

)
,

where 0 < q < r; the q × q-matrix R1(t) is positive definite for all t ∈ [0, tf ].

3. Transformation of the minimum energy control problem
(2.1),(2.4),(2.5),(2.6)

Consider the following terminal-value problem for n × n-matrix-valued function
Ψ(t):

dΨ(t)

dt
= −

N∑
i=0

Ψ(t+ hi)Ai(t+ hi)

−
∫ 0

−h
Ψ(t− τ)G(t− τ, τ)dτ, t ∈ [0, tf ],

Ψ(tf ) = In, Ψ(t) = 0, t > tf .

(3.1)

By virtue of the results of [20] (Section 4.3), the problem (3.1) has the unique
solution Ψ(t), t ≥ 0.

Using the Halanay Transformation for a linear system with state delays (see [21])
and the transformation for a linear nonhomogeneous system (see [15,19]), we make
the following change of the state variable in the system (2.1):

x(t) = Ψ(t)z(t) +
N∑
i=1

∫ t+hi

t
Ψ(s)Ai(s)z(s− hi)ds

+

∫ t+h

t

(∫ s

t
Ψ(σ)G

(
σ, s− σ − h

)
dσ

)
z(s− h)ds

+

∫ tf

t
Ψ(ξ)f(ξ)dξ, t ∈ [0, tf ],

(3.2)

where x(t) is a new state variable.
Let us denote

(3.3) B(t) △
= Ψ(t)B(t), t ∈ [0, tf ],

x0
△
= Ψ(0)z0 +

N∑
i=1

∫ 0

−hi

Ψ(τ + hi)Ai(τ + hi)φ(τ)dτ

+

∫ 0

−h

(∫ τ+h

0
Ψ(σ)G

(
σ, τ − σ

)
dσ

)
φ(τ)dτ +

∫ tf

0
Ψ(ξ)f(ξ)dξ.

(3.4)

Direct differentiation of x(t) in (3.2) with respect to t, and use of the problem
(3.1) and the expressions (3.3),(3.4) yield the following assertion.
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Proposition 3.1. Let for a given u(t) ∈ Uz, the absolutely continuous function z(t),
t ∈ [0, tf ] be the solution of the boundary-value problem (2.1),(2.2)-(2.3). Then, the
function x(t), given by (3.2), is the absolutely continuous solution of the boundary-
value problem, consisting of the differential system

dx(t)

dt
= B(t)u(t), t ∈ [0, tf ],(3.5)

the initial condition

(3.6) x(0) = x0,

and the terminal condition

(3.7) x(tf ) = zf .

Definition 3.2. Consider the set Ux of all controls u(t) ∈ L2[0, tf ;E
r] such that the

system (3.5) subject to the initial condition (3.6) and the terminal condition (3.7)
has a solution. The set Ux is called the set of admissible controls for the system
(3.5).

The minimum energy control problem for the system (3.5) is to find a control
u∗(·) ∈ Ux such that

(3.8) J∗ △
= J

(
u∗(·)

)
≤ J

(
u(·)

)
∀u(·) ∈ Ux.

By virtue of the results of [12], we directly have the following assertion.

Proposition 3.3. If u0(t), t ∈ [0, tf ] is a solution of the minimum energy control
problem (2.1),(2.4),(2.5),(2.6), then it is a solution of the minimum energy control
problem (3.5),(2.4),(3.8),(2.6). Vice versa: if u∗(t), t ∈ [0, tf ] is a solution of the
minimum energy control problem (3.5),(2.4),(3.8),(2.6), then it is a solution of the
minimum energy control problem (2.1),(2.4),(2.5), (2.6). Moreover,

(3.9) J0 = J∗.

Remark 3.4. Due to Proposition 3.3, the initially formulated minimum energy
control problem (2.1),(2.4),(2.5),(2.6) and the new minimum energy control problem
(3.5),(2.4),(3.8),(2.6) are equivalent to each other. In what follows of the paper, we
deal with the simpler problem (3.5),(2.4),(3.8),(2.6) and we call this problem the
Original Minimum Energy Control Problem (OMECP). In the subsequent sections,
we will derive the solution of the OMECP valid for all x0 ∈ Rn and zf ∈ Rn.

4. Regularization of the OMECP

4.1. Partial cheap control problem. In order to derive a solution of the OMECP,
we replace it by a parameter dependent regular minimum energy control problem,
which is close in some sense to the OMECP. This new minimum energy control
problem has the same dynamics (3.5) and the same set of admissible controls Ux as
the OMECP has. However, the functional in the new problem differs from the one
in the OMECP. Namely, this functional has the form

(4.1) Jε
(
u(·)

) △
=

∫ tf

0
uT (t)

(
R(t) + E

)
u(t)dt,
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where E = diag
(
0, ..., 0︸ ︷︷ ︸

q

, ε, ..., ε︸ ︷︷ ︸
r−q

)
, ε > 0 is a small parameter.

The minimum energy control problem for the system (3.5) with the functional
(4.1) is to find a control u∗ε(·) ∈ Ux such that

(4.2) J∗
ε

△
= Jε

(
u∗ε(·)

)
≤ Jε

(
u(·)

)
∀u(·) ∈ Ux.

Using (2.6), we have immediately

(4.3) R(t) + E = diag
(
R1(t), εIr−q

)
.

Remark 4.1. Due to (4.3) and the assumption that R1(t) is a positive definite
matrix for all t ∈ [0, tf ], the matrix R(t)+E is positive definite for all t ∈ [0, tf ] and
ε > 0. Thus, the minimum energy control problem (3.5),(4.1),(4.2) is regular for
all ε > 0. Moreover, due to (4.3) and the smallness of ε, this problem is a partial
cheap control problem, i.e., the optimal control problem where the cost only of some
(but not all) control coordinates in the functional is small. In what follows, we call
the problem (3.5),(4.1),(4.2) the Partial Cheap Control Minimum Energy Problem
(PCCMEP).

