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constrained DC optimization problems have been studied. Moreover, in all papers
cited above only the finite dimensional case have been considered, despite the fact
that the DC methodology can be very efficiently applied in the infinite dimensional
case, e.g. to optimal control problems, as was shown in the papers by Strekalovsky
et al. [?, 37, 38,41,43,44] .

To the best of the author’s knowledge, optimization methods for general equality
and inequality constrained DC optimization problems in Banach spaces have not
been studied in the past, although such methods can be applied to many classes of
variational and optimal control problems. The main goal of this paper is to fill in
the gap and analyse a general local search method for such problems based on a
combination of the DCA and the exact penalty technique.

Instead of utilising steering exact penalty methodology as in [15, 39, 40], here
we propose to use an exact penalty function with multidimensional penalty pa-
rameter, that is, a penalty function with individual penalty parameter for each
constraint. The use of multidimensional penalty parameter allows one to take into
account violation of each individual constraint and flexibly adjust corresponding
penalty parameters to ensure balanced progress towards feasibility with respect to
each of the constrains. If a certain constraint is satisfied, then the corresponding
penalty parameter is not updated. In turn, if another constraint is violated, then the
corresponding penalty parameter is increased proportionally to the corresponding
constraint violation measure.

An efficient way for updating multidimensional penalty parameter based on a
global primal-dual penalty method was proposed by Burachik, Kaya, and Price in
the recent paper [4]. The penalty updating strategy from [4] was further analysed
in [14]. In this paper we employ it in the context of DC optimization to develop
an exact penalty DCA with multidimensional penalty updates for finding locally
optimal solution of constrained nonsmooth DC optimization problems in Banach
spaces. We present a detailed description of this method and prove its convergence
to critical points of DC optimization problems in separable Banach spaces. We also
give several illustrative numerical examples that underline potential benefits and
drawbacks of the proposed method and indicate several possible ways to improve
the efficiency of the method.

The paper is organized as follows. Optimality conditions for nonsmooth DC
optimization problems with equality and inequality constraints are discussed in
Section 2. A version of the exact penalty DCA utilizing exact penalty functions with
multidimensional penalty parameter and primal-dual penalty updates is studied in
Sections 3 and 4. Finally, some simple numerical examples illustrating performance
of this exact penalty DCA are given in Section 5.
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2. Optimality conditions and criticality

Let X be a real Banach space. Consider the following constrained nonsmooth
DC optimization problem:

minimize f0(x) = g0(x)− h0(x)
subject to fi(x) = gi(x)− hi(x) ≤ 0, i ∈ I, (P)

fj(x) = gj(x)− hj(x) = 0, j ∈ E , x ∈ A.

We suppose that gk, hk : X → R, k ∈ {0} ∪ I ∪ E , are lower semicontinuous (l.s.c.)
convex functions, I = {1, . . . , ℓ} and E = {ℓ + 1, . . . ,m} are finite index sets (one
of which can be empty), and A ⊆ X is a closed convex set. Note that since X
is a Banach space, the functions gk and hk are actually continuous on X by [16,
Crlr. I.2.5]. Thoughout this article, we also suppose that the following assumption
on the problem (P) holds true.

Assumption 2.1. The feasible set Ω of the problem (P) is not empty, and the
objective function f0 is bounded below on Ω.

Our aim is to present a method for finding locally optimal solutions of the problem
(P). Let us start by deriving local optimality condition for this problem. We will
derive optimality conditions that are similar to optimality conditions for nonsmooth
mathematical programming problems in terms of Demyanov-Rubinov-Polyakova
quasidifferentials [11,12]. To this end, introduce the function

φ(x) =
∑
i∈I

max{fi(x), 0}+
∑
j∈E
|fj(x)|

that measures the violation of the equality and inequality constraints of the problem
(P). Below we use this function to express an abstract constraint qualification for
the problem (P). Sufficient conditions for the validity of this constraint qualification
in terms of subdifferentials of the functions gk and hk in the case when A = X can
be found in [11] (see also [12]).

Let X∗ be the topological dual space of X and ⟨·, ·⟩ be the corresponding duality
pairing. Denote by NA(x) = {v ∈ X∗ | ⟨v, y − x⟩ ≤ 0 ∀y ∈ A} the normal cone to
the set A at a point x ∈ A, and introduce the index set I(x) = {i ∈ I | fi(x) = 0}.
Let dist(x,Ω) = infy∈Ω ∥x − y∥ for any x ∈ X, where, as above, Ω is the feasible
region of the problem (P).

The following theorem contains local optimality conditions for the problem (P),
which can be viewed as a generalisation of [11, Thm. 3].

Theorem 2.2. Let x∗ be a locally optimal solution of the problem (P). Suppose
that φ admits a local error bound near x∗ with respect to the set A, i.e. there
exist κ > 0 and a neighbourhood U of x∗ such that for all x ∈ U ∩ A one has
φ(x) ≥ κ dist(x,Ω). Then there exists c∗ > 0 such that for all vk ∈ ∂hk(x∗),
k ∈ {0} ∪ I ∪ E , and wj ∈ ∂gj(x∗), j ∈ E, one can find multipliers λi, µj , µj > 0,
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i ∈ I, j ∈ E, such that

0 ∈ ∂g0(x∗)− v0 +
∑
i∈I

λi
(
∂gi(x∗)− vi

)
+
∑
j∈E

µ
j

(
∂gj(x∗)− vj

)
−
∑
j∈E

µj
(
wj − ∂hj(x∗)

)
+NA(x∗),

(2.1)

and λifi(x∗) = 0, max{λi, µj + µj} ≤ c∗ for all i ∈ I, j ∈ E.

Proof. By [51, Crlr. 2.2.13] the objective function f0 is locally Lipschitz continuous
as the difference of finite l.s.c. convex functions. Therefore by [10, Thm. 2.4 and
Prp. 2.7] under the assumptions of the theorem there exists c∗ > 0 such that x∗ is
a local minimizer of the penalty function Φc∗ = f0 + c∗φ on the set A.

