

1302 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

The PDP algorithm uses a subgradient direction as its update rule (for the penalty
parameter) and improves the dual values in each iteration.

The classical advantages of the augmented Lagrangian scheme here are that, (i)
even when the original problem is not convex, the dual problem is, and hence it can
be solved by standard techniques from convex analysis, (ii) there is no gap between
primal and dual optimal values, and (iii) solving the dual problem provides a primal
solution.

The fact that the primal–dual approach using the augmented Lagrangian (1.1)
enjoys the advantages listed in (i)–(iii) has been proved in [14]. The interested reader
can also see [21, 22] for an excellent introduction on different types of Lagrangians
and their applications in solving various kinds of problems. We note that a different
type of augmented Lagrangian technique has been used for solving finite-dimensional
problems in [13].

Our first aim is theoretical, and it consists of determining a wide enough family of
problems (P) such that the PDP algorithm is well defined when applied to (P). This
is needed to ensure that properties (i)–(iii) will hold for our scheme. We establish
this fact in Theorem 3.3.

Our second aim is practical, and it is to show that we can apply the PDP al-
gorithm to solve challenging optimal control problems. We achieve this aim by
addressing two optimal control problems that do not have an analytical solution
available. These problems are the control-constrained double integrator and the
free flying robot [2, 3, 28, 29]. While the first one of these problems is convex, the
second one is highly nonconvex.

Projection-type methods can be used to solve some optimal control problems (for
example the one in [4]), as long as they are convex. Our approach via the PDP
algorithm, however, can solve also non-convex instances of these problems. Even
when dealing with convex problems, the projection is usually difficult to compute
unless we project onto simple sets. When compared with the penalty methods
proposed in [17–20], we note that the latter works consider either simple problems
or those with analytical solutions. Moreover, the methods in [17–20] have not been
implemented.
The paper is organized as follows. In Section 2, we give the preliminaries on func-
tional analysis, which help in building our assumptions on Problem (P). Section
3 provides our theoretical framework, where we show that the family of problems
we address verifies the necessary assumptions (see Theorem 3.3). In this section we
recall (i) the properties of the duality framework, as well as (ii) the definition of the
PDP method and its properties, which were established in [14]. In Section 4, we de-
fine a class of optimal control problems in the format of Problem (P), and derive its
conditions of optimality. Also in this section we describe our discretization scheme.
In Sections 5 and 6, we implement the PDP algorithm for solving the constrained
double integrator, and the challenging free-flying robot problem, respectively. In
these sections we also show the performance of our approach and compare it with
a conventional numerical approach. Section 7 contains the conclusion and further
discussion. To simplify the presentation, longer, or more involved, proofs are given
in an Appendix at the end of our paper.

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1303

2. Preliminaries

To determine a general family of problems and show that certain optimal control
problems belong to that family, we need to recall a few results from functional
analysis, which we do in the next subsection.

2.1. Some Functional Analysis Tools. LetX be a reflexive Banach space, X∗ its
topological dual (i.e., the set all continuous linear functionals from X to R), and H a
Hilbert space. We denote by ⟨·, ·⟩ both the duality product in X×X∗ and the scalar
product in H. Unless explicitly indicated, we denote by ∥·∥ the norm of X orH. We
use the notation R+∞ = R∞ := R∪{+∞}. Given a function g : X → R+∞∪{−∞},
the effective domain of g is the set dom g := {x ∈ X : g(x) < +∞}. We say that g is
proper if g(x) > −∞ and dom g ̸= ∅. The set levg(α) := {x ∈ X : g(x) ≤ α} is the
α-level set of g. Given C ⊂ X, the indicator function of C is defined as δC(v) := 0
if v ∈ C and +∞ otherwise. If C = {z} is a singleton, we denote δ{z} =: δz.

