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ABSTRACT. We explore the possibility to define and to meaningfully apply some
new concepts of directional derivative which incorporate in their construction
set convergences to set-optimization problems. We connect these new construc-
tions with other directional derivatives for set-valued maps and we emphasize
the flexibility and the potential applicability of this new approach. In this vein,
we indicate a possible axiomatic perspective that allows one to significantly in-
crease the number and (maybe) the efficiency of these derivatives when applied
to concrete problems.

1. INTRODUCTION

In this work we continue the ideas that led in [2] and [3] to the development
of some classes of directional derivatives for set-valued maps that seems to be of
interest for getting a new perspective on optimality conditions for set-optimization
problems. More specifically, in this paper we add a new layer of generality and
flexibility to the aforementioned constructions by considering set convergences. This
is a natural step to take for generalized differentiation objects that are intended to
be applied to set-optimization problems because, by their very nature, these classes
of problems deal primarily with sets and this feature is their main conceptual and
technical difference with respect to vector optimization problems. In using the
idea of constructing directional derivatives using set convergences, we have to face a
problem of choice, since there are many such convergences, everyone with its specific
features. In order to start with we choose the lower Kuratowski set convergence
for two reasons: firstly, this is a rather weak set convergence and secondly, it is
recognized as a prototype set convergence. However, even if the main study is done
for this set convergence, we show then how the corresponding directional derivative
behaves in comparison to directional derivatives built on different, stronger set-
convergences. This comparison, as well as other considerations lead us to indicate
a possible axiomatic approach in the construction of these directional derivatives.
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We want to emphasize that we do not propose ourselves to present here in detail
many of the results that can be obtained, but to rather describe some principles
that can generate consequences for the questions under study. In this sense, we
mainly show the links of the new concepts with some of other already studied direc-
tional derivatives and then we exemplify the novelties that can be achieved by their
employment in the study of optimality conditions for set-optimization problems.

The paper is organized as follows. In the second section we briefly present the
setting of our study and we introduce the set-optimization problem on which we in-
tend to test the directional derivatives we are going to introduce. A recently studied
directional derivative for set-valued maps is recalled at the end of this section. The
third section deals with a new directional derivative for set-valued maps built on the
basis of lower Kuratowski set convergence. We study the relationship of this new
concept with that mentioned in the previous section and we pay attention to the spe-
cial case of single-valued maps. The fourth section proposes optimality conditions
for two concepts of minimality for the set-optimization problem under considera-
tion. In both cases, we underline the links, but also the differences with respect
to recent results in literature. The fifth section pursuits the idea of constructing
directional derivatives for set-valued maps based on different set convergences. We
consider the lower Hausdorfl-Pompeiu convergence as an extreme (strong) case and
the lower Attouch-Wets convergence as an intermediate one. Finally, these multiple
considerations lead us to the indication of a possible axiomatic approach that can
encompass the particular situations discussed here.

2. PRELIMINARIES

We work on real normed vector spaces. If X is such a space we denote by B (z,¢)
and D (z,¢) the open and (respectively) the closed ball centered at x € X and with
radius ¢ > 0. For notation and general facts about the set-convergences we work
with we use, mainly, [10] and [11].

Let X,Y be normed spaces over the real field R. Consider K C Y a closed
convex pointed proper cone. The set approach in vector optimization is based on
some order relations on sets defined by Kuroiwa: see [5] for details. We work here
with one such relation. We collect some known concepts and results, mainly from [6]
and [2].

Let A, B C Y be nonempty sets. Define le by

A<l B < BCA+K.
If K is solid, that is int K # (), then one defines as well the strict relation —<ZK by
A<Y B < BCA+intK.

Let FF: X =2 Y be a set-valued map with nonempty values and M C X be a
nonempty closed set. Consider the problem

(P) minimize F'(x) subject to x € M.

Definition 2.1. An element T € M is said to be [—minimum for ¥ on M or for
the problem (P) if

z e M, F(z) <t F(z) = F(z) <k F(z).
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The local counterpart is obvious.