4.2. Solution of the PCCMEP. Consider the matrices

(4.4) WB
△
=

∫ tf

0
B(t)BT (t)dt.

(4.5) WB(ε)
△
=

∫ tf

0
B(t)

(
R(t) + E

)−1BT (t)dt.

By virtue of the results of [12], we have the following assertion.

Proposition 4.2. Let the matrix WB be positive definite. Then, for any x0 ∈ Rn

and zf ∈ Rn, the set Ux is not empty. For any ε > 0, the matrix WB(ε) also is
positive definite, and the solution of the PCCMEP exists and has the form:

(4.6) u∗ε(t) = (R(t) + E
)−1BT (t)W−1

B (ε)(zf − x0), t ∈ [0, tf ].

Moreover,

(4.7) J∗
ε = (zf − x0)

TW−1
B (ε)(zf − x0).

5. Asymptotic analysis of the solution to the PCCMEP

5.1. Asymptotic analysis of the matrix W−1
B (ε). To analyze the asymptotic

behaviour of W−1
B (ε) for ε → +0, first we are going to transform equivalently this

matrix. For this purpose, we partition the matrix B(t), t ∈ [0, tf ] into blocks as:

(5.1) B(t) =
(
B1(t) , B2(t)

)
, t ∈ [0, tf ],

where the matrices B1(t) and B2(t) have the dimensions n × q and n × (r − q),
respectively.

Using the equations (4.3),(5.1) and taking into account the invertibility of the
matrix R1(t), we obtain for all t ∈ [0, tf ] and ε > 0

(5.2) B(t)
(
R(t) + E

)−1BT (t) = B1(t)R
−1
1 (t)BT

1 (t) +
1

ε
B2(t)BT

2 (t).
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Let us treat the matrix

(5.3) K
△
=

∫ tf

0
B2(t)BT

2 (t)dt.

This matrix is symmetric and positive semi-definite.
In what follows, we assume

A1. The matrix K has zero eigenvalue of the algebraic multiplicity k, (n− r+ q ≤
k < n).

Due to this assumption and the results of [4], there exists an orthogonal n × n-
matrix L, (LT = L−1), such that the following equality is valid:

(5.4) D
△
= LKLT =

(
Ok×k Ok×(n−k)

O(n−k)×k Θ

)
,

where the block Θ is of dimension (n−k)× (n−k), and it is a nonsingular (positive
definite) matrix.

Since the integrand in (5.3) is a positive semi-definite matrix for all t ∈ [0, tf ],
the equations (5.3) and (5.4) yield

(5.5) LB2(t) =

(
Ok×(r−q)

Λ(t)

)
, t ∈ [0, tf ],

where the block Λ(t) is of dimension (n− k)× (r − q).
Due to (5.3)-(5.5),

(5.6)

∫ tf

0
Λ(t)ΛT (t)dt = Θ.

Using the equations (4.5),(5.1)-(5.4) and the orthogonality of the matrix L, we
can represent the matrix W−1

B (ε) as:

(5.7) W−1
B (ε) = LT

(
1

ε
D + L

∫ tf

0
B1(t)R

−1
1 (t)BT

1 (t)dtL
T

)−1

L.

Let us partition the matrix L
∫ tf
0 B1(t)R

−1
1 (t)BT

1 (t)dtL
T into blocks as:

(5.8) L

∫ tf

0
B1(t)R

−1
1 (t)BT

1 (t)dtL
T =

(
Ω11 Ω12

ΩT
12 Ω13

)
,

where the block Ω11 is of dimension k×k; the block Ω12 is of dimension k× (n−k);
the block Ωu,13 is of dimension (n − k) × (n − k); the matrices Ω11 and Ω13 are
symmetric and positive semi-definite.

Due to the equations (5.4),(5.7),(5.8), the matrix W−1
B (ε) can be rewritten in the

form

W−1
B (ε) = LTΓ−1(ε)L,(5.9)

where

Γ(ε) =

(
Γ1 Γ2

ΓT
2 (1/ε)Γ3(ε)

)
,

Γ1 = Ω11, Γ2 = Ω12, Γ3(ε) = Θ + εΩ13.

(5.10)
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Being positive definite, the matrix Θ is invertible. Therefore, there exists a
positive number ε1 such that, for all ε ∈ (0, ε1], the matrix Γ3(ε) is invertible and
the following inequality is valid:∥∥Γ−1

3 (ε)−Θ−1
∥∥ ≤ a1ε,(5.11)

where a1 > 0 is some constant independent of ε.
In what follows, we assume

A2. The matrix Γ1 = Ω11 is invertible.
Consider the matrix

(5.12) ∆(ε)
△
= Γ1 − εΓ2Γ

−1
3 (ε)ΓT

2 = Ω11 − εΩ12Γ
−1
3 (ε)ΩT

12.

By virtue of the inequality (5.11), the matrix Γ−1
3 (ε) is bounded for all ε ∈ (0, ε1].

Hence, due to the assumption A2, there exists a positive number ε2 ≤ ε1 such that,
for all ε ∈ (0, ε2], the matrix ∆(ε) is invertible and its inverse matrix satisfies the
inequality

(5.13)
∥∥∆−1(ε)− Ω−1

11

∥∥ ≤ a2ε,

where a2 > 0 is some constant independent of ε.
Applying the Frobenius formula (see e.g. [7]) to the calculation of Γ−1(ε) and

taking into account the equation (5.10) and the inequality (5.13), we obtain that
for all ε ∈ (0, ε2]

Γ−1(ε) = Φ(ε) =

(
Φ1(ε) Φ2(ε)
ΦT
2 (ε) Φ3(ε)

)
,(5.14)

where

Φ1(ε) = ∆−1(ε), Φ2(ε) = −ε∆−1(ε)Ω12Γ
−1
3 (ε),

Φ3(ε) = εΓ−1
3 (ε) + ε2Γ−1

3 (ε)ΩT
12∆

−1(ε)Ω12Γ
−1
3 (ε).

