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and does not assume any explicit functional relation of the form fi = f(Xi, ξi).1
With that, the objective in (1.1) reduces to the conditional expectation

(1.3) f(x) = E
(
f | X = x

)
,

where the random vector/ random pair (X, f) has the same distribution as (Xi, fi)
for all i = 1, . . . , n, and the problem formulation considered here thus goes beyond
the classical stochastic optimization problem (1.1). Note, in addition, that estimating
the conditional expectation (1.3) based on samples is challenging in general, and
particularly crucial in the context of optimization considered here.

To solve the optimization problem (1.1) it is crucial to estimate the conditional
expectation E

(
f | X

)
, i.e., (1.3), uniformly on its entire support. The estimator we

consider here derives from Gaussian random fields and is central in support vector
machines as well. Here, the estimator is often inferred with least squares errors and
by involving a regularization term based on a reproducing kernel Hilbert space. The
literature frequently employs loss and risk functionals, and involves an L2-error to
investigate this estimator. However, this error is not adequate to investigate (1.1),
where uniform convergence is crucial, and our results thus consider the estimator in
its natural, genuine norm. They enable us to establish uniform convergence of the
estimator by moderately regularizing the objectives.

Explicit convergence rates are presented for increasing sample sizes. The results
and convergence rates correspond to other rates known from non-parametric statistics,
particularly to density estimation when employing the mean (integrated) squared
error.

We derive error bounds with respect to the mean of the underlying norm. This
is the usual error measure for many statistical techniques, including, for example,
kernel density estimation. Our methods build on conditional expectation and thus
complement the predominant literature which is mainly based on concentration type
results. Using this setting allows us to prove error bounds directly, without involving
auxiliary quantities such as covering numbers.

[6] provide an introduction to approximation theory in a random framework.
The excellent book [4, Section 2.3] gives very concrete applications in statistical
learning theory, while [26] provide the mathematical foundations for approximations
in reproducing kernel Hilbert spaces. The monograph [24] introduces to support
vector machines, which employ kernel functions similarly to our approach presented
below, see also [8]. A study, comparably to ours but employing a simpler norm,
is [28]. [5] provide the state of the art for an analysis in L2 involving the kernel
operator, see also [9].
Outline of the paper. The following Section 2 repeats elements from reproducing
kernel Hilbert spaces, which are of importance throughout this paper. Section 3
introduces the elementary estimator, which is employed in statistical learning. Sample
average approximation (Section 3.2) address this estimator with random samples
from both dimensions and Section 4 reveals related statistical results. The Sections 5
and 6 derive our main results, which is, for short, convergence of the sample average

1That is, the observations are (Xi, fi) instead of (Xi, f(Xi, ξi)); the latter would require
involving a function f .
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optimizer in mean norm and weak consistency (Section 6.2) of this estimator. Section 7
concludes with a summary.

2. Regularization with reference to reproducing kernel Hilbert
spaces

Throughout we shall expose the problem on the design space X , an arbitrary set
for which we impose more structure later; most typically, X is a subset of Rd. Let
(Xi, fi), i = 1, . . . , n, be independent and identically distributed random vectors in
X × R with joint probability measure ρ. For a kernel function k : X × X → R we
consider the estimator

(2.1) f̂n(·) =
1

n

n∑
i=1

k(·, Xi) ŵi,

where the weights ŵi satisfy the system of linear equations

(2.2) λn ŵi +
1

n

n∑
j=1

k(Xi, Xj) ŵj = fi, i = 1, . . . , n,

for some parameter λn.2 In what follows we derive the estimator (2.1) first by
employing Gaussian random fields and kernel ridge regression from support vector
machines and then investigate and expose its convergence properties. Specifically,
we identify and characterize the function f so that

(2.3) E ∥f̂n(·)− f(·)∥2 → 0

as n → ∞, where ∥ · ∥ is an appropriate norm and λn is chosen adequately; above
all, we derive results for the norm of the reproducing kernel Hilbert space associated
with the kernel function. We will also infer convergence results for L2 and―most
importantly―for uniform function approximations to handle stochastic optimization
problems as exposed in (1.1).

2.1. Gaussian random fields. As an initial motivation for the estimator (2.1)
consider a zero mean Gaussian random field f on X with covariance function k : X ×
X → R, that is, k(x, y) = cov

(
f(x), f(y)

)
. For a signal plus noise model with

observations
fi = f(xi) + ϵi,

the joint distribution, including x to the observation points X = (x1, . . . , xn), is(
f(x)
f

)
∼ N

((
0
0

)
,

(
k(x, x) k(x,X)
k(X,x) k(X,X) + λ

))
,

where ϵ ∼ N (0, λ) is the independent error and where we use the compact vector
notation f := (f1, . . . , fn)

⊤ and k(x,X) :=
(
k(x, x1), . . . , k(x, xn)

)
for the entry of

the covariance matrix; the other entries are defined analogously. With this, the
conditional distribution is Gaussian (cf. [23, Theorem 13.1] or [4, Section 2.3]),

f(x)
∣∣ (f(X) = f

)
∼ N

(
µ̂(x), K̂(x)

)
,

2Note that f̂n(·) interpolates the data, f̂n(Xi) = fi, i = 1, . . . , n, for the particular choice λn = 0
provided that all Xi are distinct and k is regular enough.
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where

(2.4) µ̂(x) := k(x,X)
(
k(X,X) + λ

)−1
f(X)

is the mean and the variance is

(2.5) K̂(x) := k(x, x)− k(x,X)
(
k(X,X) + λ

)−1
k(X,x).

Expanding (2.4) and setting f̂n(x) := µ̂(x) reveals the initial estimator (2.1) for
variance λ rescaled.

Figure 1 displays an example of the estimator f̂n(·) together with the range

±
√
K̂(·) (cf. (2.5)) coming along with the mean (2.4). The figure reveals that the

estimator f̂n(x) is more precise (i.e., the variance is smaller), if more observations
are available locally at x.

Figure 1. Gaussian field regression f̂n(·) of an exemplary function
f0 ∈ Hk using a Gaussian kernel (sample size n = 100, the regression
parameter is λ = 0.03). The width of the blue strip indicates the
local precision of the estimator.

2.2. Reproducing kernel Hilbert space. Every estimator f̂n(·) in (2.1) is an
element in the reproducing kernel Hilbert space spanned by the functions k(·, y),
y ∈ X . While introducing the notation for reproducing kernel Hilbert spaces here,
we briefly recall major properties, which are essential in the following exposition.
For a general discussion on reproducing kernel Hilbert spaces we may refer to [14,
Chapter 1].
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Definition 2.1. The kernel is a symmetric and positive definite function k : X×X →
R. On the linear span {k(·, x) : X → R | x ∈ X} of functions on X , the inner product
is defined by

(2.6)
〈
k(·, x) | k(·, y)

〉
k
:= k(x, y).