The above concept means that for all x € M the inclusion F (z) C F (x) + K
implies that F' (z) C F (Z)+ K, or, in other words, since K is convex, for any x € M
one can have

F@) ¢ Fx)+KorF(z)CF(x)+KCF(z)+K.

Definition 2.2. An element T € M is said to be [—weak minimum for F on M or
for the problem (P) if

x e M, F(z) <k F () = F(z) <% F(x).
Remark 2.3. An element T € M is a [—minimum for the problem (P) if and only
if T is a [—minimum for Epi /' on M, where EpiF' : X == Y is the epigraphical
set-valued map defined by
Epi F'(z) = F (z) + K.
The same statement holds for [—weak minimality.

For a set ) # A C Y, the set of weakly minimal points is
WMin (4,K):={a€ A| (A—a)N—int K = 0}.

Remark 2.4. Obviously, if A C Y is a nonempty set such that WMin (A, K) # ()
then

Ag A+int K.
Therefore, for 7 € M, if WMin (F (z), K) # () then T is [—weak minimum for the
problem (P) if and only if F(z) Ak F(Z) for all z € M (see also [4] and the
references therein). A similar assertion holds for local [—weak minimality.

We end this section by recalling the following generalized directional derivatives
from [3] (see also [2]).

Definition 2.5. Let F': X =2 Y be a set-valued map and z,u € X.
(i) One calls the lower directional derivative of F' at T in direction u the set,
denoted D™ F (T) (u) , of elements v € Y such that for all € > 0 there exist
(tn) 4 0, (up) — u and n. € N such that for all n > n,,

F(Z)+tpv C F (T + thuy) +t,B(0,¢) .

(ii) One calls the upper directional derivative of F' at T in direction u the set,
denoted DT F (Z) (u), of elements v € Y such that for all € > 0 and all
(tn) 4 0, (up) — u, there exists n. € N such that for all n > n,,

F(Z)+tyv C F (T + tyuy) +t,B(0,¢).

3. A PROTOTYPE FOR DIRECTIONAL DERIVATIVE CONCEPTS

In this section we define and study a directional derivative for set-valued maps
based on a well-known set convergence and for this we turn back to the original
definition of a set-valued map F : X = Y as a function from X into 2.

As mentioned by many authors (see, for instance, [1], [9]) the Wijsman con-
vergence is a prototype for topological set convergences and we consider here the
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“lower half” of it, which is as well the “lower halves” of Vietoris and Kuratowski
convergences (see [10]). This convergence is not a topological one and the limit
is not unique. We denote this set convergence by (K_) and the fact that a se-
quence of sets (V) C 2 \ {#} is convergent to a set V € 2V \ {0} in the sense

of (K_) by V. e (K_) —1limV, or (V) )
Ve (K_)—1limV, if and only if

V CliminfV,, :={yeY |VYneN, Ty, € V, : limy, =y}.

V. More precisely, the definition is:

The set convergence (K_) has the following immediate properties:

-if (ya) =y, then {yn} " {1}

-if Ve (K-)-1limV, then V+ K € (K_) —lim(V,, + K);

-if V e (K_) —limV}, then for every v € V there is a sequence (v,) such that
vy, € V, for all n and (v,) — v;

-if Ve (K_) —limV,, then for every U C V, U € (K_) — lim V/,.

We introduce now the new concept which we are going to study. Let F' take
values in 2¥ \ {#}. For 7 € X and u € X we define the Bouligand-type directional
derivative of F' at T in direction u with respect to (K_) as

MKW@NM:{VE?\WHHWH&HWM%MHWH@ﬁW}.
Vn: F(Z)+t,V, C F (T + thuy)

Remark 3.1. Observe that if A € DS -)F(Z)(u) and B C A, then B €
D) F (%) (u). However, in general, if A, B € D-)F (Z) (u) it is not true that
AU B € DB F () (u) (see the example in Remark 3.6).

Let us compare this new concept with that already studied and recalled in Defi-
nition 2.5.

