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We want to emphasize that we do not propose ourselves to present here in detail
many of the results that can be obtained, but to rather describe some principles
that can generate consequences for the questions under study. In this sense, we
mainly show the links of the new concepts with some of other already studied direc-
tional derivatives and then we exemplify the novelties that can be achieved by their
employment in the study of optimality conditions for set-optimization problems.

The paper is organized as follows. In the second section we briefly present the
setting of our study and we introduce the set-optimization problem on which we in-
tend to test the directional derivatives we are going to introduce. A recently studied
directional derivative for set-valued maps is recalled at the end of this section. The
third section deals with a new directional derivative for set-valued maps built on the
basis of lower Kuratowski set convergence. We study the relationship of this new
concept with that mentioned in the previous section and we pay attention to the spe-
cial case of single-valued maps. The fourth section proposes optimality conditions
for two concepts of minimality for the set-optimization problem under considera-
tion. In both cases, we underline the links, but also the differences with respect
to recent results in literature. The fifth section pursuits the idea of constructing
directional derivatives for set-valued maps based on different set convergences. We
consider the lower Hausdorff-Pompeiu convergence as an extreme (strong) case and
the lower Attouch-Wets convergence as an intermediate one. Finally, these multiple
considerations lead us to the indication of a possible axiomatic approach that can
encompass the particular situations discussed here.

2. Preliminaries

We work on real normed vector spaces. If X is such a space we denote by B (x, ε)
and D (x, ε) the open and (respectively) the closed ball centered at x ∈ X and with
radius ε > 0. For notation and general facts about the set-convergences we work
with we use, mainly, [10] and [11].

Let X,Y be normed spaces over the real field R. Consider K ⊂ Y a closed
convex pointed proper cone. The set approach in vector optimization is based on
some order relations on sets defined by Kuroiwa: see [5] for details. We work here
with one such relation. We collect some known concepts and results, mainly from [6]
and [2].

Let A,B ⊂ Y be nonempty sets. Define ⪯l
K by

A ⪯l
K B ⇐⇒ B ⊂ A+K.

If K is solid, that is intK ̸= ∅, then one defines as well the strict relation ≺l
K by

A ≺l
K B ⇐⇒ B ⊂ A+ intK.

Let F : X ⇒ Y be a set-valued map with nonempty values and M ⊂ X be a
nonempty closed set. Consider the problem

(P ) minimize F (x) subject to x ∈ M.

Definition 2.1. An element x ∈ M is said to be l−minimum for F on M or for
the problem (P ) if

x ∈ M,F (x) ⪯l
K F (x) =⇒ F (x) ⪯l

K F (x).
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The local counterpart is obvious.

The above concept means that for all x ∈ M the inclusion F (x) ⊂ F (x) + K
implies that F (x) ⊂ F (x)+K, or, in other words, since K is convex, for any x ∈ M
one can have

F (x) ̸⊂ F (x) +K or F (x) ⊂ F (x) +K ⊂ F (x) +K.

Definition 2.2. An element x ∈ M is said to be l−weak minimum for F on M or
for the problem (P ) if

x ∈ M, F (x) ≺l
K F (x) =⇒ F (x) ≺l

K F (x).

Remark 2.3. An element x ∈ M is a l−minimum for the problem (P ) if and only
if x is a l−minimum for EpiF on M, where EpiF : X ⇒ Y is the epigraphical
set-valued map defined by

EpiF (x) = F (x) +K.

The same statement holds for l−weak minimality.

For a set ∅ ̸= A ⊂ Y , the set of weakly minimal points is

WMin (A,K) := {a ∈ A | (A− a) ∩ − intK = ∅} .

Remark 2.4. Obviously, if A ⊂ Y is a nonempty set such that WMin (A,K) ̸= ∅
then

A ̸⊂ A+ intK.

Therefore, for x ∈ M , if WMin (F (x) ,K) ̸= ∅ then x is l−weak minimum for the
problem (P ) if and only if F (x) ̸≺l

K F (x) for all x ∈ M (see also [4] and the
references therein). A similar assertion holds for local l−weak minimality.

We end this section by recalling the following generalized directional derivatives
from [3] (see also [2]).

Definition 2.5. Let F : X ⇒ Y be a set-valued map and x, u ∈ X.