Applying the calculus rules for directional derivatives [9, Sect. I.3] and the fact
that any l.s.c. convex function is directionally differentiable (see, e.g. [18, Prp. 4.1.3])
one obtains that the penalty function Φc∗ is directionally differentiable and its
directional derivative at x∗ has the form

Φ′
c∗(x∗, ·) = f ′0(x∗, ·) + c∗

∑
i∈I(x∗)

max{f ′i(x∗, ·), 0}

+ c∗
∑
j∈E

max{f ′j(x∗, ·),−f ′j(x∗, ·)}.

By the standard necessary optimality conditions in terms of directional derivatives
[9, Lemma V.1.2] one has Φ′

c∗(x∗, z − x∗) ≥ 0 for all z ∈ A.
Fix any vk ∈ ∂hk(x∗), k ∈ {0} ∪ I ∪ E , and wj ∈ ∂gj(x∗), j ∈ E , and introduce

the convex functions

η(z) = p0(z) + c∗
∑

i∈I(x∗)

max{0, pi(z)}+ c∗
∑
j∈E

max{pj(z), qj(z)},

pk(z) = max
v∈∂gk(x∗)−vk

⟨v, z⟩, qj(z) = max
w∈∂hj(x∗)−wj

⟨w, z⟩, i ∈ I, j ∈ E .

Taking into account the fact that the directional derivative of a convex function is
the support function of its subdifferential [51, Thm. 2.4.9] one obtains that η(·) ≥
Φ′
c∗(x∗, ·). Therefore 0 is a point of global minimum of the convex function η on

the set A− x∗, which implies that 0 ∈ ∂η(0) +NA(x∗) (see, e.g. [18, Thm. 1.1.2’]).
Hence with the use of the subdifferential calculus one gets that

0 ∈ ∂g0(x∗)− v0 + c∗
∑

i∈I(x∗)

co
{
∂gi(x∗)− vi, 0

}
+ c∗

∑
j∈E

co
{
∂gj(x∗)− vj , wj − ∂hj(x∗)

}
+NA(x∗).
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Consequently, by the definition of convex hull for any i ∈ I(x∗) there exists αi ∈
[0, 1] and for any j ∈ E there exists βj ∈ [0, 1] such that

0 ∈ ∂g0(x∗)− v0 + c∗
∑

i∈I(x∗)

αi

(
∂gi(x∗)− vi

)
+ c∗

∑
j∈E

(
βj(∂gj(x∗)− vj) + (1− βj)(wj − ∂hj(x∗))

)
+NA(x∗).

Hence putting λi = c∗α∗ for i ∈ I(x∗), λi = 0 for i ∈ I \ I(x∗), µj = c∗βj and

µj = c∗(1− βj) for all j ∈ E one obtains the required result. □

Remark 2.3. Multipliers λi, µj , and µj obviously depend on the choice of sub-

gradients vk and wj of the functions hk and gj , respectively, and cannot be chosen
independently of those subgradients (cf. [28, 29]). Moreover, note that in opti-
mality conditions (2.1) there are two multipliers µ

j
and µj corresponding to each

equality constraint fj(x) = 0. Both these facts are specific features of optimality
conditions for nonsmooth mathematical programming problems in terms of quasidif-
ferentials and corresponding optimality conditions for nonsmooth DC optimization
problems (see the discussion in [11, 12]). Let us also point out that the inequal-
ity maxi∈I,j∈E{λi, µj + µj} ≤ c∗ simply means that the multipliers are uniformly

bounded for all subgradients vk and wj of the functions hk and gj .

Although optimality conditions from Thm. 2.2 are very sharp and capable of
discerning nonoptimality of points at which many other optimality conditions are
satisfied (see examples in [11, 12]), these conditions are unsuitable for practical
applications and analysis of numerical methods. In particular, to apply these con-
ditions one needs to compute the entire subdifferentials of the functions gk and hk,
k ∈ {0} ∪ I ∪ E , which is often either impossible or too computationally expen-
sive. Therefore, similarly to the case of optimality conditions for unconstrained
nonsmooth DC optimization problems (see the discussions in [19,25,46]), we intro-
duce the following notion of criticality for the problem (P), which is much more
convenient for applications than optimality conditions from Thm. 2.2 and can be
viewed as a significantly weakened form of these optimality conditions.

Definition 2.4. A point x∗ is said to be critical for the problem (P), if there exist
vk ∈ ∂hk(x∗), k ∈ {0} ∪ I ∪ E , and wj ∈ ∂gj(x∗), j ∈ E such that inclusion (2.1)
holds true for some λi, µj , µj ≥ 0, i ∈ I, j ∈ E , satisfying the complementarity

condition λifi(x∗) = 0 for all i ∈ I.

Let us point out an almost obvious, yet useful reformulation of the notion of
criticality.

Lemma 2.5. A feasible point x∗ is critical for the problem (P) if and only if there
exist c > 0, vk ∈ ∂hk(x∗), k ∈ {0} ∪ I ∪ E , and wj ∈ ∂gj(x∗), j ∈ E, such that x∗
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is a point of global minimum of the convex function

(2.2) Qc(x) = g0(x)− ⟨v0, x− x∗⟩+ c
∑
i∈I

max
{
gi(x)− hi(x∗)− ⟨vi, x− x∗⟩, 0

}
+ c

∑
j∈E

max
{
gj(x)− hj(x∗)− ⟨vj , x− x∗⟩, hj(x)− gj(x∗)− ⟨wj , x− x∗⟩

}
on the set A.

Proof. By the standard optimality conditions, x∗ is a point of global minimum
of the convex function Qc on the set A iff 0 ∈ ∂Qc(x∗) + NA(x∗). In turn, by
the standard rules of the subdifferential calculus this inclusion is satisfied for some
c > 0 iff inclusion (2.1) holds true for some λi, µj , µj > 0, i ∈ I, j ∈ E , satisfying
the complementarity condition λifi(x∗) = 0 for all i ∈ I. □
Remark 2.6. Note that since the function Qc is nondecreasing in c and Qc(x∗) =
g0(x∗), the point x∗ is a global minimizer of Qc on A if and only if x∗ is a global
minimizer of Qt on A for any t ≥ c.