The topology induced by the norm (in X or H), is called the strong topology.
The weak topology in X (weak topology in H) is the coarsest topology that makes
all elements of X∗ (all elements of H∗ = H) continuous. We will need the following
definitions concerning the weak topology. For A ⊂ X, we denote by clA the strong
closure of A and by A

w
the weak closure of A. In most of what follows, when a

topological property is mentioned by its own, this means that the property holds
w.r.t. the strong (i.e., the norm) topology. For instance, if we write “A is closed”,
we mean “A is strongly closed”. If a property holds w.r.t. the weak topology, we
will mention the term “weak” (or “weakly”) explicitly. For instance, we may say
weakly closed, (or w-closed), weakly compact (or w-compact), etc. Recall that a
function φ : X → R+∞ is weakly lower semi-continuous (w-lsc) when it is lsc w.r.t.
the weak topology in X. Namely, when epi φ is w-closed. Given {un}, {wn} ⊂ X,
we denote the fact that {un} converges weakly to u as un ⇀ u, and the fact that
{wn} converges strongly to w as wn → w.

We recall next some well-known facts from functional analysis, most of which can
be found in [6]. The reader familiar with functional analysis can skip this section,
with the exception of Lemma 2.10, which, to our knowledge, is new.

Fact 2.1. Let X be a reflexive Banach space, H be a Hilbert space. Assume that
K ⊂ X is nonempty. The following hold.

(a) K ̸= ∅ is weakly closed if and only if the indicator function δK is proper and
w-lsc.

(b) If K ⊂ X is weakly compact, then it is weakly closed.
(c) A convex subset of X is weakly closed if and only if it is closed.

We recall the following definitions.

Definition 2.1 (Weak compactness; sequential compactness; coercive).
Let X be a Banach space, A ⊂ X and φ : X → R+∞.

(a) A is weakly-compact when its weak closure, A
w
, is compact w.r.t the weak

topology.
(b) A ⊂ X is sequentially-compact (respectively, weakly sequentially-compact)

when every {xn} ⊂ A has a subsequence converging strongly (respectively,
weakly) to a limit in A.

1304 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

(c) The function φ : X → R+∞ is coercive when lim∥x∥→∞ φ(x) = +∞.

The equivalence between compactness and sequential-compactness in normed
spaces allows the use of sequences when dealing with compact sets. To deal with
weakly compact sets in terms of sequences, we will use Eberlein–Smulian theo-
rem [6, Problem 10(3), p. 448], recalled next.

Theorem 2.2 (Eberlein–Smulian). Let A ⊂ X. Then A is weakly compact if and
only if it is weakly sequentially-compact.

Next we quote results that connect boundedness, closedness and compactness
both in strong and weak topologies. The next result, a corollary of Bourbaki–
Alaoglu’s theorem, is [6, Corollary 3.22].

Theorem 2.3. Let E be a reflexive Banach space. Let K ⊂ E be a bounded, closed,
and convex subset of E. Then K is weakly compact.

Corollary 2.4. If X is a Banach space, then every weakly compact set is closed
and bounded. Consequently, every weakly convergent sequence must be bounded.

We will also need the following two results involving functions defined on X. The
first one is [6, Corollary 3.9], and is a direct consequence of Fact 2.1(c). The second
result can be found, e.g., in [14, Corollary 2.2].

Theorem 2.5. Assume that φ : X → R+∞ is convex. Then φ is w-lsc if and only
if it is lsc.

Corollary 2.6. Let X be a reflexive Banach space and let φ : X → R+∞ be w-
lsc. Then φ is coercive if and only if all its level sets are weakly compact. In this
situation, all the level sets are closed and bounded.