Proposition 3.2. In the above notation, if V€ DU-IF (Z)(u), then V C D™F (T)(u) .
Proof. According to the above definition, there are some sequences () | 0, (u,) —
u, (Vi) (ﬁ) V, such that for all n
F () +t,V, C F (T + tphuy).
Take v € V. Since (V},) (K—_>) V, there is a sequence (vy,) such that v, € V,, for all n
and (v,) — v, so for all € > 0, there is n. € N such that for n > n.,
v e {v,} +B(0,¢).
Therefore, for n large enough,
F(Z)+t,{v} C F(Z)+t, {vn}+ B(0,¢))
CF(Z)+t,Vi +t,B(0,e) C F (T + tpu,) +t,B(0,¢).
This implies that {v} € D™ F (%) (u), whence the conclusion. O

Remark 3.3. Similarly, if V € D =) Epi F (%) (u) for some u € X, then V C
D~ Epi F (Z) (u).
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Remark 3.4. Observe as well that if V € DWE-)F(Z)(u) then V + K €
DS-) Epi F (%) (u). The converse of the latter assertion is not true, in general:

(K-)
for instance in R, {n~*} 4 {0,1}, but {n"'} + [0, 00) (%) {0,1} + [0, 00) .
Proposition 3.5. If v € D~ F (%) (u), then {v} € DEF (T) (u).

Proof. Indeed, the inclusion v € D™ Epi F' () (u) means that for every € > 0 there
exist (tn) J 0, (up) = u and n. € N such that for all n > n,,

F(Z)+tyv C F(ZT + thuyp) +t,B(0,¢) .

For all kK € N\ {0}, take ¢ = k~!. For the sequences (t,) | 0, (u,) — u given by
the above statement, there is a strictly increasing subsequence (ny) with ¢,, < k1L,
|tn, — ul| < k~! for all k. Therefore, for large k,

F(T) + ty,v C F (T + tatn,) + tn, B (0,k71).
This implies that for some p;, € B (O, kil) ,
F(Z)+tn, (v+p,) CF (T tn,un,)-

Since {v + p; } () {v}, we get
{v} € DFIF (T) (u),
and this is the conclusion. O

Remark 3.6. In general, one cannot conclude that a subset of D™ F (Z) (u) which
consists of more than one point belongs to DY -)F (%) (u). For instance, let us
consider F': R = R, given by

{z}, if z = 1 with n € N\ {0},
F(x) = {Qx},ifx:ﬁwithneN\{O},
{0}, otherwise.

Then, clearly, {1,2} ¢ D~F (0) (1), but {1,2} ¢ D) F (0) (u).

Let us provide a direct calculation of this new directional derivative in some
particular situations. Before that, we recall the following well known concepts. Let
f X — RU{+o00}; the upper Hadamard directional derivative of f at T € dom f
in the direction u € X is

=) — (3
dif(T,u) = limsupf(gC +tw) f(x),
tl0,u’ —u t

while the lower Hadamard directional derivative of f at T in the direction u is

d_f(Z,u) = tE&}ga f(T+ tu;) — f(@) |

We identify, as usual, f with the naturally associated set-valued map and for R
one takes R as the ordering cone.
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Proposition 3.7. In the above notation, the following assertions hold:
(i) ifd_f(x,u) € R then {d_f(T,u)} € D) f(Z) (u) and for all e < d_f(T,u),
{a} & DEf (@) (u);
(ii) if dy f(Z,u) € R then {dy f(Z,u)} € D) f(F) (u) and for all 8 > dy (T, u),
{8} ¢ DEIf () (u).
(ili) if d—f(Z,u) € R then [d_ f(T,u),00) is the biggest set (in the sense of in-
clusion) which belongs to DY) Epi f (Z) (u), and if d_ f(Z,u) = —oco, then

R € DY) Epi f (Z) (u) .

Proof. (i) and (ii) These inclusions readily follow by the fact that d_ f(Z,u) (and
d+ f(Z,u), respectively) is the smallest (the greatest) limit of the quotient
(tn) "' (f (& + taun) — f (T)) when (t,) | 0, (un) — u are in such a way that the
limit exists.