3. Exact penalty DCA with multidimensional penalty parameter

We propose to find locally optimal solutions (more precisely, critical points) of the
problem (P) with the use of a modification of the famous DCA using exact penalty
functions. Exact penalty DCAs with the simplest penalty updates (e.g., the penalty
parameter is increased by a given factor after every iteration till a feasible point is
found) were studied for inequality constrained problem in [23, 33], and for general
cone constrained DC optimization problems in [13, 27]. However, as is well known,
carefully chosen penalty updates might significantly improve performance of exact
penalty methods (see, e.g. the discussion and examples in [5, 6]). Therefore, our
main goal is to present and analyse an exact penalty DCA, in which the penalty
parameter is updated adaptively.

Being inspired by the recent papers [4,14], we study an exact penalty DCA based
on an exact penalty function with a multidimensional penalty parameter, that is,
a penalty function with individual penalty parameter for each constraint. This
method utilises a natural adaptive penalty updating strategy, which can be derived
from a primal-dual approach to exact penalty functions (see [4]). According to this
strategy, an increase of the penalty parameter corresponding to a given constraint
must be proportional to the violation of this constraint, so that penalty parameters
corresponding to constraints that are “almost” satisfied are changed only slightly,
while penalty parameters corresponding to constraints with large violation measure
are increased by a substantial amount. An exact penalty method with such penalty
updates tracks the violation of each constraint after every iteration and adaptively
updates penalty parameters in accordance with this information.

Introduce the penalty function

Ψτ (x) = f0(x) +
∑
i∈I

τ (i)max{fi(x), 0}+
∑
j∈E

τ (j)|fj(x)|

with multidimensional penalty parameter τ = (τ (1), . . . , τ (m)) ∈ Rm
++, where by def-

inition R++ = (0,+∞). Choose any y ∈ X, and any subgradients vk ∈ ∂hk(y), k ∈
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{0}∪I∪E , and wj ∈ ∂gj(y), j ∈ E . Introduce the vector V = (v0, v1, . . . , vm, wℓ+1, . . . , wm)
and define

(3.1)

Mτ (x, y, V ) = g0(x)− ⟨v0, x− y⟩+
∑
i∈I

τ (i)max
{
gi(x)− hi(y)− ⟨vi, x− y⟩, 0

}
+
∑
j∈E

τ (j)max
{
gj(x)− hj(y)− ⟨vj , x− y⟩, hj(x)− gj(y)− ⟨wj , x− y⟩

}
.

The function Mτ (·, y, V ) is obviously convex. Furthermore, applying the definition
of subgradient one can easily check that for any x ∈ X one has

(3.2) Mτ (x, y, V )− h0(y) ≥ Ψτ (x), Mτ (y, y, V )− h0(y) = Ψτ (y),

that is,Mτ (·, y, V )−h0(y) is a global convex majorant of the penalty function Ψτ (·).
Following the DCA methodology, we will use the function Mτ (·, xn, V ) to define the
next iterate xn+1, given the current point xn. Namely, the point xn+1 is defined as
an εn-optimal solution of the problem

minimize
x

Mτn(x, xn, Vn) subject to x ∈ A

for some small εn > 0, that is, xn+1 ∈ A is any point satisfying the inequality

Mτn(xn+1, xn, Vn) ≤ inf
x∈A

Mτn(x, xn, Vn) + εn.

Note that such point xn+1 always exists, provided the penalty function Ψτn is
bounded below on the set A (see (3.2)).

A theoretical scheme of the exact multidimensional penalty DCA is given in
Algorithmic Pattern 1 below.

Algorithmic Pattern 1: Exact Multidimensional Penalty DCA

Initialization. Choose an initial point x0 ∈ A, an initial value of the
penalty parameter τ0 ∈ Rm

++, the maximal value of penalty parameters
τmax > 0, a sequence {εn} ⊂ R++, and set n := 0.
Main Step. For all k ∈ {0} ∪ I ∪ E compute vnk ∈ ∂hk(xn), for all j ∈ E
compute wnj ∈ ∂gj(xn), and define

Vn = (vn0, vn1, . . . , vnm, wn(ℓ+1), . . . , wnm).

Set the value of xn+1 to an εn-optimal solution of the convex problem

(3.3) minimize
x

Mτn(x, xn, Vn) subject to x ∈ A

such that Mτn(xn+1, xn, Vn) ≤Mτn(xn, xn, Vn).
Penalty Update. Choose scaling coefficient γn > 0 and define

τ
(k)
n+1 =


τ
(k)
n + γnmax{fk(xn+1), 0}, if k ∈ I and τ

(k)
n < τmax,

τ
(k)
n + γn|fk(xn+1)|, if k ∈ E and τ

(k)
n < τmax,

τmax, otherwise.

Check a stopping criterion. If it is satisfied, Stop. Otherwise, put
n← n+ 1 and repeat the Main Step.
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Remark 3.1. (i) We use the term algorithmic pattern, since the method presented
in this article is not an algorithm per se, but rather a pattern, whose practical
implementation requires the use of convex optimization methods. This pattern
defines a whole family of local search method for the problem (P) depending on a
method for solving convex optimization subproblems, stopping criteria, and rules
for choosing scaling coefficients γn.
(ii) Let us note that one can use the following inequalities∣∣Ψτn(xn+1)−Ψτn(xn)

∣∣ < εf

(
and/or ∥xn+1 − xn∥ < εx

)
, φ(xn+1) < εφ

with some prespecified εf > 0 (and/or εx > 0) and εφ > 0 as a stopping criterion for
Algorithmic Pattern 1. Theorem 4.5 below provides a justification for this stopping
criterion. It is worth mentioning that the first inequality above can be replaced
with ∣∣Mτn(xn+1, xn, Vn)−Mτn(xn+1, xn, Vn)

∣∣ < εf

in the case when the computation of Ψτn(xn+1) and Ψτn(xn) is time consuming (see
Corollary 4.7).
(iii) Let us also note that the scaling coefficients γn in Algorithmic Pattern 1 can
be chosen as γn ≡ κ for some κ > 0 or γn = κ/∥ψ(xn+1)∥, provided ψ(xn+1) ̸= 0,
where ∥ · ∥ is some norm in Rm, and

ψ(x) =
(
max{f1(x), 0}, . . . ,max{fℓ(x), 0}, |fℓ+1(x)|, . . . , |fm(x)|

)T
.