The reproducing kernel Hilbert space, denoted
(
Hk, ∥ · ∥k

)
, is the completion with

respect to the norm ∥f∥2k := ⟨f | f⟩k induced by the inner product (2.6).

Most importantly, point evaluations are continuous linear functions in reproducing
kernel Hilbert spaces. Indeed, finite linear combinations f(·) =

∑n
i=1 k(·, xi)wi are

dense in Hk, and it follows with (2.6) that

(2.7)
〈
k(·, x)

∣∣ f(·)〉
k
=

n∑
i=1

wi

〈
k(·, x)

∣∣ k(·, xi)〉k =
n∑

i=1

wi k(x, xi) = f(x).

Although more general settings are easily possible, in what follows we convene to
address only continuous and uniformly bounded kernel functions k. The space Hk

thus is naturally embedded in L2(X , P ), where P is a probability measure on the
Borel sets of X .

We associate the following Hilbert–Schmidt integral operator Lk with a kernel k.

Definition 2.2. Let k be a kernel. The operator Lk : L
2(X , P ) → L2(X , P ) is

(2.8) Lk w(x) :=

∫
X
k(x, y)w(y)P (dy).

Proposition 2.3. The operator Lk is self-adjoint and positive definite with respect
to the standard inner product

⟨f | g⟩ :=
∫
X
f(z) · g(z)P (dz)

on
(
L2, ∥ · ∥2

)
. The operator is positive definite and bounded with norm

∥Lk : L
2 → L2∥2 ≤

∫∫
X 2

k(x, y)2 P (dx)P (dy);

the norm of the operator Lk is ∥Lk : L
2 → L2∥ := sup{∥Lk w∥2 : ∥w∥2 ≤ 1}.

Proof. The assertion is a consequence of the Cauchy–Schwarz inequality. □

Proposition 2.4. It holds that ∥k(·, x)∥2k = k(x, x),

(2.9) ⟨Lkw | f⟩k = ⟨w | f⟩ and ∥Lkw∥2k = ⟨w | Lkw⟩ .
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Proof. The functions f(·) =
∑n

i=1w
′
i k(·, xi) are dense in Hk. By linearity,

⟨Lkw | f⟩k =

n∑
i=1

w′
i

∫
X

〈
k(·, y) | k(·, xi)

〉
k
w(y)P (dy)

=

∫
X

n∑
i=1

w′
i k(y, xi)w(y)P (dy)

=

∫
X
f(y)w(y)P (dy)

= ⟨w | f⟩ .
The other assertions are immediate. □
Remark 2.5 (Mercer3 and the kernel trick). The operator Lk is compact and has
countably many eigenfunctions. In machine learning, the decomposition is known
as the kernel trick. It holds that k(x, y) =

∑∞
ℓ=1 σℓ ϕℓ(x)ϕℓ(y), where σℓ is the

eigenvalue corresponding to the eigenfunction ϕℓ(·). In this setting, the operator
L

1/2
k is L

1/2
k f =

∑∞
ℓ=1 σ

1/2
ℓ ϕℓ ⟨ϕℓ | f⟩ (with σℓ ≥ 0), cf. [17, Theorem VI.23].

Proposition 2.6 (L
1/2
k : L2 → Hk is an isometry). It holds that ∥L1/2

k f∥k = ∥f∥2
and ∥f∥2 ≤ ∥Lk∥1/2 · ∥f∥k.

Proof. The assertion is a consequence of Mercer’s theorem, cf. [12] or [10, Corollary 4].
However, for f = L

1/2
k w, it follows from the preceding proposition that

∥L1/2
k f∥2k = ∥Lkw∥2k = ⟨w | Lkw⟩ =

〈
L

1/2
k w | L1/2

k w
〉
= ∥f∥22.

With (2.9) we have further that

∥f∥22 =
〈
L

1/2
k w | L1/2

k w
〉
=

〈
w | Lkw

〉
≤ ∥Lk∥ ∥w∥22 = ∥Lk∥ ∥L

1/2
k w∥2k = ∥Lk∥ ∥f∥2k,

as Lk is self-adjoint. Hence, the assertion. □
Theorem 2.7 (Continuity of the operator Lk). It holds that ∥Lk : Hk → Hk∥ ≤
∥Lk : L2 → L2∥, where the norm is ∥Lk : Hk → Hk∥ := sup{∥Lk w∥k : ∥w∥k ≤ 1},
cf. also Proposition 2.3.

Proof. With (2.9) and Proposition 2.6, ∥Lkf∥2k = ⟨f | Lkf⟩ ≤ ∥Lk∥ ∥f∥22 ≤ ∥Lk∥2∥f∥2k
and hence the assertion. □

We have seen in (2.7) that point evaluations are linear functionals. We shall
conclude here by relating these norms to uniform convergence.

Proposition 2.8. The point evaluation is continuous; indeed, |f(x)| ≤
√

k(x, x) ∥f∥k
for all x ∈ X and f ∈ Hk. Further,4

(2.10) ∥f∥∞ ≤ ∥f∥k · sup
x∈suppP

√
k(x, x),

where ∥f∥∞ := supx∈suppP |f(x)|.
3The initial publication is notably due to Schmidt, see [19], and not Mercer.
4The support of the measure P is suppP :=

∩{
A : A is closed and P (A) = 1

}
⊂ X , cf. [18].
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Proof. The statement is immediate from (2.7), as

|f(x)| =
∣∣〈k(·, x)∣∣ f〉

k

∣∣ ≤ ∥k(·, x)∥k ∥f∥k =
√

k(x, x) ∥f∥k
by the Cauchy–Schwartz inequality and Proposition 2.4. □

Remark 2.9. In the Gaussian process setting, the variance of the estimator f̂n(x)
does not exceed k(x, x) (cf. (2.5)). The upper bound (2.10) is the accordant uniform
estimator for the variance in the entire support. The example in Figure 1 visualizes
this area.

3. The genuine approximation problem

In what follows we characterize the estimator (2.1) by involving a stochastic
optimization problem. We consider the problem first in its continuous form and
relate it to the data subsequently.