(iii) Suppose that d_f(z,u) € R. Take V := [d_f(Z,u),0). We know that there
are some sequences () J 0, (u,) — u such that

d_f(f, u) — lim / (j'i_ tnun) —f (E)

n—00 tn

So, one can find a strictly increasing sequence of natural numbers (ny) such that
for all k € N\ {0}

/ (E"‘tnkunk) - f(f)

Tny

<d_f(z,u)+ %

Therefore, for all &,
F @)+t (d-f (@, 0) +571) € [f (T + tnyun, ) , +00),
SO

F (@) + tu [d-F (@ 0) + k", +00) C [ (Z + tnttn,) . +00) = Epi [ (F + t un,)

Since, clearly [d_ f(,u) + k!, +oc0) () [d_f(T,u),00), we get that
[d_f(T,u),0) € DE-)Epi f (7) (u).

Suppose now, by way of contradiction that would exist a bigger set in
D) Epi f (%) (u). Then it would exist v < d_f(Z,u) such that {v} €
D5-) Epi f (%) (u) . Whence, by Proposition 3.2, {v} € D~ Epi f (%) (u), but the
latter set is known to be exactly [d_ f (T, u),00) (see [3, Proposition 3.5]).

The case d_ f(T,u) = —oo is similar. O

Remark 3.8. In fact, it is easy to see that D5-) f (Z) (u) consists of all subsets of
the set of limits of the quotient (t,) " (f (T + tpun) — f (T)) for (t,) 1 0, (un) — u
when this is convergent.

We end this section by proposing a variation of the main concept discussed up to
this point. Let again F': X — 2¥\ {#}. For # € X and u € X we define (see [8])



DIRECTIONAL DERIVATIVES FOR SET-VALUED MAPS 1407

the Penot-type directional derivative of F' at T in direction u with respect to (K_)
as

DU E @) () =] VEL (B IV(ta) L0, ¥ (un) = u, 3 (V) v
P Vn = ng: F(T) + taV C F (T + tnun)

This time, if A, B € D}K’)F () (u), then AUB € DgDK’)F (Z) (u). Moreover, this
directional derivative can be compared with DT F (T) (u) from Definition 2.5 on the
same ideas as before. We refrain ourselves from doing this here, and we let this
exercise to the interested reader. However, we reconsider this notion in the next
section, in order to deal with constrained problems and in the last section in order
to illustrate a possible axiomatic approach in the theory of directional derivatives
based on set convergences.

4. OPTIMALITY CONDITIONS FOR SOME EFFICIENCY CONCEPTS

In this section, we deal with some necessary optimality conditions one can get
using the directional derivatives we discussed above.

Proposition 4.1. If T is a local l—weak minimum point for F (on X) and
WMin (F (Z),K) # 0, then for all w € X and all V € D¥-) Epi F (%) (u), one
has V N (—int K) = 0.

Proof. Suppose, by way of contradiction, that there are u € X, V € D5-) Epi F (Z) (u)
and v € V N (—int K). Then, according to the definition, there are (¢,) | 0,
(un) = u, (Vi) %) V, such that for all n,

F(z)+t,V,+ K C F(T+ thuy) + K.

Since (V) ) V, there is a sequence (v,) — v such that v, € V, for all n.
Therefore, for n large enough,

F (T) C F (T +thuy) + K — tyho,

C F (T + thuy) +int K.
Since T + t,u, — T, the local weak minimality of T implies

F(Z) C F(Z)+int K,
and this contradicts the assumption WMin (F (7), K) # (). Consequently, the con-
clusion holds. O
Remark 4.2. In view of Proposition 3.5, the above assertion generalizes some
optimality conditions from [2] and [3].

Let us consider now, inspired by [4], a slightly different approximate solution con-
cept for the set-optimization problem (P). In order to obtain necessary optimality
conditions for this kind of concept the authors in [4] use the classical Bouligand
derivative, a construction that is well-suited for vector optimization problems but
seems to not fit equally well in the set-optimization setting. This fact is visible
in [4, Theorem 5.1] where a strong condition on F' (Z) has to be imposed.
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Definition 4.3. Let e € K\ {0}, ¢ > 0 and ¢ : X — [0,00) such that ¢ (x) > 0
if x # 0. One says that 7 € X is a [—weak (g, e, ) minimum point for (P) if T is
[—weak minimum for F' () 4+ ep (- — T) e on M.