Apparently, the choice γn = κ/∥ψ(xn+1)∥ or

(3.4) γn =

{
κ/∥ψ(xn+1)∥, if ∥ψ(xn+1)∥ ≥ δ,
κ, otherwise

for some small δ > 0 is more reasonable, since it allows one to avoid an excessive

increase of penalty parameters τ
(k)
n during first few iterations of the method, when

the violation of constraints can be sufficiently large. Furthermore, the combined
strategy (3.4) might also help to avoid an excessive increase of the penalty parameter
at later stages, when the constraint violation is sufficiently small and the iterates
gradually approach a critical point.

Observe that by introducing additional variables γ(i) and ξ(j) one can rewrite
the convex penalty subproblem on the main step of Algorithmic Pattern 1 as the
following equivalent convex programming problem:

minimize
x∈X,γ∈Rℓ,ξ∈Rm−ℓ

g0(x)− ⟨vn0, x⟩+
∑
i∈I

τ (i)n γ(i) +
∑
j∈E

τ (j)n ξ(j),

subject to gi(x)− hi(xn)− ⟨vni, x− xn⟩ ≤ γ(i), γ(i) ≥ 0, i ∈ I,

gj(x)− hj(xn)− ⟨vnj , x− xn⟩ ≤ ξ(j), j ∈ E ,

hj(x)− gj(xn)− ⟨wnj , x− xn⟩ ≤ ξ(j), j ∈ E , x ∈ A.

(3.5)

In the case when the functions gk, k ∈ {0} ∪ I ∪ E , and hj , j ∈ E , are smooth,
one can solve this subproblem with the use of interior point methods, thus avoiding
the minimization of the nonsmooth function Mτn(·, xn, Vn). Alternatively, one can
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use a smoothing approximation of the penalty function Mτn(·, xn, Vn) preserving
its convexity and approximately solve the corresponding penalty subproblem by
minimizing this smoothing approximation (cf. [4]). It is possible to extend the con-
vergence analysis presented below to such exact penalty DCA based on a smoothing
approximation. For the sake of shortness, we do not present such extension here
and leave it as an open problem for future research.

Let us briefly explain why problems (3.3) and (3.5) are interchangable.

Proposition 3.2. Problems (3.3) and (3.5) are equivalent in the following sense:

(1) they have the same optimal value;
(2) if (xn+1, γn+1, ξn+1) is an εn-optimal solution of problem (3.5), then xn+1

is an εn-optimal solution of problem (3.3);
(3) if xn+1 is an εn-optimal solution of problem (3.3), then the triplet (xn+1, γ(xn+1), ξ(xn+1))

is an εn-optimal solution of problem (3.5).

Here

γ(i)(x) = max
{
gi(x)− hi(xn)− ⟨vi, x− xn⟩, 0

}
,

ξ(j)(x) = max
{
gj(x)− hj(xn)− ⟨vj , x− xn⟩, hj(x)− gj(xn)− ⟨wj , x− xn⟩

}
for any x ∈ X and all i ∈ I and j ∈ E.

Proof. Denote the objective function of problem (3.5) by Tn(x, γ, ξ). As is easily
seen, for any feasible point (x, γ, ξ) of this problem the point (x, γ(x), ξ(x)) is also

feasible and γ(i) ≥ γ(i)(x), i ∈ I, ξ(j) ≥ ξ(j)(x), j ∈ E . Therefore, for any feasible
point (x, γ, ξ) of problem (3.5) one has

Tn(x, γ, ξ) ≥ Tn(x, γ(x), ξ(x)) =Mn(x, xn, Vn)

and the first inequality is strict if either γ ̸= γ(x) or ξ ̸= ξ(x), since τn ∈ Rm
++.

From the relations above it obviously follows that problems (3.3) and (3.5) have the
same optimal value.

If xn+1 is an εn-optimal solution of problem (3.3), then for any feasible point
(x, γ, ξ) of problem (3.5) one has

Tn(x, γ, ξ) ≥Mn(x, xn, Vn) ≥Mn(xn+1, xn, Vn)− εn
= Tn(xn+1, γ(xn+1), ξ(xn+1))− εn,

that is, (xn+1, γ(xn+1), ξ(xn+1)) is an εn-optimal solution of problem (3.5).
Conversely, if (xn+1, γn+1, ξn+1) is an εn-optimal solution of problem (3.5), then

for any x ∈ A one has

Mn(x, xn, Vn) = Tn(x, γ(x), ξ(x)) ≥ Tn(xn+1, γn+1, ξn+1)− εn
≥ Tn(xn+1, γ(xn+1), ξ(xn+1))− εn =Mn(xn+1, xn, Vn)− εn,

that is xn+1 is an εn-optimal solution of problem (3.3). □

4. Convergence Analysis

Let us now turn to the convergence analysis of Algorithmic Pattern 1. To this end,
we need to introduce an auxiliary definition, which extends the notion of criticality
from Definition 2.4 to the case of infeasible points.
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Definition 4.1. A point x∗ ∈ A is called a generalised critical point for a given
value τ ∈ Rm

++ of the penalty parameter, if there exist vk ∈ ∂hk(x∗), k ∈ {0}∪I∪E ,
and wj ∈ ∂gj(x∗), j ∈ E , such that x∗ is a globally optimal solution of the problem

minimize
x

Mτ (x, x∗, V ) subject to x ∈ A.

where V = (v0, v1, . . . , vm, wℓ+1, . . . , wm).