Let (Xi, fi) ∈ X × R, i = 1, . . . , n, be independent and identically distributed
random vectors (cf. (1.3)) with common law ρ. By the disintegration theorem (see
[7], [1] or [11, Chapter 5]), there is a family of measures ρ(· | x) : B(X ) → [0, 1],
x ∈ X , on the Borel sets B(X ) so that

ρ(A×B) =

∫
A
ρ(B|x)P (dx), A ⊂ X , B ⊂ R measurable,

where the marginal measure P (·) := ρ(·×R) on the design space X (cf. [24]) is called
design measure.

For a random variable (X, f) with law ρ we recall the notational variants

E g(X, f) =

∫∫
X×R

g(x, f) ρ(dx, df) =

∫
X
g(x, f) ρ(df |x)P (dx) = EE

(
g(X, f)|X

)
,

where g is measurable and

E
(
g(x, f)|x

)
=

∫
X
g(x, f) ρ(df |x), x ∈ X ,

is the conditional expectation.

3.1. The continuous problem. For the random vector (X, f) with values in X×R,
law ρ and f ∈ L2(X ), consider the (stochastic) optimization problem

(3.1) min
fλ(·)∈Hk

E
(
f − fλ(X)

)2
+ λ ∥fλ∥2k ,

where λ > 0 is a fixed regression parameter and the expectation is with respect to
the full measure ρ. The objective (3.1) is strictly convex, as the norm ∥·∥k is strictly
convex for λ > 0 fixed.

The random variable fλ(X) is measurable with respect to σ(X), the σ-algebra
generated by X, and the random variable E(f | X) is the projection of f onto the
closed subspace L2

(
σ(X)

)
, see [11]. By the Pythagorean theorem, the objective in

the preceding problem thus is equivalently

min
fλ(·)

E
(
f − E(f | X)

)2
+ E

(
E(f | X)− fλ(X)

)2
+ λ ∥fλ∥2k .
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It follows from the Doob–Dynkin lemma that there is a Borel function f0 : X → R
so that E(f | X) = f0(X). We follow the convention and denote this function also
as

(3.2) f0(x) = E(f | X = x).

The orthogonality relation characterizing f0 is

(3.3) E
(
f − f0(X)

)
g(X) = 0,

where g : X → R is any measurable test function. The objective of the optimization
problem (3.1) thus is

(3.4) ϑ∗ := E
(
f − f0(X)

)2
+min

fλ(·)
E
(
f0(X)− fλ(X)

)2
+ λ ∥fλ∥2k ,

where the quantity E
(
f − f0(X)

)2 is the irreducible error.

Remark 3.1. We note that f0 ∈ L2(X , P ), but f0 is not necessarily in Hk.

Theorem 3.2. The solution of the optimization problem (3.1) is

(3.5) fλ = Lkwλ,

where (λ+ Lk)wλ = f0; the objective is

ϑ∗ = ∥f − f0∥22 + ∥f0 − fλ∥22 + λ ∥fλ∥2k
= ∥f − f0∥22 + λ2 ∥wλ∥22 + λ ⟨wλ | Lkwλ⟩ .(3.6)

Proof. With (2.9) and Proposition 2.6 we may rewrite the objective in (3.4) by

g(w′
λ) :=

∥∥∥f0 − L
1/2
k w′

λ

∥∥∥2
2
+ λ ⟨w′

λ | w′
λ⟩. Now note that

g(w′
λ + h)− g(w′

λ)

=
〈
f0 − L

1/2
k w′

λ − L
1/2
k h) | f0 − L

1/2
k w′

λ − L
1/2
k h

〉
+ λ

〈
w′
λ + h | w′

λ + h
〉

−
〈
f0 − L

1/2
k w′

λ | f0 − L
1/2
k w′

λ

〉
− λ

〈
w′
λ | w′

λ

〉
= −

〈
L

1/2
k h | f0 − L

1/2
k w′

λ

〉
−
〈
f0 − L

1/2
k w′

λ | L1/2
k h

〉
+
〈
L

1/2
k h | L1/2

k h
〉

+ λ
〈
h | w′

λ

〉
+ λ

〈
h | w′

λ

〉
+ λ ⟨h | h⟩

= −2
〈
h | L1/2

k f0 − Lkw
′
λ − λw′

λ

〉
+
〈
L

1/2
k h | L1/2

k h
〉
+ λ ⟨h | h⟩

as L
1/2
k is self-adjoint. The first, linear term vanishes if (λ + Lk)w

′
λ = L

1/2
k f0, and

the second is quadratic in h – hence the infimum at L
1/2
k w′

λ = Lk(λ+Lk)
−1f0 = fλ,

the first assertion. For the objective (3.6) note that f0 − fλ = λwλ, see also (3.9)
below. □
Corollary 3.3 (Characterization of the coefficient function). Suppose that

(3.7) (λ+ Lk)wλ = f0,

then

(3.8) fλ := Lkwλ = (λ+ Lk)
−1Lkf0



STOCHASTIC OPTIMIZATION WITH ESTIMATED OBJECTIVES 1385

solves the Fredholm equation of the second kind (λ+Lk)fλ = Lkf0, and it holds that

(3.9) f0 − fλ = λwλ.

Proof. Apply Lk to (3.7) to get λLkwλ + LkLkwλ = Lkf0, that is, (λ + Lk)fλ =
Lkf0. □
Remark 3.4. It follows from (3.8) that fλ ∈ Hk, even more, fλ is in the image of
Lk, although f0 is not necessarily in Hk (cf. Remark 3.1).

Remark 3.5. The functions f0, fλ and wλ are in L2 and hence exhibit a representation
in terms of the orthonormal basis (ϕℓ)

∞
ℓ=1 of Remark 2.5. More precisely, for

f0 =
∑∞

ℓ=1 cℓ ϕℓ we have that

wλ(·) =
∞∑
ℓ=1

cℓ
λ+ σℓ

ϕℓ(·) and fλ(·) =
∞∑
ℓ=1

σℓ cℓ
λ+ σℓ

ϕℓ(·)(3.10)

with some coefficients (cℓ)
∞
ℓ=1 ∈ ℓ2. This is a consequence of the characterizing

equations in Theorem 3.3 as well as the Mercer representation Lkf =∑∞
ℓ=1 σℓ ϕℓ ⟨ϕℓ | f⟩ of the operator.

The distance of the solution fλ to the function f0 will be of importance in what
follows. We have the following general result.

Proposition 3.6. Suppose that f0 is in the range of Lk. Then there is a constant
C0 > 0 so that

(3.11) ∥f0 − fλ∥2k ≤ C0 λ.