Proposition 4.4. In the notation of Definition 4.3, suppose that M = X, T € X
is a l—weak (g, e, p) minimum point for (P) and WMin (F (z),K) # 0. Then one
has
(V4+die(0)(u)e)N (—int K) =0,
for all w € X with dy¢ (0) (v) € R and for all V € DY) Epi F (Z) (u).
Proof. Consider the set-valued map G : X =Y,
G(x)=F(x)+ep(x—7)e.

Clearly, under our assumptions, WMin (G (Z),K) # 0 because G (z) = F (T).
According to Proposition 4.1, one has V N (—int K) = 0, for all v € X and all
V € D) EpiG (Z) (u). In order to get the conclusion, it is enough to prove that
for all V€ D) Epi F () (u),

V +d 9 (0)(u)e e DY) Epi G (T) (u).
Let then V € DUS-) Epi F (Z) (u), meaning that there are some sequences (t,) | 0,
(un) = u, (Vi) (K—;) V, such that for all n
F(Z) 4+ t,V, C F (T + thu,) + K.

But for these sequences, one can find some subsequences (t,,), and (uy,), such
that for all nonzero k,

d+ (0) (u) + % > 7 (t”ku;Z) — ¥ (0)7

which gives
tny (A (0) (w) +K71) +0(0) > @ (tn,un,) |

that is

© (0) + tny, (drp (0) (u) + k71) € (¢ (tnyuny,) , +00).
By multiplication with e, we get

@ (0) e+ ty, (dre(0) (u) +Ek71) e € o (tnun,) e+ K.
Summing the relations for F' and ¢,

F@) +¢0)e+tn Vi +tn, (dep(0)(w) +k7 ) e € F(T+tn,un,)
+ (tn,un,) e+ K.

The obvious relation V,,, + d4 (0) (u)e + k! By + d+ ¢ (0) (u) e confirms the
above claim. The proof is complete. OJ

Remark 4.5. Notice that the efficiency concept that appears in Definition 4.3 is
a natural outcome of a penalization procedure as devised in [2, Proposition 4.8].
Namely, in that result, under certain conditions and for an e € K\ {0}, a [—weak
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minimum for F on M is shown to be a [—weak minimum on X (that is, without
constraints) for the set-valued map

x = F (z)+ Ldy (x) e,
where L is a constant associated to a generalized Lipschitz property of F.

Now, using the same idea as in Proposition 4.1 and the interplay of 3 and V
one easily gets necessary optimality conditions in the constrained case in terms of

DJ(PK_)F (%) (u). As usual, for a nonempty set M C X and for x € M, one denotes
by Ts (M, x) the Bouligand tangent cone to M at z, that is,

Tp(M,z)={ue X |3(t,) 10, I(up) = u:z+tyu, € M, Vn}.

Proposition 4.6. If T is a local l—weak minimum point for F on X and
WMin (F (), K) # 0, then for all w € Tg (M,Z) and V € D%K’)EpiF(f) (u),
one has VN (—int K) = 0.

Similarly, optimality conditions for [—weak (&, e, ) minimality for (P) can be
devised.

5. TOWARDS AN AXIOMATIC APPROACH

Of course, (K_) is just one of many possible set convergences that can be con-
sidered: see [10], [11] and the references therein. We denote by F the class of closed
nonempty subsets of Y. Suppose that () # A C 2 and denote by ¢ a set conver-
gence on A in the sense presented in [7, p. 74, items (a), (b), (c)]. As it is well
known there are many set convergences that can be considered on subclasses A of
F or even on 2 \ {()} . As before, we consider here only sequences of sets and as a
standing assumption we understand that all the involved sets are in A every time
when we speak about a set convergence on A. Then, in this setting, we denote the
fact that (A,) C A is convergent to A € A in the sense of ¢ by A € ¢ —lim A,, or
(A,) S5 A

This general discussion and the concrete example of (K_) open the way to define
a whole class of directional derivatives on a similar pattern. Let F' take values in A
and ¢ be a set convergence on A. For T € X and u € X we define the Bouligand-type
directional derivative of F' at T in direction u with respect to ¢ as

e JVeA|T(t) 10, F(uy) —wu, IV, SV,
DF(x)(u)_{ vn:F(f)thnVnc;(ertnun)_> }

Of course, every set convergence on a class A C 2¥ generates a directional deriv-
ative and therefore, the above definition subsumes a wide variety of concepts which
can be classified by the very classifications of set convergences (see [10] for such a
classification).