Let us point out two useful properties of generalised critical points. In partic-
ular, let us prove that for feasible points the notions of criticality and generalised
criticality, in essence, coincide.

Lemma 4.2. Let x∗ be a feasible point of the problem (P). If x∗ is a generalised
critical point for some τ ∈ Rm

++, then this point is critical for the problem (P).
Conversely, if the point x∗ is critical for the problem (P), then there exists τ∗ ∈ Rm

++

such that x∗ is a generalised critical point for any τ ≥ τ∗, where the inequality is
understood coordinate-wise.

Proof. Suppose that x∗ is a generalised critical point for some τ ∈ Rm
++. Then by

definition there exist vk ∈ ∂hk(x∗), k ∈ {0} ∪ I ∪ E , and wj ∈ ∂gj(x∗), j ∈ E , such
that Mτ (x, x∗, V ) ≥ Mτ (x∗, x∗, V ) for all x ∈ A. Define c = maxk τ

(k). Then by
definitions Qc(x) ≥ Mτ (x, x∗V ) for all x ∈ X (see (2.2)). Moreover, the equalities
Qc(x∗) = Mτ (x∗, x∗, V ) = g0(x∗) hold true by virtue of the fact that the point x∗
is feasible. Therefore, Qc(x) ≥ Qc(x∗) for all x ∈ A, which by Lemma 2.5 implies
that x∗ is a critical point for the problem (P).

Conversely, if x∗ is a critical point for the problem (P), then by Lemma 2.5 there
exist c > 0, vk ∈ ∂hk(x∗), k ∈ {0} ∪ I ∪ E , and wj ∈ ∂gj(x∗), j ∈ E , such that
Qc(x) ≥ Qc(x∗) for all x ∈ A. Hence, as is easily seen, for any τ ∈ Rm

++ such that

τ (k) ≥ c for all k ∈ I ∪ E one has Mτ (x, x∗, V ) ≥ Mτ (x∗, x∗, V ), which implies the
desired result. □
Remark 4.3. It should be noted that the generalised criticality depends on the
choice of penalty parameter τ . In some cases one can escape a generalised critical
point by simply changing this parameter (e.g. by increasing those τ (k), which corre-
spond to infeasible constraints). See [13, Remark 9] for a more detailed discussion.

Lemma 4.4. Let {xn} be the sequence generated by Algorithmic Pattern 1. Then
Ψτn(xn+1) ≤ Ψτn(xn) for all n ∈ N. Furthermore, if for some n ∈ N one has εn = 0
and the point xn is not a generalised critical point for τn, then Ψτn(xn+1) < Ψτn(xn).

Proof. By the definition of xn+1 (see Algorithmic Pattern 1) one has

(4.1) Mτn(xn+1, xn, Vn) ≤Mτn(xn, xn, Vn) ∀n ∈ N,
which with the use of inequalities (3.2) implies that Ψτn(xn+1) ≤ Ψτn(xn) for all
n ∈ N.

If for some n ∈ N one has εn = 0 and the point xn is not a generalised critical
point for τn, then by definition xn is not a point of global minimum of the function
Mτn(·, xn, Vn) on the set A, that is, inequality (4.1) is strict. Therefore, Ψτn(xn+1) <
Ψτn(xn). □

Now we are ready to prove a theorem on convergence of Algorithmic Pattern 1.
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Theorem 4.5. Let {xn} be the sequence generated by Algorithmic Pattern 1. Sup-
pose that the sequence {ψ(xn)} is bounded, the penalty function Ψτn is bounded
below on A for some n ∈ N, and εn → 0 as n→∞. Then the following statements
hold true:

(1) the corresponding sequence {τn} of penalty parameters is bounded and con-
verges to some τ∗;

(2) |Ψτn(xn+1)−Ψτn(xn)| → 0 as n→∞;
(3) if X is a Hilbert space and the function h0 is strongly convex, then one has
∥xn+1 − xn∥ → 0 as n→∞;

(4) if X is separable, then all limit points of the sequence {xn} are generalised
critical points for τ∗;

(5) if X is separable and a limit point x∗ of the sequence {xn} is feasible for the
problem (P), then it is also critical for this problem.

Proof. 1. By the definition of penalty update (see Algorithmic Pattern 1) the se-

quences {τ (k)n }, k ∈ I ∪ E are non-decreasing and bounded above by τmax. Conse-
quently, these sequence converge, which obviously implies that the sequence {τn}
also converges to some τ∗ ∈ Rm

++.
2. Suppose that the sequence {|Ψτn(xn+1)−Ψτn(xn)|} does not converge to zero.

Then bearing in mind Lemma 4.4 one can conclude that there exist ε > 0 and a
subsequence {xns} such that

(4.2) Ψτns
(xns+1) ≤ Ψτns

(xns)− ε ∀s ∈ N.

Fix any s ∈ N. Observe that

Ψτns
(xns+1) = Ψτns+1(xns+1) + ⟨τns − τns+1, ψ(xns+1)⟩

By our assumption there exists C > 0 such that ∥ψ(xn)∥∞ ≤ C for all n ∈ N, where
∥ · ∥∞ is the ℓ∞ norm. Hence taking into account the fact that by definitions all
components of the vector ψ(xns+1) are nonnegative, while all components of the
vector τns − τns+1 are nonpositive, one obtains that

(4.3) Ψτns
(xns+1) ≥ Ψτns+1(xns+1) + C⟨τns − τns+1, 1⃗⟩,

where 1⃗ = (1, . . . , 1) ∈ Rm. Now applying Lemma 4.4 and repeating the same
argument once again one gets that

(4.4) Ψτns+1(xns+1) ≥ Ψτns+1(xns+2) ≥ Ψτns+2(xns+2) + C⟨τns+1 − τns+2, 1⃗⟩.
Summing up (4.3) and (4.4) one obtains

Ψτns
(xns+1) ≥ Ψτns+2(xns+2) + C⟨τns − τns+2, 1⃗⟩.