Proof. As f0 is in the range of Lk there is some w ∈ L2 so that f0 = Lk w. We hence
have the series representation f0(·) =

∑∞
ℓ=1 σℓwℓ ϕℓ(·) with some sequence (wℓ)

∞
ℓ=1

such that
∑∞

ℓ=1w
2
ℓ < ∞. Thus, by (3.9) and (3.10), we observe that

∥f0 − fλ∥2k = ∥λwλ∥2k = λ2
∞∑
ℓ=1

1

σℓ

(
σℓwℓ

λ+ σℓ

)2

≤ λ2
∞∑
ℓ=1

σ2
ℓ w

2
ℓ

2λσ2
ℓ

=
λ

2
∥w∥22

and thus the assertion with the constant C0 :=
1
2∥w∥

2
2. □

The following corollary to Corollary 3.3 provides the weight functions with respect
to the usual Lebesgue measure. We provide this statement as it particularly useful to
solving the Fredholm integral equation (3.7) numerically (by employing the Nyström
method, for example, cf. [2]) to make the function fλ available for computational
purposes.

Corollary 3.7 (Coefficient function for measures with a density). Suppose that P
has a density p(·) with respect to the Lebesgue measure, P (dx) = p(x)dx, and the
coefficient function w̃λ(·) satisfies

(3.12) λ w̃λ(x) + p(x) ·
∫
X
k(x, y) w̃λ(y) dy = p(x) · g0(x).

Then the function gλ(·) :=
∫
X k(·, x) w̃λ(x) dx solves the integral equation

(λ+ Lk)gλ = Lkg0.
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Proof. Multiply equation (3.12) by k(y, x) and integrate with respect to dx to get

λ

∫
X
k(y, x) w̃λ(x) dx+

∫
X
k(y, x) ·

∫
X
k(x, z) w̃λ(z) dz p(x)dx

=

∫
X
k(y, x) g0(x) p(x)dx.

This is
λ gλ(y) +

∫
X
k(y, x) gλ(x)P (dx) =

∫
X
k(y, x) g0(x)P (dx),

or (λ+ Lk)gλ = Lkg0, the assertion.
□

3.2. The discrete problem and kernel ridge regression. We now switch from
the continuous problem (3.1) to learning from data. This alternative viewpoint
highlights and justifies the genuine estimator (2.1) from an additional perspective.

Substituting the average for the expectation in (3.1) we consider the slightly more
general objective

(3.13)
1

n

n∑
i,j=1

(
fi − f(xi)

)
Λ−1
ij

(
fj − f(xj)

)
+ ∥f∥2k ,

where Λ is a symmetric and positive definite regularization matrix with entries Λij .
We use lowercase letters xi ∈ X and fi ∈ R to emphasize that these quantities are
deterministic.

Proposition 3.8. The function f ∈ Hk minimizing (3.13) is

(3.14) f(·) = 1

n

n∑
s=1

wi · k(·, xi),

where the weights are

(3.15) w = n
(
K⊤Λ−1K + nK

)−1
K⊤Λ−1f

and K is the Gram matrix with entries Kij = k(xi, xj).

Proof. Assuming that the optimal function is of the form (3.14), the objective (3.13)
is

1

n
(f − 1

n
Kw)⊤Λ−1

(
f − 1

n
Kw

)
+

1

n2
w⊤Kw.

Differentiating with respect to w gives the first order conditions

0 = − 1

n2

(
K⊤Λ−1

(
f − 1

n
Kw

))⊤
− 1

n2

(
f − 1

n
Kw

)⊤
Λ−1K +

1

n2
(Kw)⊤ +

1

n2
w⊤K,

i.e.,
1

n2

(
1

n
K⊤

(
Λ−1 + Λ−⊤

)
K +K +K⊤

)
w =

1

n2
K⊤

(
Λ−1 + Λ−⊤

)
f.

The assertion follows, as Λ−1 and K are both symmetric.
It remains to demonstrate that the optimal function is indeed of the form (3.14),

i.e., the optimal function f ∈ Hk is located exactly on the supporting points
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x1, . . . , xn. This, however, follows from the representer theorem, which [20] prove in
the most general form. □

Corollary 3.9. The function f ∈ Hk minimizing the objective

(3.16)
1

n

n∑
i=1

(
fi − f(xi)

)2
+ λ ∥f∥2k

is f̂n(·) := 1
n

∑n
j=1 ŵj k(·, xj) with weights ŵ =

(
λ+ 1

nK
)−1

f . The associated optimal
value is

ϑ̂n =
λ

n
f⊤

(
λ+

1

n
K

)−1

f.(3.17)

Proof. The first assertion is immediate with Λ = λ · I, the diagonal matrix with
entries λ on its diagonal. Further, employing the minimizer f̂n into the objective
(3.16) we get that

ϑ̂n =
λ

n2
ŵ⊤Kŵ +

1

n

n∑
i=1

(
f̂n(Xi)− fi

)2
=

λ

n2
ŵ⊤Kŵ +

1

n

n∑
i=1

(
1

n
(Kŵ)i − fi

)2

=
λ

n2
ŵ⊤Kŵ +

1

n

n∑
i=1

(λŵi)
2 =

λ

n
ŵ⊤

(
λ+

1

n
K

)
ŵ =

λ

n
f⊤

(
λ+

1

n
K

)−1

f

and thus the second assertion. □

4. Elementary statistical properties

As above, let (Xi, fi), i = 1, . . . , n, be independent samples from a joint measure ρ.
We note that Xi ∼ P and the integral operator Lk in (2.8) can be restated as

Lkw(x) = E k(x,Xi)w(Xi) = E
(
k(Xi, Xj)w(Xj) | Xi = x

)
;

we shall make frequent use of the latter relation.

Definition 4.1. For (Xi, fi), i = 1, . . . , n, independent samples from a joint
distribution ρ define the estimator

(4.1) ϑ̂n := min
f̂n(·)

1

n

n∑
i=1

(
fi − f̂n(Xi)

)2
+ λ

∥∥∥f̂n∥∥∥2
k
.

It is evident that ϑ̂n is an R-valued random variable, dependent on the samples
(Xi, fi). Further, the optimizer

(4.2) f̂n(·) :=
1

n

n∑
i=1

k(·, Xi) ŵi

of (4.1) (cf. Corollary 3.9) is a random function, as it is supported by the samples
Xi, i = 1, . . . , n, and the weights

(4.3) ŵ =
(
λ+

1

n
K
)−1

f
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depend on all (Xi, fi), i = 1, . . . , n. Relating to the term sample average
approximation (SAA) in stochastic optimization we shall refer to the estimators ϑ̂n

and f̂n(·) as the SAA estimators.