(i) One calls the lower directional derivative of F at x in direction u the set,
denoted D−F (x) (u) , of elements v ∈ Y such that for all ε > 0 there exist
(tn) ↓ 0, (un) → u and nε ∈ N such that for all n ≥ nε,

F (x) + tnv ⊂ F (x+ tnun) + tnB (0, ε) .

(ii) One calls the upper directional derivative of F at x in direction u the set,
denoted D+F (x) (u) , of elements v ∈ Y such that for all ε > 0 and all
(tn) ↓ 0, (un) → u, there exists nε ∈ N such that for all n ≥ nε,

F (x) + tnv ⊂ F (x+ tnun) + tnB (0, ε) .

3. A prototype for directional derivative concepts

In this section we define and study a directional derivative for set-valued maps
based on a well-known set convergence and for this we turn back to the original
definition of a set-valued map F : X ⇒ Y as a function from X into 2Y .

As mentioned by many authors (see, for instance, [1], [9]) the Wijsman con-
vergence is a prototype for topological set convergences and we consider here the
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“lower half” of it, which is as well the “lower halves” of Vietoris and Kuratowski
convergences (see [10]). This convergence is not a topological one and the limit
is not unique. We denote this set convergence by (K−) and the fact that a se-
quence of sets (Vn) ⊂ 2Y \ {∅} is convergent to a set V ∈ 2Y \ {∅} in the sense

of (K−) by V ∈ (K−) − limVn or (Vn)
(K−)→ V. More precisely, the definition is:

V ∈ (K−)− limVn if and only if

V ⊂ lim inf Vn := {y ∈ Y | ∀n ∈ N, ∃yn ∈ Vn : lim yn = y} .
The set convergence (K−) has the following immediate properties:

- if (yn) → y, then {yn}
(K−)→ {y} ;

- if V ∈ (K−)− limVn then V +K ∈ (K−)− lim (Vn +K) ;
- if V ∈ (K−) − limVn then for every v ∈ V there is a sequence (vn) such that

vn ∈ Vn for all n and (vn) → v;
- if V ∈ (K−)− limVn then for every U ⊂ V, U ∈ (K−)− limVn.

We introduce now the new concept which we are going to study. Let F take
values in 2Y \ {∅}. For x ∈ X and u ∈ X we define the Bouligand-type directional
derivative of F at x in direction u with respect to (K−) as

D(K−)F (x) (u) =

{
V ∈ 2Y \ {∅} | ∃ (tn) ↓ 0, ∃ (un) → u, ∃ (Vn)

(K−)→ V,
∀n : F (x) + tnVn ⊂ F (x+ tnun)

}
.

Remark 3.1. Observe that if A ∈ D(K−)F (x) (u) and B ⊂ A, then B ∈
D(K−)F (x) (u). However, in general, if A,B ∈ D(K−)F (x) (u) it is not true that

A ∪B ∈ D(K−)F (x) (u) (see the example in Remark 3.6).

Let us compare this new concept with that already studied and recalled in Defi-
nition 2.5.

Proposition 3.2. In the above notation, if V ∈D(K−)F (x)(u), then V ⊂D−F (x)(u) .

Proof. According to the above definition, there are some sequences (tn) ↓ 0, (un) →

u, (Vn)
(K−)
→ V, such that for all n

F (x) + tnVn ⊂ F (x+ tnun) .

Take v ∈ V. Since (Vn)
(K−)
→ V, there is a sequence (vn) such that vn ∈ Vn for all n

and (vn) → v, so for all ε > 0, there is nε ∈ N such that for n ≥ nε,

v ∈ {vn}+B (0, ε) .

Therefore, for n large enough,

F (x) + tn {v} ⊂ F (x) + tn ({vn}+B (0, ε))

⊂ F (x) + tnVn + tnB (0, ε) ⊂ F (x+ tnun) + tnB (0, ε) .

This implies that {v} ∈ D−F (x) (u), whence the conclusion. □

Remark 3.3. Similarly, if V ∈ D(K−) EpiF (x) (u) for some u ∈ X, then V ⊂
D− EpiF (x) (u).
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Remark 3.4. Observe as well that if V ∈ D(K−)F (x) (u) then V + K ∈
D(K−) EpiF (x) (u). The converse of the latter assertion is not true, in general:

for instance in R,
{
n−1

} (K−)

̸→ {0, 1} , but
{
n−1

}
+ [0,∞)

(K−)→ {0, 1}+ [0,∞) .

Proposition 3.5. If v ∈ D−F (x) (u) , then {v} ∈ D(K−)F (x) (u) .