(5.15)

Let us estimate the matrices Φ2(ε) and Φ3(ε). Using the expressions of these
matrices and the inequalities (5.11),(5.13), we obtain the existence of a positive
number ε3 ≤ ε2 such that, for all ε ∈ (0, ε3], the following inequalities are valid:

(5.16)
∥∥Φ2(ε)

∥∥ ≤ a3ε,
∥∥Φ3(ε)

∥∥ ≤ a3ε,

(5.17)

∥∥∥∥1εΦ2(ε) + Ω−1
11 Ω12Θ

−1

∥∥∥∥ ≤ a3ε,

∥∥∥∥1εΦ3(ε)−Θ−1

∥∥∥∥ ≤ a3ε.

Now, using the estimates (5.13),(5.16),(5.17), we can construct and justify the
asymptotic expansions of the solution of the PCCMEP u∗ε(t) (see the equation (4.6))
and the corresponding value of the functional in the PCCMEP J∗

ε (see the equation
(4.7)).
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5.2. Asymptotic expansion of u∗ε(t). Substituting (4.3),(5.1) and (5.9) into (4.6),
we obtain

u∗ε(t) =

(
R−1

1 (t) 0
0 ε−1Ir−q

)(
BT
1 (t)

BT
2 (t)

)
LTΓ−1(ε)L(zf − x0)

=

(
u∗ε,1(t)
u∗ε,2(t)

)
, t ∈ [0, tf ],

(5.18)

where

u∗ε,1(t) = R−1
1 (t)BT

1 (t)L
TΓ−1(ε)L(zf − x0), t ∈ [0, tf ],

u∗ε,2(t) = ε−1BT
2 (t)L

TΓ−1(ε)L(zf − x0), t ∈ [0, tf ].

(5.19)

Thus, we have represented the solution u∗ε(t) of the PCCMEP in the block-vector
form with the upper block u∗ε,1(t) and the lower block u∗ε,2(t). We start to construct

the asymptotic expansion of u∗ε(t) with its upper block.
Let us introduce into the consideration the following block-matrix of the dimen-

sion n× n:

Φ0
△
=

(
Ω−1
11 0

0 0

)
.(5.20)

Using this matrix, we construct the vector-valued function

u∗0,1(t)
△
= R−1

1 (t)BT
1 (t)L

TΦ0L(zf − x0), t ∈ [0, tf ].(5.21)

Now, using the equations (5.14),(5.15),(5.19),(5.20) and the inequalities (5.13),
(5.16), we have the inequality∥∥u∗ε,1(t)− u∗0,1(t)

∥∥ ≤ c1ε ∀ t ∈ [0, tf ], ε ∈ (0, ε3],(5.22)

where c1 > 0 is some constant independent of ε.
Proceed to the asymptotic analysis of u∗ε,2(t). From (5.5), we directly have

BT
2 (t)L

T =
(
O(r−q)×k , Λ

T (t)
)
, t ∈ [0, tf ].(5.23)

Substitution of (5.14) and (5.23) into the expression for u∗ε,2(t) (see the equation

(5.19)) yields after a routine matrix algebra the following expression for all t ∈ [0, tf ]:

(5.24) u∗2(t, ε) =

(
ε−1ΛT (t)ΦT

2 (ε) , ε
−1ΛT (t)Φ3(ε)

)
L(zf − x0).

Consider the vector-valued function

(5.25) u∗0,2(t)
△
=

(
− ΛT (t)Θ−1ΩT

12Ω
−1
11 , ΛT (t)Θ−1

)
L(zf − x0), t ∈ [0, tf ].

Now, using the estimates (5.17), we obtain the inequality∥∥u∗ε,2(t)− u∗0,2(t)
∥∥ ≤ c2ε ∀ t ∈ [0, tf ], ε ∈ (0, ε3],(5.26)

where c2 > 0 is some constant independent of ε.
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Let us introduce into the consideration the following vector-valued function:

u∗0(t)
△
= col

(
u∗0,1(t) , u

∗
0,2(t)

)
, t ∈ [0, tf ].(5.27)

Using the equation (5.18) and the inequalities (5.22) and (5.26), we directly have
the following inequality:∥∥u∗ε(t)− u∗0(t)

∥∥ ≤ cε ∀ t ∈ [0, tf ], ε ∈ (0, ε3],(5.28)

where c > 0 is some constant independent of ε.
The inequality (5.28) means that u∗0(t) is the zero-order asymptotic expansion

with respect to ε > 0 of u∗ε(t), and this expansion is uniform in t ∈ [0, tf ].

5.3. Asymptotic expansion of J∗
ε . Consider the value

J∗
0

△
= (zf − x0)

TLTΦ0L(zf − x0).(5.29)

Using this value, as well as the equations (4.7),(5.9),(5.14),(5.20) and the inequalities
(5.13), (5.16), we obtain the inequality∣∣J∗

ε − J∗
0

∣∣ ≤ αε ∀ ε ∈ (0, ε3],(5.30)

where α > 0 is some constant independent of ε.

6. Solution of the original minimum energy control problem

In this section, we are going to prove that the control u∗0(t), t ∈ [0, tf ], given by
the equations (5.21),(5.25),(5.27), solves the OMECP. This proof consists of two
stages. At the first stage, we will show that this control is admissible for the system
(3.5), i.e., u∗0(·) ∈ Ux. At the second stage, we will show the validity of the inequality
in (3.8) with u∗(t) = u∗0(t), t ∈ [0, tf ].

6.1. Admissibility of the control u∗0(t) for the system (3.5). Substituting
u(t) = u∗0(t), t ∈ [0, tf ] into the equation (3.5) and using the equations (5.1) and
(5.27), we obtain the following differential equation:

(6.1)
dx(t)

dt
= B1(t)u

∗
0,1(t) + B2(t)u

∗
0,2(t), t ∈ [0, tf ].