Hence arguing by induction one can easily verify that

Ψτns
(xns+1) ≥ Ψτns+1

(xns+1) + C⟨τns − τns+1 , 1⃗⟩ ∀s ∈ N,

which with the use of (4.2) implies that

Ψτns+1
(xns+1) ≤ Ψτns

(xns)− ε+ C⟨τns+1 − τns , 1⃗⟩ ∀s ∈ N.

Recall that the sequence {τn} converges to τ∗. Therefore {τn} is a Cauchy sequence,
which implies that there exists N ∈ N such that for all n, p ≥ N the inequality
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∥τn − τp∥∞ ≤ ε/2mC holds true. Clearly, there exists s0 ∈ N such that ns0 ≥ N .
Then

Ψτns+1
(xns+1) ≤ Ψτns

(xns)−
ε

2
∀s ≥ s0.

Consequently, Ψτns
(xns) → −∞ as s → ∞, which contradicts the facts that the

penalty function Ψτn is bounded below on A for some n ∈ N and Ψτp(·) ≥ Ψτn(·)
for all p ≥ n due to the penalty updating rule from Algorithmic Pattern 1.

3. Let X be a Hilbert space and h0 be strongly convex. Then there exists µ > 0
such that

h0(xn+1)− h0(xn) ≥ ⟨v0n, xn+1 − xn⟩+
µ

2
∥xn+1 − xn∥2 ∀n ∈ N.

By the definition of xn+1 and inequalities (3.2) one has

Ψτn(xn) =Mτn(xn, xn, Vn)− h0(xn) ≥Mτn(xn+1, xn, Vn)− h0(xn) ∀n ∈ N.

Hence applying the inequality for h0 and the definitions of subgradients vk and wj

one obtains that

Ψτn(xn) ≥Mτn(xn+1, xn, Vn)− h0(xn)

≥Mτn(xn+1, xn, Vn)− h0(xn+1) + ⟨v0n, xn+1 − xn⟩+
µ

2
∥xn+1 − xn∥2

= f0(xn+1) +
∑
i∈I

τ (i)n max
{
gi(xn+1)− hi(xn)− ⟨vni, xn+1 − xn⟩, 0

}
+
∑
j∈E

τ (j)n max
{
gj(xn+1)− hj(xn)− ⟨vnj , xn+1 − xn⟩,

hj(xn+1)− gj(xn)− ⟨wnj , xn+1 − xn⟩
}

≥ Ψτn(xn+1) +
µ

2
∥xn+1 − xn∥2

for all n ∈ N (see (3.1)). Therefore by the previous part of the theorem ∥xn+1 −
xn∥ → 0 as n→∞.

4. Arguing by reductio ad absurdum, suppose that there is a limit point x∗ of the
sequence {xn} that is not a generalised critical point for τ∗. By the definition of the
limit point there exists a subsequence {xns} converging to x∗. By [51, Thm. 2.4.13]
the subdifferential mapping of a l.s.c. convex function is locally bounded, which
implies that the corresponding sequences of subgradients {vnsk} and {wnsj} are
bounded.

Recall that by our assumption the space X is separable. Therefore by the se-
quential version of the Banach-Alaoglu theorem any ball in the dual space X∗ is
sequentially weak∗ compact. Consequently, replacing, if necessary, the sequence
{xns} with its subsequence one can suppose that the sequences {vnsk} and {wnsj}
converge to some {v∗k} and {w∗

j} in the weak∗ topology. Note that v∗k ∈ ∂hk(x∗)
for all k ∈ {0} ∪ I ∪ E and w∗

j ∈ ∂gj(x∗) for all j ∈ E (see, e.g. [51, Thm. 2.4.2,

part (ix)].
From the fact that x∗ is not a generalised critical point for τ∗ it follows that there

exist y ∈ A and ε > 0 such that

Mτ∗(y, x∗, V
∗) < Mτ∗(x∗, x∗, V

∗)− ε, V ∗ = (v∗0, v
∗
1, . . . , v

∗
m, w

∗
ℓ+1, . . . , w

∗
m)
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(see Def. 4.1). Since the sequence {Vns} converes to V ∗ in the weak∗ topology, there
exists s1 ∈ N such that

Mτ∗(y, x∗, Vns) < Mτ∗(x∗, x∗, Vns)−
3ε

4
∀s ≥ s1.

Therefore, taking into account the definition of Mτ (see (3.1)), the main step of
Algorithmic Pattern 1, and the facts that xns → x∗, εn → 0, and the sequence
{Vns} is bounded one obtains that there exists s2 ≥ s1 such that

Mτns
(xns+1, xns , Vns) ≤Mτns

(y, xns , Vns) + εn

≤Mτns
(xns , xns , Vns)−

ε

4
∀s ≥ s2.

Hence with the use of (3.2) one gets that

Ψτns
(xns+1) ≤ Ψτns

(xns)−
ε

2
∀s ≥ s0,

Now arguing in the same way as in the proof of the second statement of the theorem
one can readily verify that the inequality above implies that Ψτns

(xns) → −∞ as
s→∞, which contradicts the assumption that the function Ψτn is bounded below
on A for some n ∈ N. Therefore, all limit points of the sequence {xn} are generalised
critical point for τ∗.

The validity of statement 5 follows directly from the previous statement and
Lemma 4.2. □

Remark 4.6. Note that in the case when X is a Hilbert space, the assumption
on the strong convexity of the function h0 is obviously not restrictive, since one
can always replace the DC decomposition f0(x) = g0(x) − h0(x) of the objective
function with the following one:

f0(x) =
(
g0(x) + µ∥x∥2

)
−
(
h0(x) + µ∥x∥2

)
for some µ > 0.