Proof. Indeed, the inclusion v ∈ D− EpiF (x) (u) means that for every ε > 0 there
exist (tn) ↓ 0, (un) → u and nε ∈ N such that for all n ≥ nε,

F (x) + tnv ⊂ F (x+ tnun) + tnB (0, ε) .

For all k ∈ N \ {0} , take ε = k−1. For the sequences (tn) ↓ 0, (un) → u given by
the above statement, there is a strictly increasing subsequence (nk) with tnk

< k−1,
∥unk

− u∥ < k−1 for all k. Therefore, for large k,

F (x) + tnk
v ⊂ F (x+ tnk

unk
) + tnk

B
(
0, k−1

)
.

This implies that for some ρk ∈ B
(
0, k−1

)
,

F (x) + tnk
(v + ρk) ⊂ F (x+ tnk

unk
) .

Since {v + ρk}
(K−)→ {v}, we get

{v} ∈ D(K−)F (x) (u) ,

and this is the conclusion. □

Remark 3.6. In general, one cannot conclude that a subset of D−F (x) (u) which

consists of more than one point belongs to D(K−)F (x) (u) . For instance, let us
consider F : R ⇒ R, given by

F (x) =


{x} , if x = 1

n with n ∈ N \ {0} ,
{2x} , if x = 1

n
√
n
with n ∈ N \ {0} ,

{0} , otherwise.

Then, clearly, {1, 2} ⊂ D−F (0) (1) , but {1, 2} /∈ D(K−)F (0) (u) .

Let us provide a direct calculation of this new directional derivative in some
particular situations. Before that, we recall the following well known concepts. Let
f : X → R∪{+∞}; the upper Hadamard directional derivative of f at x ∈ dom f
in the direction u ∈ X is

d+f(x, u) = lim sup
t↓0,u′→u

f(x+ tu′)− f(x)

t
,

while the lower Hadamard directional derivative of f at x in the direction u is

d−f(x, u) = lim inf
t↓0,u′→u

f(x+ tu′)− f(x)

t
.

We identify, as usual, f with the naturally associated set-valued map and for R
one takes R+ as the ordering cone.
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Proposition 3.7. In the above notation, the following assertions hold:

(i) if d−f(x, u) ∈ R then {d−f(x, u)} ∈ D(K−)f (x) (u) and for all α < d−f(x, u),

{α} /∈ D(K−)f (x) (u) ;

(ii) if d+f(x, u) ∈ R then {d+f(x, u)} ∈ D(K−)f (x) (u) and for all β > d+f(x, u),

{β} /∈ D(K−)f (x) (u) .
(iii) if d−f(x, u) ∈ R then [d−f(x, u),∞) is the biggest set (in the sense of in-

clusion) which belongs to D(K−) Epi f (x) (u) , and if d−f(x, u) = −∞, then

R ∈ D(K−) Epi f (x) (u) .

Proof. (i) and (ii) These inclusions readily follow by the fact that d−f(x, u) (and
d+f(x, u), respectively) is the smallest (the greatest) limit of the quotient

(tn)
−1 (f (x+ tnun)− f (x)) when (tn) ↓ 0, (un) → u are in such a way that the

limit exists.
(iii) Suppose that d−f(x, u) ∈ R. Take V := [d−f(x, u),∞). We know that there

are some sequences (tn) ↓ 0, (un) → u such that

d−f(x, u) = lim
n→∞

f (x+ tnun)− f (x)

tn
.

So, one can find a strictly increasing sequence of natural numbers (nk) such that
for all k ∈ N \ {0}

f (x+ tnk
unk

)− f (x)

tnk

< d−f(x, u) +
1

k
.

Therefore, for all k,

f (x) + tnk

(
d−f(x, u) + k−1

)
∈ [f (x+ tnk

unk
) ,+∞),

so

f (x) + tnk
[d−f(x, u) + k−1,+∞) ⊂ [f (x+ tnk

unk
) ,+∞) = Epi f (x+ tnk

unk
) .

Since, clearly [d−f(x, u) + k−1,+∞)
(K−)→ [d−f(x, u),∞), we get that

[d−f(x, u),∞) ∈ D(K−) Epi f (x) (u) .

Suppose now, by way of contradiction that would exist a bigger set in
D(K−) Epi f (x) (u) . Then it would exist v < d−f(x, u) such that {v} ∈
D(K−) Epi f (x) (u) . Whence, by Proposition 3.2, {v} ⊂ D− Epi f (x) (u) , but the
latter set is known to be exactly [d−f(x, u),∞) (see [3, Proposition 3.5]).