Due to Definition 3.2, to show the inclusion u∗0(·) ∈ Ux, it is necessary and
sufficient to show the existence of solution to the equation (6.1) satisfying the initial
condition (3.6) and the terminal condition (3.7).

Solving the equation (6.1) subject to the initial condition (3.6), we directly have

(6.2) x(t) = x0 +

∫ t

0
B1(σ)u

∗
0,1(σ)dσ +

∫ t

0
B2(σ)u

∗
0,2(σ)dσ, t ∈ [0, tf ].

Substitution of t = tf into (6.2) yields

(6.3) x(tf ) = x0 +

∫ tf

0
B1(σ)u

∗
0,1(σ)dσ +

∫ tf

0
B2(σ)u

∗
0,2(σ)dσ.

Therefore, the inclusion u∗0(·) ∈ Ux is fulfilled if and only if the expression in the
right-hand side of (6.3) equals zf . To show this equality, we will treat separately the
second and the third addends of the expression in the right-hand side of (6.3). Let
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us start with the second addend
∫ tf
0 B1(σ)u

∗
0,1(σ)dσ. Substituting the expression

for u∗0,1(t) (see the equation (5.21)) into this addend, we obtain

(6.4)

∫ tf

0
B1(σ)u

∗
0,1(σ)dσ =

∫ tf

0
B1(σ)R

−1
1 (σ)BT

1 (σ)L
TΦ0L(zf − x0)dσ.

Multiplying both sides of this equality from the left by LTL = In, we have after
some rearrangement

(6.5)

∫ tf

0
B1(σ)u

∗
0,1(σ)dσ = LT

(
L

∫ tf

0
B1(σ)R

−1
1 (σ)BT

1 (σ)dσL
T

)
Φ0L(zf − x0).

Using the equations (5.8) and (5.20), we can rewrite the equation (6.5) as:∫ tf

0
B1(σ)u

∗
0,1(σ)dσ

= LT

(
Ω11 Ω12

ΩT
12 Ω13

)
×
(

Ω−1
11 Ok×(n−k)

O(n−k)×k O(n−k)×(n−k)

)
L(zf − x0)

= LT

(
Ik Ok×(n−k)

ΩT
12Ω

−1
11 O(n−k)×(n−k)

)
L(zf − x0).(6.6)

Proceed to the third addend of the expression in the right-hand side of (6.3),

which is
∫ tf
0 B2(σ)u

∗
0,2(σ)dσ. Substituting the expression for u∗0,2(t) (see the equation

(5.25)) into this addend, we obtain after some rearrangement

(6.7)

∫ tf

0
B2(σ)u

∗
0,2(σ)dσ =

∫ tf

0
B2(σ)Λ

T (σ)Θ−1
(
−ΩT

12Ω
−1
11 , In−k

)
L(zf −x0)dσ.

Multiplying both sides of this equality from the left by LTL = In, we have after
some rearrangement

(6.8)

∫ tf

0
B2(σ)u

∗
0,2(σ)dσ

= LT

∫ tf

0

(
LB2(σ)

)
ΛT (σ)dσΘ−1

(
− ΩT

12Ω
−1
11 , In−k

)
L(zf − x0).

Using the equations (5.5) and (5.6), we can rewrite the equation (6.8) as:∫ tf

0
B2(σ)u

∗
0,2(σ)dσ

= LT

∫ tf

0

(
Ok×(r−k)

Λ(σ)

)
ΛT (σ)dσΘ−1

(
− ΩT

12Ω
−1
11 , In−k

)
L(zf − x0)

= LT

∫ tf

0

(
Ok×(n−k)

Λ(σ)ΛT (σ)

)
dσΘ−1

(
− ΩT

12Ω
−1
11 , In−k

)
L(zf − x0)

= LT

(
Ok×(n−k)∫ tf
0 Λ(σ)ΛT (σ)dσ

)
Θ−1

(
− ΩT

12Ω
−1
11 , In−k

)
L(zf − x0)

= LT

(
Ok×(n−k)

Θ

)
Θ−1

(
− ΩT

12Ω
−1
11 , In−k

)
L(zf − x0)
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= LT

(
Ok×(n−k)

In−k

)(
− ΩT

12Ω
−1
11 , In−k

)
L(zf − x0)

= LT

(
Ok×k Ok×(n−k)

−ΩT
12Ω

−1
11 In−k

)
L(zf − x0).(6.9)

Now, using the equations (6.3),(6.6),(6.9) and the orthogonality of the matrix L,
yields

x(tf ) = x0 + LT

(
Ik Ok×(n−k)

ΩT
12Ω

−1
11 O(n−k)×(n−k)

)
L(zf − x0)

+LT

(
Ok×k Ok×(n−k)

−ΩT
12Ω

−1
11 In−k

)
L(zf − x0)

= x0 + LT InL(zf − x0) = zf ,

(6.10)

meaning that the solution (6.2) of the equation (6.1) satisfies the initial condition
(3.6) and the terminal condition (3.7). Thus,

(6.11) u∗0(·) ∈ Ux.

6.2. Validity of the inequality in (3.8) for u∗(t) = u∗0(t), t ∈ [0, tf ]. First of
all, let us calculate the value J

(
u∗0(·)

)
. Using the equations (2.4),(2.6) and (5.27),

we obtain

(6.12) J
(
u∗0(·)

)
=

∫ tf

0

(
u∗0(t)

)T
R(t)u∗0(t)dt =

∫ tf

0

(
u∗0,1(t)

)T
R1(t)u

∗
0,1(t)dt.

Substitution of the expression for u∗0,1(t) (see the equation (5.21)) into the right-

hand side of the equation (6.12) yields after some rearrangement

(6.13) J
(
u∗0(·)

)
= (zf − x0)

TLTΦ0

(
L

∫ tf

0
B1(t)R

−1
1 (t)BT

1 (t)dtL
T

)
Φ0L(zf − x0).