Example 4.2. A simple example is given by employing the trivial design measure

P = δx0 , where x0 ∈ X is a fixed point and δx0(A) :=

{
1 if x0 ∈ A,

0 else
is the

Dirac–measure. It is easily seen that the estimator (4.2) is the function f̂n(·) =
k(·,x0)

λ+k(x0,x0)
· 1
n

∑n
i=1 fi. It is thus clear that the estimator fn(·) is biased, and all

results necessarily depend on λ.

The following consistency result is related to [16, Lemma 4.1], where it is used in
a different context.

Theorem 4.3 (Cf. [16, Lemma 4.1] and [21, Proposition 5.6]). The estimator ϑ̂n

is downwards biased and monotone in expectation for increasing sample sizes; more
precisely, it holds that

0 ≤ E ϑ̂n ≤ E ϑ̂n+1 ≤ ϑ∗,

where ϑ∗ = E
(
f − fλ(X)

)2
+λ ∥fλ∥2k with fλ(·) given in (3.5) is the objective of the

continuous problem (3.1) (see also (3.4)).

Proof. It holds that

E ϑ̂n+1 = E min
f̂n+1(·)

1

n+ 1

n+1∑
i=1

(
fi − f̂n+1(Xi)

)2
+ λ

∥∥∥f̂n+1

∥∥∥2
k

= E min
f̂n+1(·)

1

n+ 1

n+1∑
i=1

1

n

∑
j ̸=i

(
fj − f̂n+1(Xj)

)2
+ λ

∥∥∥f̂n+1

∥∥∥2
k

≥ E
1

n+ 1

n+1∑
i=1

min
f̂i(·)

1

n

∑
j ̸=i

(
fj − f̂i(Xj)

)2
+ λ

∥∥∥f̂i∥∥∥2
k

=
1

n+ 1

n+1∑
i=1

E ϑ̂n = E ϑ̂n.

Further, the optimal value of (3.1) is given by fλ (cf. (3.5) in Theorem 3.2).
Finally, we have that

min
f̂n(·)

1

n

n∑
i=1

(
fi − f̂n(Xi)

)2
+ λ

∥∥∥f̂n∥∥∥2
k
≤ 1

n

n∑
i=1

(
fi − fλ(Xi)

)2
+ λ ∥fλ∥2k .

By taking expectations and the infimum afterwards we conclude that E ϑ̂n ≤ ϑ∗,
the remaining inequality. □

5. Approximation in norm

Recall that the optimal solution of the continuous problem (3.1) is the function
fλ(·) ∈ Hk, while the optimal solution of the discrete analogue (4.1) is the random
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variable (4.2). In what follows we shall establish convergence of f̂n(·) towards fλ(·)
for increasing sample size n.

To establish convergence with respect to the norm we separate (3.4) into two
subproblems. The first problem addresses deterministic function approximation
whereas the second determines the effect of the model noise. We then relate the
approximation problem with an auxiliary problem involving an auxiliary estimator f̃n.
Its residual then reconnects the estimator with the initial estimator f̂n. Finally, in
the last subsection, we demonstrate that the noise included in the estimator vanishes
if the regularization series is chosen properly.

5.1. Problem decomposition. The kernel estimator f̂n descends from observations
fi which are generally contaminated by noise. This entails difficulties in analyzing its
approximation behavior, as the regression function f0 cannot be accessed directly
at the sampling points X1, . . . , Xn. We resolve this issue by splitting this initial
problem (3.4) into the subproblems
(5.1)

min
f∈Hk

1

n

n∑
i=1

(
f(Xi)− f0(Xi)

)2
+ λ ∥f∥2k and min

f∈Hk

1

n

n∑
i=1

(
f(Xi)− ϵi

)2
+ λ ∥f∥2k ,

where
ϵi := fi − f0(Xi), i = 1, . . . , n,

resembles the noise. Their solutions f∗
n, f ϵ

n are again of the shape 1
n

∑n
i=1wik(·, Xi)

with the weights

(5.2) w∗ =

(
λ+

1

n
K

)−1

f0 and wϵ =

(
λ+

1

n
K

)−1

ϵ,

respectively.
The next lemma justifies this separation from a perspective of approximation. It

relates the expected approximation error of the initial estimator f̂n to the approximation
error of f∗

n and the general error due to the noise.

Lemma 5.1. The expected approximation error for f0 ∈ Hk is

(5.3) E

∥∥∥f̂n − f0

∥∥∥2
k
= E ∥f∗

n − f0∥2k + ∥f ϵ
n∥

2
k

for the estimators f̂n and f ϵ
n with weights as in (5.2).

Proof. From ŵ = w∗ + wϵ we have the norm decomposition

(5.4) E

∥∥∥ 1
n

n∑
i=1

ŵik(·, Xi)−f0

∥∥∥2
k
= E

∥∥∥f̂n − f0

∥∥∥2
k
+∥f ϵ

n∥
2
k+2

〈
f̂n | f ϵ

n

〉
k
+2

〈
f ϵ
n | f0

〉
k
.

Applying the tower property of the conditional expectation we get for the inner
products that

E
〈
f̂n

∣∣f ϵ
n

〉
k
= E

〈 1

n

n∑
i=1

w∗
i k(·, Xi)

∣∣∣ 1
n

n∑
i=1

wϵ
ik(·, Xi)

〉
k
=

1

n2
Ew∗⊤Kwϵ

=
1

n2
Ew∗⊤K

(
λ+

1

n
K
)−1

E
(
f − f0 |X1, . . . , Xn

)
= 0
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and

E
〈
f ϵ
n

∣∣f0〉k = E
〈 1

n

n∑
i=1

wϵ
ik(·, Xi)

∣∣∣ f0〉
k
= E

1

n

n∑
i=1

wϵ
if0(Xi)

= E
1

n

n∑
i=1

f0(Xi)E (wϵ
i |X1, . . . , Xn) = 0

from the reproducing property. This is the assertion. □

Remark 5.2. The function f∗
n equals the ordinary kernel estimator f̂n if fi = f0(Xi)

for all i = 1, . . . , n, or, put in different words, if the model is free of noise. If f0 = 0
we have f ϵ

n = f̂n, independently of the noise involved in the model.