The case d−f(x, u) = −∞ is similar. □

Remark 3.8. In fact, it is easy to see that D(K−)f (x) (u) consists of all subsets of

the set of limits of the quotient (tn)
−1 (f (x+ tnun)− f (x)) for (tn) ↓ 0, (un) → u

when this is convergent.

We end this section by proposing a variation of the main concept discussed up to
this point. Let again F : X → 2Y \ {∅}. For x ∈ X and u ∈ X we define (see [8])
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the Penot-type directional derivative of F at x in direction u with respect to (K−)
as

D
(K−)
P F (x) (u) =

{
V ∈ 2Y \ {∅} | ∀ (tn) ↓ 0, ∀ (un) → u, ∃ (Vn)

(K−)→ V,
∀n ≥ n0 : F (x) + tnVn ⊂ F (x+ tnun)

}
.

This time, if A,B ∈ D
(K−)
P F (x) (u), then A∪B ∈ D

(K−)
P F (x) (u). Moreover, this

directional derivative can be compared with D+F (x) (u) from Definition 2.5 on the
same ideas as before. We refrain ourselves from doing this here, and we let this
exercise to the interested reader. However, we reconsider this notion in the next
section, in order to deal with constrained problems and in the last section in order
to illustrate a possible axiomatic approach in the theory of directional derivatives
based on set convergences.

4. Optimality conditions for some efficiency concepts

In this section, we deal with some necessary optimality conditions one can get
using the directional derivatives we discussed above.

Proposition 4.1. If x is a local l−weak minimum point for F (on X) and

WMin (F (x) ,K) ̸= ∅, then for all u ∈ X and all V ∈ D(K−) EpiF (x) (u), one
has V ∩ (− intK) = ∅.

Proof. Suppose, by way of contradiction, that there are u ∈ X, V ∈ D(K−) EpiF (x) (u)
and v ∈ V ∩ (− intK) . Then, according to the definition, there are (tn) ↓ 0,

(un) → u, (Vn)
(K−)→ V, such that for all n,

F (x) + tnVn +K ⊂ F (x+ tnun) +K.

Since (Vn)
(K−)→ V, there is a sequence (vn) → v such that vn ∈ Vn for all n.

Therefore, for n large enough,

F (x) ⊂ F (x+ tnun) +K − tnvn

⊂ F (x+ tnun) + intK.

Since x+ tnun → x, the local weak minimality of x implies

F (x) ⊂ F (x) + intK,

and this contradicts the assumption WMin (F (x) ,K) ̸= ∅. Consequently, the con-
clusion holds. □

Remark 4.2. In view of Proposition 3.5, the above assertion generalizes some
optimality conditions from [2] and [3].

Let us consider now, inspired by [4], a slightly different approximate solution con-
cept for the set-optimization problem (P ). In order to obtain necessary optimality
conditions for this kind of concept the authors in [4] use the classical Bouligand
derivative, a construction that is well-suited for vector optimization problems but
seems to not fit equally well in the set-optimization setting. This fact is visible
in [4, Theorem 5.1] where a strong condition on F (x) has to be imposed.
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Definition 4.3. Let e ∈ K \ {0} , ε > 0 and φ : X → [0,∞) such that φ (x) > 0
if x ̸= 0. One says that x ∈ X is a l−weak (ε, e, φ) minimum point for (P ) if x is
l−weak minimum for F (·) + εφ (· − x) e on M.

Proposition 4.4. In the notation of Definition 4.3, suppose that M = X, x ∈ X
is a l−weak (ε, e, φ) minimum point for (P ) and WMin (F (x) ,K) ̸= ∅. Then one
has

(V + d+φ (0) (u) e) ∩ (− intK) = ∅,
for all u ∈ X with d+φ (0) (u) ∈ R and for all V ∈ D(K−) EpiF (x) (u).

Proof. Consider the set-valued map G : X ⇒ Y,

G (x) = F (x) + εφ (x− x) e.

Clearly, under our assumptions, WMin (G (x) ,K) ̸= ∅ because G (x) = F (x) .
According to Proposition 4.1, one has V ∩ (− intK) = ∅, for all u ∈ X and all

V ∈ D(K−) EpiG (x) (u). In order to get the conclusion, it is enough to prove that

for all V ∈ D(K−) EpiF (x) (u),

V + d+φ (0) (u) e ∈ D(K−) EpiG (x) (u).