Further, using the equations (5.8) and (5.20), we can rewrite the equation (6.13) as:

J
(
u∗0(·)

)
= (zf − x0)

TLT

(
Ω−1
11 Ok×(n−k)

O(n−k)×k O(n−k)×(n−k)

)
×
(

Ω11 Ω12

ΩT
12 Ω13

)(
Ω−1
11 Ok×(n−k)

O(n−k)×k O(n−k)×(n−k)

)
L(zf − x0)

= (zf − x0)
TLT

(
Ω−1
11 Ok×(n−k)

O(n−k)×k O(n−k)×(n−k)

)
L(zf − x0)

= (zf − x0)
TLTΦ0L(zf − x0).(6.14)

Thus, comparing (5.29) and (6.14), we have

(6.15) J
(
u∗0(·)

)
= J∗

0 .

Using the equation (6.15), we are going to show the validity of the inequality in
(3.8) for u∗(t) = u∗0(t), t ∈ [0, tf ].
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Based on (2.4),(2.6),(4.1),(4.2) and (5.30), we have the following chain of inequal-
ities and equality:

(6.16) 0 ≤ inf
u(t)∈Ux

J
(
u(·)

)
≤ J

(
u∗ε(·)

)
≤ Jε

(
u∗ε(·)

)
= J∗

ε ≤ J∗
0 + αε ∀ ε ∈ (0, ε3].

Since the values infu(t)∈Ux
J
(
u(·)

)
and J∗

0 are independent of ε, then (6.16) yields
the inequality

inf
u(t)∈Ux

J
(
u(·)

)
≤ J∗

0 .(6.17)

Let us show the validity of the equality

(6.18) inf
u(t)∈Ux

J
(
u(·)

)
= J∗

0 .

For this purpose, we assume the opposite which, by virtue of (6.17), is

inf
u(t)∈Ux

J
(
u(·)

)
< J∗

0 .(6.19)

Due to this strong inequality, there exists ū(·) ∈ Ux such that

inf
u(t)∈Ux

J
(
u(·)

)
< J

(
ū(·)

)
< J∗

0 .(6.20)

Using the inequalities (4.2) and (5.30), we obtain

(6.21) J∗
0 − αε ≤ J∗

ε = Jε
(
u∗ε(·)

)
≤ Jε

(
ū(t)

)
= J

(
ū(·)

)
+ bε ∀ ε ∈ (0, ε3],

where

b =

∫ tf

0
ūTlow(t)ūlow(t)dt

and ūlow(t) is the lower block of the vector ū(t) of the dimension r − q.
From the chain of the equalities and the inequalities (6.21), we have the validity

of the inequality J∗
0 ≤ J

(
ū(·)

)
+(b+α)ε for all ε ∈ (0, ε3], which yields the inequality

J∗
0 ≤ J

(
ū(·)

)
. The latter contradicts the right-hand side inequality in (6.20). This

contradiction means that the inequality (6.19) is wrong, which implies the validity
of the equality (6.18). The equalities (6.15) and (6.18) directly imply the validity
of the inequality in (3.8) for u∗(t) = u∗0(t), t ∈ [0, tf ]. The latter, along with
the inclusion (6.11), means that the control u∗0(t), t ∈ [0, tf ] is the solution of the
OMECP.

7. Illustrative example

Consider the following particular case of the system (2.1):

(7.1)
dz1(t)

dt
= z1(t− 1) + u1(t)− u2(t),

(7.2)
dz2(t)

dt
= z2(t− 1) + 2u1(t)− u2(t),

where t ∈ [0, 2]; z1(t), z2(t), u1(t), u2(t) are scalar variables.
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Comparing the system (7.1)-(7.2) with the system (2.1), we can conclude that in
(7.1)-(7.2) n = 2, r = 2,

(7.3) N = 1, h1 = 1, tf = 2; f(t) ≡
(

0
0

)
, t ∈ [0, 2],

and the matrices of the coefficients have the form

(7.4) A0(t) ≡
(

0 0
0 0

)
, A1(t) ≡

(
1 0
0 1

)
, t ∈ [0, 2],

(7.5) G(t, τ) ≡
(

0 0
0 0

)
, (t, τ) ∈ [0, 2]× [−1, 0],

(7.6) B(t) ≡
(

1 − 1
2 − 1

)
, t ∈ [0, 2].

The system (7.1)-(7.2) is subject to the initial conditions

(7.7) z1(τ) = 0, τ ∈ [−1, 0), z1(0) = 2,

(7.8) z2(τ) = 0, τ ∈ [−1, 0), z2(0) = 1,

and the terminal conditions

(7.9) z1(2) = 5,

(7.10) z2(2) = 6.

Comparing the initial conditions (7.7)-(7.8) with the initial conditions (2.2), as
well as the terminal conditions (7.9)-(7.10) with the terminal condition (2.3), we
can see that in (7.7)-(7.8)

(7.11) φ(τ) ≡
(

0
0

)
, τ ∈ [−1, 0); z0 =

(
2
1

)
,

and

(7.12) zf =

(
5
6

)
.

In this example, the functional is chosen as:

(7.13) J
(
u(·)

)
=

∫ 2

0
u21(t)dt,

where u(t) = col
(
u1(t) , u2(t)

)
, t ∈ [0, 2].

Comparing the functional (7.13) with the functional (2.4),(2.6), we have that
q = 1 and

R(t) ≡
(

1 0
0 0

)
, R1(t) ≡ 1, t ∈ [0, 2].(7.14)

In this example, the set Uz of admissible controls for the system (7.1)-(7.2) is the
set of all controls u(·) ∈ L2[0, 2;R2] such that this system has a solution satisfying
the initial conditions (7.7)-(7.8) and the terminal conditions (7.9)-(7.10).



SINGULAR MINIMUM ENERGY PROBLEM FOR TIME DELAY SYSTEM 1427

We look for the control u0(·) ∈ Uz, which satisfies the inequality

(7.15) J
(
u0(·)

)
≤ J

(
u(·)

)
∀u(·) ∈ Uz.