5.2. Uniform approximation properties of kernel estimators towards fλ.
In this section we study the approximation quality of different kernel estimators
with respect to fλ. In particular, we investigate the behavior of the norm

E

∥∥∥ 1
n

n∑
i=1

wi k(·, Xi)− fλ(·)
∥∥∥2
k

for differently chosen weights wi. First we consider the weights w̃i = wλ(Xi)
with the weight function wλ ∈ L2 as in (3.7). The corresponding estimator
f̃n(·) := 1

n

∑n
i=1 w̃ik(·, Xi) is unbiased, i.e.,

(5.5) E f̃n(x) =
1

n

n∑
i=1

E w̃i k(x,Xi) = Ewλ(Xi) k(x,Xi) =
(
Lkwλ

)
(x) = fλ(x)

for every x ∈ X . The next theorem reveals the precise approximation quality of this
estimator.

Theorem 5.3 (Approximation in norm). It holds that

(5.6) E ∥fλ − f̃n∥2k =
1

n
Cλ − 1

n
∥fλ∥2k ,

with

Cλ =

∫
X
wλ(x)

2 k(x, x)P (dx)(5.7)

for every λ > 0.

Proof. With fλ = Lkwλ (cf. (3.8)) we have that

E

∥∥∥fλ(·)− 1

n

n∑
j=1

k(·, Xj) w̃j

∥∥∥2
k
= E ∥fλ∥2k − 2

〈
fλ

∣∣∣ 1
n

n∑
j=1

k(·, Xj) w̃j

〉
k

+
∥∥∥ 1
n

n∑
j=1

k(·, Xj) w̃j

∥∥∥2
k
.

With (5.5) and (2.9), the second term is

E
2

n

n∑
i=1

∫
X
wλ(y) k(y,Xj) w̃jP (dy) = 2

∫
X
wλ(y) fλ(y)P (dy) = 2 ∥fλ∥2k .
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For the remaining term involving all combinations and by separating all combinations
with j = i from those with j ̸= i we find

1

n2

n∑
i,j=1

E w̃i k(Xi, Xj) w̃j

=
1

n2

n∑
i=1

Ew2
λ(Xi) k(Xi, Xi) +

1

n

n∑
i=1

1

n
EE

(
w̃i

∑
j ̸=i

k(Xi, Xj) w̃j

∣∣∣∣Xi

)

=
1

n2

n∑
i=1

Ew2
λ(Xi) k(Xi, Xi) +

1

n2

n∑
i=1

∑
j ̸=i

E w̃ifλ(Xi)

=
1

n

∫
X
w2
λ(x)k(x, x)P (dx) +

n− 1

n
∥fλ∥2k

by (2.9).
Collecting terms we find that

E

∥∥∥∥fλ(·)− 1

n

n∑
j=1

k(·, Xj) w̃j

∥∥∥∥2
k

= ∥fλ∥2k − 2 ∥fλ∥2k +
n− 1

n
∥fλ∥2k

+
1

n

∫
X
w2
λ(x)k(x, x)P (dx)

and thus the assertion. □

Remark 5.4. The quality of the approximation in (5.6) depends on Cλ and therefore
implicitly on the regularization parameter λ. To elaborate this dependence more
clearly note that

Cλ = λ−2

∫
X

(
fλ(x)− f0(x)

)2
k(x, x)P (dx)

by (3.9). The quantity Cλ grows, in the worst case, with rate λ−2. This growth is,
however, usually dampened by the latter integral term as fλ gets a more accurate
estimate of f0 for decreasing λ.

A special situation occurs for f0 = Lk w. Then Cλ is uniformly bounded, more
precisely, from (3.10) we have the estimate

Cλ ≤ ∥k∥22 ∥wλ∥22 = ∥k∥22
∞∑
ℓ=1

σ2
ℓw

2
ℓ

(λ+ σℓ)2
≤ ∥k∥22

∞∑
ℓ=1

w2
ℓ = ∥k∥22 ∥w∥

2
2 ,

where the right-hand side is independent of λ.

Now we set our focus on the regression weights in (5.2) and the associate estimator
f∗
n. Unlike in the considerations above, we do not prove the approximation properties
f∗
n directly. We make use of its relationship with f̃n as well as the accompanying

convergence properties. They are connected explicitly in the following way.
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Lemma 5.5. It holds that5

f∗
n(·)− f̃n(·) =

1

n

n∑
j=1

wj k(·, Xj)

with the weights

(5.8) w =
(
λ+

1

n
K
)−1

r̃

where r̃ is the residual vector r̃i = fλ(Xi)− 1
n

∑n
j=1 w̃ik(Xi, Xj).

Proof. By (3.9) and (4.3) we observe(
λ+

1

n
K
)
(w∗ − w̃) = f0 − λw̃ − 1

n

n∑
j=1

k(Xi, Xj) w̃j

= f0 − (f0 − fλ)−
1

n

n∑
j=1

k(Xi, Xj) w̃j = r̃

and thus
w∗ − w̃ =

(
λ+

1

n
K
)−1

r̃.

Now recall that f∗
n(·)− f̃n(·) = 1

n

∑n
j=1(w

∗
j −w̃j) k(·, Xj) to accept the assertion. □

Theorem 5.6. It holds that

(5.9) E ∥f∗
n − f̃n∥2k +

λ

n
E

n∑
i=1

(w̃i − w∗
i )

2 ≤ 1

n
Cλ − 1

n
∥fλ∥2k

for Cλ as in (5.7).

Proof. From (5.8) we have that

w̃ − w∗ =

(
λ+

1

n
K

)−1

r̃

with the residual vector r̃ such that r̃i = fλ(Xi) − 1
n

∑n
j=1 w̃ik(Xi, Xj). Defining

the residual function r̃(·) := fλ(·)− 1
n

∑n
j=1 w̃ik(·, Xj) ∈ Hk we see that the weight

vector w̃ − w∗ is the solution of the related regression problem

ϑ̂n = min
f∈Hk

1

n

n∑
i=1

(f(Xi)− r̃(Xi))
2 + λ ∥f∥2k .