Let then V ∈ D(K−) EpiF (x) (u), meaning that there are some sequences (tn) ↓ 0,

(un) → u, (Vn)
(K−)
→ V, such that for all n

F (x) + tnVn ⊂ F (x+ tnun) +K.

But for these sequences, one can find some subsequences (tnk
)k and (unk

)k such
that for all nonzero k,

d+φ (0) (u) +
1

k
>

φ (tnk
unk

)− φ (0)

tnk

,

which gives

tnk

(
d+φ (0) (u) + k−1

)
+ φ (0) > φ (tnk

unk
) ,

that is

φ (0) + tnk

(
d+φ (0) (u) + k−1

)
∈ (φ (tnk

unk
) ,+∞) .

By multiplication with e, we get

φ (0) e+ tnk

(
d+φ (0) (u) + k−1

)
e ∈ φ (tnk

unk
) e+K.

Summing the relations for F and φ,

F (x) + φ (0) e+ tnk
Vnk

+ tnk

(
d+φ (0) (u) + k−1

)
e ∈ F (x+ tnk

unk
)

+φ (tnk
unk

) e+K.

The obvious relation Vnk
+ d+φ (0) (u) e + k−1 (K−)→ V + d+φ (0) (u) e confirms the

above claim. The proof is complete. □

Remark 4.5. Notice that the efficiency concept that appears in Definition 4.3 is
a natural outcome of a penalization procedure as devised in [2, Proposition 4.8].
Namely, in that result, under certain conditions and for an e ∈ K\ {0}, a l−weak
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minimum for F on M is shown to be a l−weak minimum on X (that is, without
constraints) for the set-valued map

x ⇒ F (x) + LdM (x) e,

where L is a constant associated to a generalized Lipschitz property of F.

Now, using the same idea as in Proposition 4.1 and the interplay of ∃ and ∀
one easily gets necessary optimality conditions in the constrained case in terms of

D
(K−)
P F (x) (u). As usual, for a nonempty set M ⊂ X and for x ∈ M, one denotes

by TB (M,x) the Bouligand tangent cone to M at x, that is,

TB (M,x) = {u ∈ X | ∃ (tn) ↓ 0, ∃ (un) → u : x+ tnun ∈ M, ∀n} .

Proposition 4.6. If x is a local l−weak minimum point for F on X and

WMin (F (x) ,K) ̸= ∅, then for all u ∈ TB (M,x) and V ∈ D
(K−)
P EpiF (x) (u),

one has V ∩ (− intK) = ∅.

Similarly, optimality conditions for l−weak (ε, e, φ) minimality for (P ) can be
devised.

5. Towards an axiomatic approach

Of course, (K−) is just one of many possible set convergences that can be con-
sidered: see [10], [11] and the references therein. We denote by F the class of closed
nonempty subsets of Y . Suppose that ∅ ̸= A ⊂ 2Y and denote by c a set conver-
gence on A in the sense presented in [7, p. 74, items (a), (b), (c)]. As it is well
known there are many set convergences that can be considered on subclasses A of
F or even on 2Y \ {∅} . As before, we consider here only sequences of sets and as a
standing assumption we understand that all the involved sets are in A every time
when we speak about a set convergence on A. Then, in this setting, we denote the
fact that (An) ⊂ A is convergent to A ∈ A in the sense of c by A ∈ c − limAn or

(An)
c→ A.

This general discussion and the concrete example of (K−) open the way to define
a whole class of directional derivatives on a similar pattern. Let F take values in A
and c be a set convergence on A. For x ∈ X and u ∈ X we define the Bouligand-type
directional derivative of F at x in direction u with respect to c as

DcF (x) (u) =

{
V ∈ A | ∃ (tn) ↓ 0, ∃ (un) → u, ∃ (Vn)

c→ V,
∀n : F (x) + tnVn ⊂ F (x+ tnun)

}
.

Of course, every set convergence on a class A ⊂ 2Y generates a directional deriv-
ative and therefore, the above definition subsumes a wide variety of concepts which
can be classified by the very classifications of set convergences (see [10] for such a
classification).