Thus, the minimum energy control problem, consisting of the system (7.1)-(7.2),
the initial conditions (7.7)-(7.8), the terminal conditions (7.9)-(7.10), the functional
(7.13) and the condition of the control’s optimality (7.15), is a particular case of
the minimum energy control problem (2.1),(2.4),(2.5),(2.6). Following the results
of Section 3, we are going to transform the minimum energy control problem (7.1)-
(7.2),(7.7)-(7.8),(7.9)-(7.10),(7.13),(7.15) to the equivalent simpler form problem.

We start with the obtaining the matrix-valued function Ψ(t), defined by the
terminal-value problem (3.1). Using the data (7.3)-(7.5), we directly obtain Ψ(t)
corresponding to this data

(7.16) Ψ(t) = ψ(t)I2, t ∈ [0, 2],

where the scalar function ψ(t) has the form

(7.17) ψ(t) =

{
2− t, t ∈ [0, 1],
1, t ∈ (1, 2].

Substitution of (7.6) and (7.16)-(7.17) into (3.3) yields

(7.18) B(t) =


(2− t)

(
1 − 1
2 − 1

)
, t ∈ [0, 1],(

1 − 1
2 − 1

)
, t ∈ (1, 2].

Thus, the system (3.5) becomes

(7.19)
dx(t)

dt
=




(2− t)

(
1 − 1
2 − 1

)
, t ∈ [0, 1],(

1 − 1
2 − 1

)
, t ∈ (1, 2]

u(t), t ∈ [0, 2],

where x(t) = col
(
x1(t) , x2(t)

)
, (x1(t) and x2(t) are scalar variables), u(t) =

col
(
u1(t) , u2(t)

)
.

Furthermore, using the data (7.3)-(7.5),(7.11) and the equations (7.16)-(7.17), we
directly have the vector x0, defined by (3.4),

(7.20) x0 = col(4 , 2).

Thus, due to (3.6),

(7.21) x(0) = col(4 , 2).

Also, due to (3.7) and (7.12),

(7.22) x(2) = col(5 , 6).

In this example, the set Ux of admissible controls for the system (7.19) is the set
of all controls u(·) ∈ L2[0, 2;R2] such that this system has a solution satisfying the
initial condition (7.21) and the terminal condition (7.22).
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The minimum energy control problem, equivalent to the above formulated prob-
lem (7.1)-(7.2),(7.7)-(7.8),(7.9)-(7.10),(7.13),(7.15), is to find the control u∗0(·) ∈ Ux,
which satisfies the inequality

(7.23) J
(
u∗0(·)

)
≤ J

(
u(·)

)
∀u(·) ∈ Ux.

This problem is a particular case of the OMECP formulated in Section 3 (see Remark
3.4). In what follows of this example, we are going to derive the control u∗0(t),
t ∈ [0, 2] using the results of Sections 5 and 6. To proceed with the application
of the results of these sections to the derivation of the control u∗0(t), t ∈ [0, 2],
first, we should check the fulfilment of the assumption of Proposition 4.2, i.e., the
positive definiteness of the matrix WB (see the equation (4.4)). Using the equations
(4.4),(7.3) and (7.18) yields

(7.24) WB =
10

3

(
2 3
3 5

)
,

meaning the positive definiteness of this matrix.
Due to the equation (5.1), we partition the matrix B(t), given by (7.18), into two

blocks B1(t) and B2(t) which are

(7.25) B1(t) =


(2− t)

(
1
2

)
, t ∈ [0, 1],(

1
2

)
, t ∈ (1, 2],

(7.26) B2(t) =


(t− 2)

(
1
1

)
, t ∈ [0, 1],(

−1
−1

)
, t ∈ (1, 2],

Calculating the matrix K (see the equation (5.3)), we obtain

(7.27) K =

 10
3

10
3

10
3

10
3

 .

This matrix has a simple zero eigenvalue, meaning the fulfilment of the assumption
A1 with k = 1. The orthogonal matrix L, appearing in the equation (5.4), can be
chosen as

L =


1√
2

− 1√
2

1√
2

1√
2

 .(7.28)

Substituting the matrices K and L, given by the equations (7.27) and (7.28), into
the equation (5.4), we obtain after a routine algebra the matrix D

D =

 0 0

0 20
3

 .(7.29)
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The latter, along with (5.4), means that

Θ =
20

3
.(7.30)

Substitution of (7.26) and (7.28) into (5.5) yields after a direct calculation

(7.31) LB2(t) =


(t− 2)

(
0√
2

)
, t ∈ [0, 1],

(
0

−
√
2

)
, t ∈ (1, 2].

Hence,

(7.32) Λ(t) =

{ √
2(t− 2), t ∈ [0, 1],

−
√
2, t ∈ (1, 2].

Using the equations (7.14),(7.25),(7.28) and calculating the expression in the
left-hand side of the equation (5.8), we obtain

(7.33) L

∫ tf

0
B1(t)R

−1
1 (t)BT

1 (t)dtL
T =

 5
3 − 5

−5 15

 .

Comparing the matrices in the right-hand sides of the equations (5.8) and (7.33),
we directly have

(7.34) Ω11 =
5

3
, Ω12 = −5, Ω13 = 15,

which, due to (5.20), yields

(7.35) Φ0
△
=

(
0.6 0
0 0

)
.

Using (7.14),(7.12),(7.21),(7.25),(7.28),(7.35), we can calculate the function u∗0,1(t),

given by (5.21). Thus, we obtain

(7.36) u∗0,1(t) =

{
0.9(2− t), t ∈ [0, 1],
0.9, t ∈ (1, 2].

Similarly, using (5.25),(7.12),(7.21),(7.28),(7.30),(7.34), we calculate the function
u∗0,2(t) as:

(7.37) u∗0,2(t) =

{
0.6(2− t), t ∈ [0, 1],
0.6, t ∈ (1, 2].