For instance, besides (K_) considered above, one can be equally interested in the
“lower half” of Hausdorff-Pompeiu convergence, that is denoted by (H_), namely:
V e (H-) —limV, if and only if

Ve >0, In.,Vn>n.:VC (V) ={yeY |dyV,) <e}.
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Remark 5.1. (i) Clearly, (H_) convergence implies (K_) convergence, but the
converse is not true. Therefore, one has DU-)F (z) (u) ¢ D5-)F (%) (u) and one
can have V € DE-)F (%) (u) but V ¢ DW-)F (Z) (u). For instance, consider that
Y is infinite dimensional and take (x,,) C Sx such that ||z, — x| > 27! for all
natural distinct numbers m,n. According to Riesz Lemma, such a sequence exists.
Consider the sets A,, = {z | k < n} forallnand A ={x, |n € N}.If for T,u € X,
(tn) 10, and (up) — u,
F(Z)+thAn C F (T + thuy,),

then A € DE-F (Z) (u), but A ¢ DU-)F (Z) (u). Similar remarks hold for any
two comparable set convergences.

(ii) These two convergences are in a sense “extreme”: (K_) is weak and (H_) is

strong and this is the main reason we considered them here. In general, if a result
holds for (K_) then it holds for a wide range of set convergences.

Remark 5.2. Actually, if one takes stronger convergences that (/K_) in Proposition
3.2, then better conclusion can be devised. For instance, if we consider ¢ = (H_),

H_
in proof of Proposition 3.2, since (V,,) — V, then one gets that for all £ > 0, there
is ne € N such that for n > ng,

VcV,+B(0,e).
Therefore, for n large enough,
F(@)+t,V CF (@) +ty (Vo + B(0,e)) = F (T + tyu,) +t,B(0,¢) .

This implies that V' C D™ F (Z) (u) with an uniform ¢ for all v € V.

Similarly one can consider the weaker set convergence (AW_) (a “half”) of
Attouch-Wets topology if one restricts it to F (see [1]). Namely, A € (AW_)—lim 4,,
if and only if

ey, 3py >0, Vp=py:e(AND (Y, p),An) = 0.

AW
Now, in Proposition 3.2 if (V},) (A=) V, then consider v € V and for p big enough,

VN D (y,p) # 0, whence for all € > 0, there is n. € N such that for n > n.,
veV,+B(0,¢),

and again V' C D™ F (7) (u) with an uniform ¢ for all v in bounded subsets of V.
The same example as in Remark 5.1 (i) shows that the inclusion DAY=) F (T) (u) C
DS F (%) (u) can be strict. Taking the easiest example of subsets of natural
numbers A, = {k €N |k <n} for all n and A = N one gets as well that the
inclusion DW-)F (Z) (u) € DUW-)F (Z) (u) can be strict.

Remark 5.3. As in Proposition 4.1, one can prove that if T is a [—weak minimum
point for F' (on X) and WMin (F (Z),K) # (), then for all v € X and all V €
DW-) Epi F (Z) (u) we get that

Ve >0,YveV:B(ve) ¢ —int K.

Remark 5.4. In fact, in the preceding section, in the proof of our results we used
only some properties of (K_) and this could be an impetus to consider an abstract
set convergence endowed with some properties. This abstracting could be combined
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as well with a play of 3 and V quantifiers (as we did when we briefly discussed

DEDK’) Epi F (%) (u)) in order to get other differentiation objects and corresponding
results. Another variation that can be useful in certain problems is to consider, into
the definition of directional derivative the reverse of the inclusion

F(T) 4 tyVi C F (T + thuy) -

For instance, the latter modification is useful in dealing with <% order (see [6]) in
set-optimization problems.
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