For instance, besides (K−) considered above, one can be equally interested in the
“lower half” of Hausdorff-Pompeiu convergence, that is denoted by (H−), namely:
V ∈ (H−)− limVn if and only if

∀ε > 0, ∃nε, ∀n ≥ nε : V ⊂ (Vn)
ε := {y ∈ Y | d (y, Vn) < ε} .
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Remark 5.1. (i) Clearly, (H−) convergence implies (K−) convergence, but the

converse is not true. Therefore, one has D(H−)F (x) (u) ⊂ D(K−)F (x) (u) and one

can have V ∈ D(K−)F (x) (u) but V /∈ D(H−)F (x) (u). For instance, consider that
Y is infinite dimensional and take (xn) ⊂ SX such that ∥xn − xm∥ > 2−1 for all
natural distinct numbers m,n. According to Riesz Lemma, such a sequence exists.
Consider the sets An = {xk | k ≤ n} for all n and A = {xn | n ∈ N} . If for x, u ∈ X,
(tn) ↓ 0, and (un) → u,

F (x) + tnAn ⊂ F (x+ tnun) ,

then A ∈ D(K−)F (x) (u), but A /∈ D(H−)F (x) (u). Similar remarks hold for any
two comparable set convergences.

(ii) These two convergences are in a sense “extreme”: (K−) is weak and (H−) is
strong and this is the main reason we considered them here. In general, if a result
holds for (K−) then it holds for a wide range of set convergences.

Remark 5.2. Actually, if one takes stronger convergences that (K−) in Proposition
3.2, then better conclusion can be devised. For instance, if we consider c = (H−) ,

in proof of Proposition 3.2, since (Vn)
H−→ V, then one gets that for all ε > 0, there

is nε ∈ N such that for n ≥ nε,

V ⊂ Vn +B (0, ε) .

Therefore, for n large enough,

F (x) + tnV ⊂ F (x) + tn (Vn +B (0, ε)) = F (x+ tnun) + tnB (0, ε) .

This implies that V ⊂ D−F (x) (u) with an uniform ε for all v ∈ V.
Similarly one can consider the weaker set convergence (AW−) (a “half”) of

Attouch-Wets topology if one restricts it to F (see [1]). Namely, A ∈ (AW−)−limAn

if and only if

∃y ∈ Y, ∃ρ0 > 0, ∀ρ ≥ ρ0 : e (A ∩D (y, ρ) , An) → 0.

Now, in Proposition 3.2 if (Vn)
(AW−)→ V, then consider v ∈ V and for ρ big enough,

V ∩D (y, ρ) ̸= ∅, whence for all ε > 0, there is nε ∈ N such that for n ≥ nε,

v ∈ Vn +B (0, ε) ,

and again V ⊂ D−F (x) (u) with an uniform ε for all v in bounded subsets of V .

The same example as in Remark 5.1 (i) shows that the inclusion D(AW−)F (x) (u) ⊂
D(K−)F (x) (u) can be strict. Taking the easiest example of subsets of natural
numbers An = {k ∈ N | k ≤ n} for all n and A = N one gets as well that the

inclusion D(H−)F (x) (u) ⊂ D(AW−)F (x) (u) can be strict.

Remark 5.3. As in Proposition 4.1, one can prove that if x is a l−weak minimum
point for F (on X) and WMin (F (x) ,K) ̸= ∅, then for all u ∈ X and all V ∈
D(H−) EpiF (x) (u) we get that

∀ε > 0, ∀v ∈ V : B (v, ε) ̸⊂ − intK.

Remark 5.4. In fact, in the preceding section, in the proof of our results we used
only some properties of (K−) and this could be an impetus to consider an abstract
set convergence endowed with some properties. This abstracting could be combined
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as well with a play of ∃ and ∀ quantifiers (as we did when we briefly discussed

D
(K−)
P EpiF (x) (u)) in order to get other differentiation objects and corresponding

results. Another variation that can be useful in certain problems is to consider, into
the definition of directional derivative the reverse of the inclusion

F (x) + tnVn ⊂ F (x+ tnun) .

For instance, the latter modification is useful in dealing with ⪯u
K order (see [6]) in

set-optimization problems.
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[2] M. Burlică, M. Durea and R. Strugariu, New concepts of directional derivatives for set-valued

maps and applications to set optimization, Optimization DOI: 10.1080/02331934.2022.2088368.
[3] M. Durea and R. Strugariu, Directional derivatives and subdifferentials for set-valued maps

applied to set optimization, J. Global Optim. DOI: 10.1007/s10898-022-01222-3.
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