Thus, by virtue of the equation (5.27) and the results of Section 6, the solution
of the OMECP in this example is

(7.38) u∗0(t) =


(2− t)

(
0.9
0.6

)
, t ∈ [0, 1],(

0.9
0.6

)
, t ∈ (1, 2].

Due to Proposition 3.3, this control also solves the initially formulated problem of
this example (7.1)-(7.2),(7.7)-(7.8),(7.9)-(7.10),(7.13),(7.15).
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Finally, using (5.29),(7.12),(7.21),(7.28),(7.35), we calculate the value of the func-
tional (7.13) corresponding to u∗0(t), t ∈ [0, 2] in both minimum energy control
problems

(7.39) J∗
0 = 2.7 .

8. Example on non-uniqueness of solution to the OMECP

Consider the following particular case of the boundary-value problem (3.5)-(3.7):

dx1(t)

dt
= (t− 2)u1(t) + (2t− 4)u2(t), t ∈ [0, 2],

dx2(t)

dt
= (4− 2t)u1(t) + (2− t)u2(t), t ∈ [0, 2],

x1(0) = x0,1, x2(0) = x0,2,

x1(2) = zf,1, x2(2) = zf,2,

(8.1)

where x1(t), x2(t), u1(t), u2(t) are scalar variables; x0,1, x0,2, zf,1 and zf,2 are some
given scalar values.

In this example, first, we consider the set Ux of admissible controls for the differ-
ential system of (8.1) as the set of all controls u(·) = col

(
u1(·), u2(·)

)
∈ L2[0, 2;R2]

such that this system has a solution satisfying the corresponding boundary condi-
tions (see the equation (8.1)).

Furthermore, in this example, the functional is chosen as:

(8.2) J
(
u(·)

)
=

∫ 2

0
u21(t)dt.

The minimum energy control problem, consisting of the boundary-value problem
(8.1), the set of admissible controls Ux and the functional (8.2) is a particular case
of the OMECP formulated in Section 3 (see Remark 3.4), where

(8.3) n = 2, r = 2, q = 1, tf = 2,

B(t) =
(
t− 2 2t− 4
4− 2t 2− t

)
, R1(t) ≡ 1, t ∈ [0, 2],

x0 = col(x0,1, x0,2), zf = col(zf,1, zf,2).

(8.4)

Based on the results of Sections 5 and 6, let us derive the control u∗0(t), t ∈
[0, 2] solving the aforementioned minimum energy control problem. In order to
apply the results of these sections to the derivation of the control u∗0(t), t ∈ [0, 2],
first, we should check the fulfilment of the assumption of Proposition 4.2, i.e., the
positive definiteness of the matrix WB (see the equation (4.4)). Using the equations
(4.4),(8.3) and (8.4) yields

(8.5) WB =
8

3

(
5 − 4

−4 5

)
,

meaning the positive definiteness of this matrix.
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Due to the equation (5.1), we partition the matrix B(t), given in (8.4), into two
blocks B1(t) and B2(t) which are

(8.6) B1(t) =

(
t− 2
4− 2t

)
, B2(t) =

(
2t− 4
2− t

)
, t ∈ [0, 2].

Calculation of the matrix K, defined by the equation (5.3), yields

(8.7) K =

 32
3 − 16

3

−16
3

8
3

 ,

meaning that K has zero eigenvalue of the algebraic multiplicity k = 1. Hence, the
assumption A1 is fulfilled.

The orthogonal matrix L, appearing in the equation (5.4), can be chosen as

L =


1√
5

2√
5

− 2√
5

1√
5

 .(8.8)

Substituting the matrices K and L, given by the equations (8.7) and (8.8), into
the equation (5.4), we obtain by a routine algebra the matrix D

D =

 0 0

0 40
3

 .(8.9)

The latter, along with (5.4), means that

Θ =
40

3
.(8.10)

Calculating Λ(t), defined by the equation (5.5), and using B2(t) and L (see the
equations (8.6) and (8.8)), we obtain

(8.11) Λ(t) =
√
5(2− t), t ∈ [0, 2].

Now, calculating the block-form matrix, defined by (5.8), and using (8.6) and
(8.8), we obtain by a routine algebra(

Ω11 Ω12

ΩT
12 Ω13

)
=

 72
15

96
15

96
15

128
15

 .(8.12)

This block-form matrix and the equation (5.20) yield

(8.13) Φ0
△
=

 5
24 0

0 0

 .

Using (8.4),(8.6),(8.8),(8.13), we can calculate the component u∗0,1(t) of the con-

trol u∗0(t), given by (5.21). Thus, we obtain

(8.14) u∗0,1(t) = −1

8
(t− 2)[(zf,1 − x0,1) + 2(zf,2 − x0,2)], t ∈ [0, 2].
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Similarly, using (5.25),(8.4),(8.8),(8.10),(8.11),(8.12), we calculate the component
u∗0,2(t) of the control u∗0(t) as:

(8.15) u∗0,2(t) =
1

8
(t− 2)[2(zf,1 − x0,1) + (zf,2 − x0,2)], t ∈ [0, 2].

Furthermore, using (5.29),(8.4),(8.8),(8.13), we calculate the value of the func-
tional (8.2) corresponding to u∗0(t) = col

(
u∗0,1(t), u

∗
0,2(t)

)
, t ∈ [0, 2] in the minimum

energy control problem (8.1),(8.2)

(8.16) J∗
0 =

1

24
[(zf,1 − x0,1) + 2(zf,2 − x0,2)]

2.

Proceed to the derivation of another solution to the minimum energy control
problem (8.1),(8.2). For this purpose, we extend the set Ux of admissible controls
for this problem. Namely, let us consider the following set of controls:

U △
=

{
u(t) = col

(
u1(t), u2(t)

)
: u1(t) ∈ L2[0, 2], u2(t) ∈

(
Uδ

⋃
L2[0, 2]

)}
,

Uδ
△
= {βδ(t− t̄)},

(8.17)

where β is any real number; t̄ ∈ [0, 2] is any time instant; δ(t − t̄), t ∈ [0, 2] is the
δ-function of Dirac with the impulse at t = t̄.