Its expected optimal value is

E ϑ̂n =
λ

n
E r̃⊤

(
λ+

1

n
K
)−1

r̃ =
λ

n
E r̃⊤

(
λ+

1

n
K
)−1(

λ+
1

n
K
)(

λ+
1

n
K
)−1

r̃

= λE

∥∥∥ 1
n

n∑
i=1

(w̃i − w∗
i )k(·, Xi)

∥∥∥2
k
+

λ2

n

n∑
i=1

(w̃i − w∗
i )

2

5(λ+ 1
n
K
)−1
j is the j-row (or column, as K is symmetric) of the matrix

(
λ+ 1

n
K
)−1.
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which follows from the characterization in (3.17). Invoking this identity we get that

E

∥∥∥ 1
n

n∑
i=1

(w̃i − w∗
i )k(·, Xi)

∥∥∥2
k
+

λ

n

n∑
i=1

(w̃ − w∗
i )

2 =
1

λ
E ϑ̂n

= E min
f∈Hk

∥f∥2k +
1

nλ

n∑
i=1

(f(Xi)− r̃(Xi))
2 ≤ E ∥r̃∥2k

by inserting the residual function r̃ into the objective function. Employing (5.6) we
get that

E ∥r̃∥2k = E ∥fλ − f̃n∥2k =
1

n
Cλ − 1

n
∥fλ∥2k ,

which is the assertion. □

The following theorem connects all partial results of this section. It provides error
estimates of the estimator of interest f∗

n with respect to fλ as well as f0.

Theorem 5.7. For the estimator f∗
n(·) it holds that

E ∥f∗
n − fλ∥2k ≤ 4Cλ

n

with Cλ as in (5.7). Moreover, for f0 = Lk w0, it holds that

E ∥f∗
n − f0∥2k ≤ C1

n
+ C2λ(5.10)

with C1, C2 independent of λ and n.

Proof. With (5.6) and (5.9) we get

E ∥f∗
n − fλ∥2k ≤ 2E ∥f∗

n − f̃n∥2k + 2E ∥f̃n − fλ∥2k ≤ 4Cλ

n

and hence the first assertion.
The second follows as

E ∥f∗
n − f0∥2k ≤ 2E ∥f∗

n − fλ∥2k + 2E ∥fλ − f0∥2k

≤ 8
Cλ

n
+ 2C2λ

by (3.11). □

5.3. Denoising. So far we have established convergence properties of the estimator
f̂n assuming a deterministic relationship between the data points Xi and observed
values fi. To finalize the considerations on asymptotic approximation it remains to
demonstrate that the approach is robust with respect to noisy data. In other words,
we need to show that the second term in (5.3), i.e.,

(5.11)
∥∥∥f ϵ

n

∥∥∥2
k
=

1

n
ϵ⊤

(
λ+

1

n
K
)−1 1

n
K

(
λ+

1

n
K

)−1

ϵ,

vanishes if n tends to infinity.
In what follows we provide a first estimate on the norm in terms of the eigenvalues

of 1
nK and the noise contained in the model.
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Lemma 5.8. Assume that supx∈X var(f | X = x) =: σ2
max < ∞. It holds that

(5.12) E

∥∥∥ 1
n

n∑
i=1

wϵ
ik(·, Xi)

∥∥∥2
k
≤ σ2

max E
1

n

n∑
i=1

µi

(λ+ µi)
2 ,

where µi are the eigenvalues of the matrix 1
nK.

Proof. The matrix
(
λ+ 1

nK
)−1 1

nK
(
λ+ 1

nK
)−1 is symmetric hence and has a spectral

decomposition

1

n

(
λ+

1

n
K

)−1 1

n
K

(
λ+

1

n
K

)−1

=
1

n
V ΛV ⊤

with matrices Λ = diag (λ1, . . . , λn) and V = [v1, . . . , vn] containing the eigenvalues
and corresponding eigenvectors, respectively. Thus, we have that

E

∥∥∥ 1
n

n∑
i=1

wϵ
ik(·, Xi)

∥∥∥2
k
= E

1

n
ϵ⊤

(
λ+

1

n
K

)−1 1

n
K

(
λ+

1

n
K

)−1

ϵ

=
1

n
E

n∑
i=1

λi ⟨vi, ϵ⟩2

=
1

n
E

n∑
i=1

λiE
(
⟨vi, ϵ⟩2

∣∣∣X1, . . . , Xn

)
=

1

n
E

n∑
i=1

λiv
⊤
i E

(
ϵϵ⊤

∣∣∣X1, . . . , Xn

)
vi

as λi and vi are continuous functions of the entries K and hence measurable with
respect to σ(X1, . . . , Xn). Further, by the structure of the inner matrix we have
λi =

µi

(λ+µi)
2 with the eigenvalues µi of 1

nK.
It is therefore sufficient to show that the spectral norm of the conditional covariance

matrix
E
(
ϵϵ⊤

∣∣∣X1, . . . , Xn

)
is uniformly bounded by σ2

max. For that, recall that the samples (Xi, fi)
n
i=1 are

pairwise independent and therefore
(5.13)

E (ϵiϵj |X1, . . . , Xn) = E (fi − f0(Xi))
(
fj − f0(Xj)

)
=

{
var (f |X = Xi) if i = j

0 else

as E (fi − f0(Xi)|Xi) = 0 for all i = 1, . . . , n. Thus, the conditional covariance
matrix is a diagonal matrix with entries bounded by σ2

max. This proves the assertion.
□

Lemma 5.8 above relates the norm ∥f ϵ
n∥

2
k with the trace of 1

n

(
λ+ 1

nK
)−1 1

nK
(
λ+

1
nK

)−1 as well as the precision of the model which is expressed by σ2
max. To estimate

the trace of the matrix we relate the spectrum of 1
nK with the spectrum of the
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integral operator Lk. More precisely, we make use of the crucial inequality

(5.14) E

n∑
i=ℓ

µi ≤
∞∑
i=ℓ

σi for every ℓ ∈ {1, . . . , n} ,

where (σi)
∞
i=1 and (µi)

n
i=1 are the eigenvalues of the operators Lk and the matrix

1
nK, respectively (see [22]).

Based on this estimate we now state the main theorem of this section. We bound
the norm (5.11) with respect to the regularization λ as well as the sample size n.

Theorem 5.9. Assume the spectrum of the operator Lk decays exponentially, i.e.,
there are positive constants α and β such that

σi ≤ α e−β i(5.15)

for all i ∈ N. Then

(5.16) E

∥∥∥ 1
n

n∑
i=1

wϵ
ik(·, Xi)

∥∥∥2
k
≤ σ2

maxc1
log n

pnλ
+ c2

σ2
max

λ2 n
1
p
+1

holds for all p ≥ 1. Moreover, for λn = c/
√
n it holds that

(5.17) E

∥∥∥ 1
n

n∑
i=1

wϵ
ik(·, Xi)

∥∥∥2
k
≤ σ2

maxc1
log n√

n
+ c2

σ2
max√
n

with the constants c1 =
1

4βc and c2 =
α

2c2(1−e−β)
.

Remark 5.10 (Analytic kernels). The conditions of the preceding theorem are
satisfied in very general situations, cf. [13] and Remark 5.11 below.