Corollary 4.7. Under the assumptions of the previous theorem for any n ∈ N one
has

0 ≤Mτn(xn, xn, Vn)−Mτn(xn+1, xn, Vn) ≤ Ψτn(xn)−Ψτn(xn+1),

and Mτn(xn, xn, Vn)−Mτn(xn+1, xn, Vn)→ 0 as n→∞.

Proof. By the definition of xn+1 (see Algorithmic Pattern 1) one has

Mτn(xn+1, xn, Vn)−Mτn(xn, xn, Vn) ≤ 0 ∀n ∈ N,

Adding and subtracting h0(xn) in the left-hand side of this inequality and applying
inequalities (3.2) one gets that

Ψτn(xn+1)−Ψ(xn) ≤Mτn(xn+1, xn, Vn)−Mτn(xn, xn, Vn) ≤ 0,

which with the use of the second statement of the previous theorem implies the
required result. □



1370 MAKSIM V. DOLGOPOLIK

5. Illustrative numerical examples

Let us give several simple illustrative finite dimensional numerical examples to
help the reader better understand the way the exact multidimensional penalty DCA
works, as well as to highligh some essential differences between this method and the
steering exact penalty DCA from the recent paper [15].

In all examples, the initial value of the penalty parameter in Algorithmic Pat-
tern 1 was chosen as τ0 = (1, . . . , 1), while for the steering exact penalty DCA it
was chosen as c0 = 1. The scaling coefficients γn in Algorithmic Pattern 1 were
chosen as

γn =


10/∥ψ(xn)∥, if ∥ψ(xn)∥ ≥ 0.1,

10, if 10−6 ≤ ∥ψ(xn)∥ < 0.1,

0, otherwise,

while the penalty parameter cn in the steering exact penalty DCA was increased by
the factor ρ = 10, each time one of the corresponding inequality was not satisfied
(see [15]). We also chose parameters of this method as follows: η1 = η2 = 0.1 and
εfeas = 0.01.

The following inequalities

φ(xn) < 10−6, Ψτn(xn+1)−Ψτn(xn) < 10−6.

were used as the termination criterion. Finally, all convex optimization subproblems
in both methods were solved with the use of cvx, a package for specifying and solving
convex programs [17,34].

Example 5.1. As the first example, we consider the following simple optimization
problem with one nonsmooth nonconvex equality constraint:

(5.1) minimize 20(x(1) − 2)2 + 20(x(2))2 subject to |x(1)| − |x(2)| = 0.

One has X = R2, I = ∅, E = {1}, and

g0(x) = 20(x(1) − 2)2 + 20(x(2))2, h0(x) = 0

g1(x) = |x(1)|, h1(x) = |x(2)|.

Problem (5.1) has two globally optimal solutions: x∗ = (1,±1). We chose the point
x0 = (−2, 0) as initial guess for both methods. Computation results for Algorithmic
Pattern 1 are given in Table 1 and for the steering exact penalty DCA in Table 2.

Table 1. Output of the exact multidimensional penalty DCA for Example 5.1.

n xn f0(xn) φ(xn) τn
0 (-2, 0) 320 2 1
1 (1.975, 0) 0.0125 1.975 11
2 (1.725, 0.275) 3.0252 1.45 21
3 (1.475, 0.5251) 11.0254 0.95 31
4 (1.225, 0.775) 24.0254 0.45 41
5 (1, 1) 40 0 41
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Table 2. Output of the steering exact penalty DCA for Example 5.1.

n xn f0(xn) φ(xn) cn
0 (-2, 0) 320 2 1
1 (1.75, 0) 1.25 1.75 10
2 (1.75, -0.25) 2.5 1.5 10
3 (1, -1) 40 0 100

Computation results show that once the penalty parameter exceeds a certain
threshold (namely, the least exact penalty parameter for problem (5.1); see e.g.
[10, 36]), both methods find one of the globally optimal solutions in just one step.
However, both methods find a sufficiently large value of the penalty parameter in
different ways. The steering exact penalty DCA increases the penalty parameter
to ensure a reasonable rate of decay of the infeasibility measure, while the exact
multidimensional penalty DCA increases the penalty parameter each iteration till
a feasible point of found.

More conservative penalty updates of the exact multidimensional penalty DCA
(instead of multiplying the penalty parameter by the factor ρ = 10 as in the steer-
ing exact penalty DCA, one simply adds 10 to the current value of the penalty
parameter, if the current iterate is infeasible) leads to the fact that this method
requires more iterations to find a correct value of the penalty parameter than the
steering exact penalty DCA. Note, however, that Algorithmic Pattern 1 is designed
for problem with multiple constraints, while in the case of problems with a sin-
gle constraint it is reduced to the simples penalty updating scheme: increase the
penalty parameter by a constant value till a feasible point is found. The benefits of
this method can be clearly seen only for problems with many constraints.

Example 5.2. Let us consider an example of a mathematical program with com-
plementarity constraints (MPCC) given in [5, Example 3]. Namely, consider the
following problem:

minimize x(1) + x(2)

subject to 1− (x(2))2 ≤ 0, x(1)x(2) ≤ 0, x(1) ≥ 0, x(2) ≥ 0.
(5.2)

In this case X = R2 and one can define I = {1, 2, 3, 4}, E = ∅, and

g0(x) = x(1) + x(2), h0(x) = 0, g1(x) = 0, h1(x) = (x(2))2 − 1,

g2(x) = 0.5(x(1) + x(2))2, h2(x) = 0.5(x(1))2 + 0.5(x(2))2,

g3(x) = −x(1), h3(x) = 0, g3(x) = −x(2), h3(x) = 0.

The unique globally optimal solution of problem (5.2) is x∗ = (0, 1). Note that the
Mangasarian-Fromovitz constraint qualification is not satisfied at this point.

We take the point x0 = (0.1, 0.9), suggested in [5, Example 3], as initial guess for
both methods. Computation results are given in Tables 3 and 4.