Consider the set Ux of all controls u(t) ∈ U such that the boundary-value problem
(8.1) has a solution with any u(t) ∈ Ux. Thus, Ux ⊂ U , while Ux ⊂ Ux. The set Ux

is chosen as the extended set of admissible controls in the minimum energy control
problem (8.1),(8.2).

Let us find out whether there exist β and t̄ ∈ [0, 2] such that the control ū(t) =
col

(
ū1(t), ū2(t)

)
= col

(
0, βδ(t− t̄)

)
∈ Ux.

Substituting u(t) = ū(t) into the boundary-value problem (8.1), we have

dx1(t)

dt
= (2t− 4)βδ(t− t̄), t ∈ [0, 2],

dx2(t)

dt
= (2− t)βδ(t− t̄), t ∈ [0, 2],

x1(0) = x0,1, x2(0) = x0,2,

x1(2) = zf,1, x2(2) = zf,2,

(8.18)

Integrating the differential system in (8.18) from t = 0 to t = 2, and using the
corresponding initial and terminal conditions yield

zf,1 = x0,1 + (2t̄− 4)β,

zf,2 = x0,2 + (2− t̄)β.

(8.19)

For any t̄ ̸= 2, this set of equations with respect to the unknown β has a solution if
and only if

(8.20) zf,1 − x0,1 = −2(zf,2 − x0,2),
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and this solution is β = β(t̄, x0,2, zf,2)
△
= (zf,2 − x02)/(2− t̄) for any t̄ ∈ [0, 2).

Hence, subject to the condition (8.20), the control

ū(t) = col
(
ū1(t), ū2(t)

)
= col

(
0, β(t̄, x0,2, zf,2)δ(t− t̄)

)
∈ Ux ∀ t̄ ∈ [0, 2).

Since ū1(t) ≡ 0, t ∈ [0, 2], then J
(
ū(t)

)
= 0 meaning that ū(t), t ∈ [0, 2] is a solution

of the minimum energy control problem (8.1),(8.2) for any t̄ ∈ [0, 2).
It should be noted that, subject to the condition (8.20), the component u∗0,1(t)

of the control u∗0(t) becomes zero (u∗0,1(t) ≡ 0, t ∈ [0, 2]), the component u∗0,2(t) of

the control u∗0(t) becomes as u∗0,2(t) =
3
8(zf,2 − x0,2)(2 − t), t ∈ [0, 2], the value of

the functional (8.2) corresponding to the control u∗0(t) with these components in the
minimum energy control problem (8.1),(8.2) (see the equation (8.16)) becomes zero.
Moreover, subject to the condition (8.20), any control ũ(t) = col

(
ũ1(t), ũ2(t)

)
=

col
(
0, ũ2(t)

)
∈ Ux, where ũ2(t) ∈ L2[0, 2] satisfies the Fredholm integral equation of

the first kind ∫ 2

0
(2− t)ũ2(t)dt = zf,2 − x0,2,

is a solution of the minimum energy control problem (8.1),(8.2).
Thus, subject to the condition (8.20), we have derived infinitely many solutions

to the minimum energy control problem (8.1),(8.2). Among these solutions are
u∗0(t) = col

(
0, u∗0,2(t)

)
∈ Ux ⊂ Ux and ũ(t) = col

(
0, ũ2(t)

)
∈ Ux ⊂ Ux, while the

other solutions are ū(t) ∈ Ux valid for any t̄ ∈ [0, 2). The values of the functional in
the problem, corresponding to these solutions are the same, namely, zero. It should
be noted that, due to the presence of the Dirac δ-function in ū(t), the solution ū(t)
can be useful rather for a theoretical analysis of the minimum energy control prob-
lem, while the solutions u∗0(t) and ũ(t) can be useful for both purposes, theoretical
analysis of the minimum energy control problem and practical implementation of
this solution.

9. Conclusions

In this paper, the minimum energy control problem was considered. The dy-
namics of the problem has multiple point-wise and distributed delays in the state
variable. The weight matrix of the control cost is block-diagonal with two blocks
on the main diagonal. One of these blocks is a positive definite matrix, while the
other is zero matrix. Thus, the aforementioned weight matrix of the control cost is
singular, meaning that the considered minimum energy control problem is singular.
The control coordinates, which are present in the functional are regular, while the
other control coordinates are singular. A set of admissible controls in the prob-
lem is chosen as the set of all square integrable control functions, transferring the
problem’s dynamic system from a given initial position to a given terminal position.

By the proper linear change of the state variable, the initially formulated control
problem was transformed equivalently to a much simpler one. This new problem
also is a singular minimum energy control problem, while its equation of dynamics
does not have delays any more. In the sequel of the paper, this new undelayed
problem was considered as an original minimum energy control problem. To solve
this problem, the regularization method was applied. Namely, the original problem
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was replaced by a regular minimum energy control problem, which depends on a
small positive parameter ε. This new minimum energy control problem has the
same dynamics and the same set of admissible controls as the original problem has.
However, the functional in the new problem differs from the one in the original
problem. The new functional is the sum of the original functional and the finite-
horizon integral of the squares of the singular control coordinates with the small
positive weight ε. Thus obtained the parameter dependent minimum energy control
problem is a partial cheap control problem, and it becomes the original problem for
ε = 0. Asymptotic analysis with respect to ε of the solution to this partial cheap
control problem was carried out. Based on this analysis, the solution (the open-
loop optimal control) of the original singular minimum energy control problem was
derived. The corresponding value of the functional also was obtained.

It was shown by example that, subject to some additional condition, the singular
minimum energy problem can have infinitely many solutions in the original set and
in some extended set of admissible controls.
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