Proof. Invoking (5.12) we have that

E

∥∥∥ 1
n

n∑
i=1

wϵ
ik(·, Xi)

∥∥∥2
k
≤ σ2

maxE
1

n

n∑
i=1

µi

(λ+ µi)
2

≤ σ2
max

1

2n

ℓ∑
i=1

1

λ
+

σ2
max

2n

n∑
i=ℓ+1

1

λ2
Eµi

= σ2
max

ℓ

2nλ
+

σ2
max

2n

n∑
i=ℓ+1

1

λ2
µi

for any fixed integer ℓ ∈ {1, . . . , n}. Employing (5.14) and (5.15) we find for the
latter term that

(5.18)
n∑

i=ℓ+1

µi ≤
∞∑

i=ℓ+1

σi ≤ α
∞∑

i=ℓ+1

e−βi = α e−β(ℓ+1)
∞∑
i=0

e−βi =
α e−β(ℓ+1)

1− e−β
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using the sum formula of the geometric series. Setting ℓ =
⌈
logn
pβ − 1

⌉
we get that

σ2
max

ℓ

2nλ
+

σ2
max

2λ2n
E

n∑
i=ℓ+1

µi ≤ σ2
max

ℓ

2nλ
+

σ2
max

2

αe−β(ℓ+1)

λ2n
(
1− e−β

)
≤ σ2

max

log n

2npλ
+

σ2
max

2

α

λ2
(
1− e−β

)n− 1
p
−1

and thus the first assertion. Setting λn = c√
n

and p = 2 reveals the second assertion.
□

Remark 5.11 (Analytic and universal kernels). The condition (5.15) involves the
operator Lk and hence depends on the kernel k as well as the underlying design
measure P . Thus, verifying (5.15), requires prior knowledge on P , which is usually
not available. However, [3] provides necessary and sufficient condition on k for
which the spectrum of Lk decays exponentially regardless of the design measure.
The class of kernels satisfying this condition includes, among others, the Gaussian
kernel k(x, y) := exp(− 1

σ2 ∥x− y∥22), which is the most popular kernel in machine
learning.

For further discussions on this particular kernel, which is also a universal kernel,
we refer to [15].

6. Convergence in norm and consistency

We can now connect the auxiliary and partial results of the preceding sections to
present our main results. They identify the limit in the initial problem (2.3) and
describe convergence of the estimator f̂n towards f0, as well as consistency of the
estimators. We state our results for kernels with exponentially decaying spectrum.

6.1. Asymptotically optimal convergence rates and uniform approximation.
The results in the preceding section exhibit the typical bias variance problem: the
parameter λ in (5.10), for example, should be small to increase the approximation
quality of f∗

n for f0; on the other side, λ should be large to reduce the noise in (5.16).
The following statements reveal the best approximation rates asymptotically.

Theorem 6.1. Assume the spectrum of Lk decays exponentially. For f0 in the range
of Lk and λn = C · n−1/2 it holds that

(6.1) E ∥f0 − f̂n∥2k ≤ C1 + C2 log n

n1/2

with constants C1, C2 independent of n (although dependent on f0 and k).

Proof. The assertion derives from (5.3), (5.10) and (5.17) as

E ∥f0 − f̂n∥2k = E ∥f0 − f∗
n∥2k + E ∥fN

n ∥2k ≤ C1
1

n
+ C2

1√
n
+ C3

log n√
n

.

□
Corollary 6.2 (Uniform convergence ). Given the conditions from Theorem 6.1 its
holds that

(6.2) E ∥f0 − f̂n∥22 ≤ O
(
n−1/2 · log n

)
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and

(6.3) E ∥f0 − f̂n∥∞ ≤ O
(
n−1/4 · (log n)1/2

)
.

Proof. The first assertion is immediate with Proposition 2.6 and (6.1).
For the second observe from the reproducing property as well as the Cauchy

Schwartz inequality that

(6.4) |f0(x)− f̂n(x)| =
∣∣〈f0 − f̂n | k(·, x)

〉
k

∣∣ ≤ Ck

∥∥f0 − f̂n
∥∥
k
,

where Ck = supx∈X k(x, x). This inequality is uniform in x and thus

(6.5) E ∥f0 − f̂n∥∞ ≤ Ck E ∥f0 − f̂n∥k ≤ Ck

(
C1 + C2 log n

n1/2

)1/2

which is the assertion. □
6.2. Weak consistency. We have seen in Theorem 4.3 that the estimator ϑ̂n of
the objective is downwards biased. However, weak consistency of the estimator ϑ̂n

is immediate as the optimizers converge.

Theorem 6.3. Given the conditions of Theorem 6.1 it holds that f̂n converges to f0
in probability. Further, for every x ∈ X , f̂n(x) → f0(x), as n → ∞, in probability.

Proof. Indeed, by Markov’s inequality,

P (∥f0 − f̂n∥ ≥ ε) ≤ 1

ε2
E ∥f0 − f̂n∥2k → 0,

as n → ∞ and thus the assertion is immediate. □
Theorem 6.4. The estimators ϑ̂n are L2-consistent.

Proof. The assertion is immediate by Theorem 2.6 and the fact that f̂n is optimal
for ϑ̂n in (4.1). □

7. Discussion and summary

The motivational point of this paper is optimization under uncertainty, where
the objective is not known precisely but has to be estimated instead. To ensure
uniform convergence, we consider the norm of the associated reproducing kernel
Hilbert space. The method investigates an unbiased functional estimator, which
reconstructs the desired function under general preconditions. This estimator is
closely related to a popular technique employed in machine learning. We provide
results for convergence in the norm of the genuine space, the norm associated with
the reproducing kernel Hilbert space.

The norm of the reproducing kernel Hilbert space bounds the residuals uniformly.
For this reason, the results allow estimating functions and establish uniform
convergence of the functional estimator. With that, the results are just appropriate
for applications in stochastic optimization, a subject with many intersections with
neural networks and deep learning.

The convergence rates presented here are in line with other results in nonparametric
statistics. However, we do not have evidence from numerical computations that
convergence rates can be improved.
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Some results can be compared with the Nadaraya–Watson estimator (see [25]
on kernel density estimation), which builds on kernels as well to estimator the
conditional expectation. This method from nonparametric statistics has similar
convergence properties and requires an oracle on the density function to find optimal
convergence rates.

Finally, we want to mention that we have an implementation available at GitHub,
https://github.com/aloispichler/reproducing-kernel-Hilbert-space,

which allows assessing the theoretical results of the paper numerically.
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