Although in this example both methods terminate after the same number of
iterations, the exact multidimensional penalty DCA computes in two iteration a
solution with higher accuracy than the steering exact penalty DCA computes in
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Table 3. Output of the exact multidimensional penalty DCA for Example 5.2.

n xn f0(xn) φ(xn) τn
0 (0.1, 0.9) 1 0.28 (1, 1, 1, 1)
1 (-1.0238, 1.0056) -0.02 1.0238 (1, 1, 11, 1)
2 (8.8E-11, 1) 1 0 (1, 1, 11, 1)
3 (-2.46E-12, 1) 1 0 (1, 1, 11, 1)

Table 4. Output of the steering exact penalty DCA for Example 5.2.

n xn f0(xn) φ(xn) cn
0 (0.1, 0.9) 1 0.28 1
1 (-0.0056, 1.0056) 0.99 0.0055 10
2 (-3E-5, 1) 0.99 0 10
3 (3E-9, 1) 1 0 10

three iterations. What is more noteworthy, however, is the fact that the exact mul-
tidimensional penalty DCA increases only the penalty parameter corresponding to
the constraint x1 ≥ 0. All other penalty parameters, including the ones correspond-
ing to the nonlinear constraints, remain unchanged and equal to 1. This example
clearly demonstrate potential benefits of using multidimensional penalty parameter.

Let us also note that both algorithms use a much smaller value of the penalty
parameter than the line search exact penalty method using steering rules from [5]
(see [5, Example 3]).

Example 5.3. Let us finally consider an example highlighting some drawbacks of
the exact multidimensional penalty DCA. Namely, consider the following optimiza-
tion problem

minimize x(1) subject to (x(1))2 + 1− x(2) = 0,

x(1) − x(3) − 1 = 0, x(2) ≥ 0, x(3) ≥ 0.
(5.3)

introduced in [?] (see also [5, Example 1]). In this case X = R2 and one can define
I = {1, 2}, E = {3, 4}, and

g0(x) = x(1), h0(x) = 0, g1(x) = −x(2), h1(x) = 0,

g2(x) = −x(3), h2(x) = 0, g3(x) = (x(1))2 + 1− x(2), h3(x) = 0,

g4(x) = x(1) − x(3) − 1, h4(x) = 0

The unique globally optimal solution is x∗ = (1, 2, 0). We use the starting point
x0 = (−3, 11, 1) given in [5, Example 1]. Computation results are presented in
Tables 5 and 6. Values of the objective function are not included into the tables,
since they coincide with the first coordinate of xn.

In this example the exact multidimensional penalty DCA terminates one iteration
earlier than the steering exact penalty DCA. However, one can see the effect of
overcorrection of the penalty parameter. Algorithmic Pattern 1 keeps increasing the
multidimensional penalty parameter till a feasible point is found, even though there
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Table 5. Output of the steering exact penalty DCA for Example 5.3.

n xn φ(xn) τn
0 (- 3, 1, 1) 14 (1, 1, 1, 1)
1 (-3, 10, -3.1833) 4 (1, 10.6863, 1, 3.4851)
2 (-1, 0, 0) 4 (1, 10.6863, 8.0711, 10.5561)
3 (0.184, 0.3329, 0) 1.517 (1, 10.6863, 14.5869, 18.1419)
4 (0.848, 1.4987, -0.152) 0.372 (1, 16,3619, 22.8202, 18.1419)
5 (1, 1.9885, 0) 0.012 (1, 16.3619, 22.9357, 18.1419)
6 (1, 2, 0) 0 (1, 16.3619, 22.9357, 18.1419)

Table 6. Output of the exact multidimensional penalty DCA for Example 5.3.

n xn φ(xn) cn
0 (- 3, 1, 1) 14 1
1 (-3, 10, -3.1833) 4 1
2 (-2.1, 5.052, -2.289) 3.505 10
3 (-1.2, 2.035, -1.7368) 2.605 10
4 (-0.3, 0.685, -0.9834) 1.705 10
5 (0.6, 0.955, -0.2957) 0.805 10
6 (1, 1.92, 0) 0.08 10
7 (1, 2, 0) 0 10

is no real need for penalty increase, as is demonstrated by the computation results
with fixed penalty parameter τ2 = (1, 10.6863, 8.0711, 10.5561) given in Table 7.

Table 7. Output of the exact multidimensional penalty DCA with
fixed penalty parameter for Example 5.3.

n xn φ(xn)
0 (- 3, 1, 1) 14
1 (-1.816, 3.597, 0) 3.517
2 (-0.632, 0.6985, 0) 2.333
3 (0.552, 0.6038, 0) 1.149
4 (1, 1.8996, 0) 0.1
5 (1, 2, 0) 0

Thus, one can conclude that a modification of Algorithmic Pattern 1 is needed,
which would take into account progress towards feasibility, when a feasible point
cannot be rapidly found. This is especially relevant for equality constrained prob-
lems. One possible way to modify Algorithmic Pattern 1 consists in incorporating
multidimensional penalty updates from this method into the steering exact penalty
DCA from [15]. Another approach can be based on behaviour of the infeasibility
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measure φ(xn) and/or the value of the penalty function Ψτn(xn). The inequalities

φ(xn+1) < (1− η)φ(xn) and/or

Ψτn(xn+1)−Ψτn(xn) ≤ (1− η)
(
Ψτn−1(xn)−Ψτn−1(xn−1)

)
with some small η > 0 might be considered as a reasonable criterion for whether a
penalty update is needed, since under mild assumptions DCA converges with linear
rate [25].

As another way of improving efficiency of Algorithmic Pattern 1, one can consider
replacing the DCA, as a method for minimizing the penalty function Ψτn(·) on each
step of the algorithmic pattern, with boosted [1, 50] or inertial [8] versions of the
DCA. A detailed analysis of such modifications of Algorithmic Pattern 1 is an
interesting open problem for future research.
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finding Clarke stationary points in nonsmooth DC programming, SIAM J. Optim. 28 (2018),
1892–1919.

[21] K. Joki, A. M. Bagirov, N. Karmitsa, and M. M. Mäkelä, A proximal bundle method for
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