Definition 2.7. Let 1 ≤ p < ∞, Lp([0, tf];Rm) be the Banach space of Lebesgue
measurable functions z : [0, tf] → Rm, with finite Lp norm, denoted ∥ · ∥Lp, namely,

Lp([0, tf];Rm) =

{
z : [0, tf] → Rm | ∥z∥Lp =

(∫ tf

0
∥z(t)∥pp dt

)1/p

<∞

}
,

where ∥·∥p is the ℓp norm in Rm. W1,2([0, tf];Rm) is the Sobolev space of absolutely
continuous functions, namely,

W1,2([0, tf];Rm) =
{
z ∈ L2([0, tf];Rm) | ż = dz/dt ∈ L2([0, tf];Rm)

}
,

endowed with the norm

∥z∥W1,2 =
(
∥z∥22 + ∥ż∥22

)1/2
.

We will make use of the following result, which is [6, Proposition 3.5(iv)].

Proposition 2.8. Let X be Banach space. Consider two sequences {un} ⊂
X, {wn} ⊂ X∗ and let u ∈ X, w ∈ X∗ be such that un ⇀ u (i.e., {un} converges
weakly to u), and wn → w (i.e., {wn} converges strongly to w). Then

lim
n→∞

⟨un, wn⟩ = ⟨u,w⟩.

The next result follows from Lebesgue’s Dominated Convergence Theorem (see,
e.g., [6, Theorem 4.2]).

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1305

Theorem 2.9. Let fn : [0, T] → R for every n ∈ N verifying that limn→∞ fn(t) ∈ R
for every t ∈ [0, T]. Assume that there exists M > 0 such that |fn(t)| ≤ M for all
t ∈ [0, T]. Define f : [0, T] → R such that f(t) := limn→∞ fn(t) for all t ∈ [0, T].
Then,

(a) f ∈ L1([0, T];R).

(b) For every t ∈ [0, T] we have limn→∞

∫ t

0
fn(s)ds =

∫ t

0
f(s)ds.

To study the ODE systems of sections 5 and 6, we will need the lemma below.
This lemma establishes the sequential weak continuity of a family of real-valued
functions defined in (L2([0, T];R))m.

Lemma 2.10. Let m ∈ N, T > 0 and u := (u1, . . . , um) ∈ (L2([0, T];R))m. Assume
that

(a) φ : R → R is continuous and globally bounded (i.e., exists L1 > 0 s.t.
|φ(t)| ≤ L1 for all t ∈ R),

(b) Fix a, b1, . . . , bm ∈ R, and define π(u) : [0, T] → R as

π(u)(t) := a+
m∑
j=1

bj

∫ t

0

(∫ r

0
uj(s)ds

)
dr.

(c) Fix r, t ∈ [0, T] s.t. r ≤ t and j ∈ {1, . . . ,m}. Define ηφj (·, r), ρ
φ
j (·, t) :

(L2([0, T];R))m → R as

ηφj (u, r) :=

∫ r

0
uj(s)φ(π(u)(s))ds,

ρφj (u, t) :=

∫ t

0

(∫ r

0
uj(s)φ(π(u)(s))ds

)
dr =

∫ t

0
ηφj (u, r)dr

If {uk} ⊂ (L2([0, T];R))m and uk ⇀ u, then we have

(2.1) lim
k→∞

ηφj (uk, r) = ηφj (u, r), ∀ r ∈ [0, T]

and

(2.2) lim
k→∞

ρφj (uk, t) = ρφj (u, t), ∀ t ∈ [0, T]

Namely, the functions ηφj (·, r) and ρφj (·, t) are w-sequentially continuous for every

r, t ∈ [0, T].

Proof. See the proof of Lemma 2.10 in Appendix. □

3. Primal and dual problems

3.1. Theoretical Framework for Duality. Following [15, Section 2.2], we embed
Problem (P) into a family of parametrized problems using a function that coincides
with φ when the parameter is zero. This tool is given next.

Definition 3.1. A dualizing parameterization for (P) is a function f : U ×H → R̄
that verifies f(u, 0) = φ(u) for all u ∈ U .

1306 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

The next definition is [15, Definition 5.1] and will be our basic assumption for
the dualizing parametrization.

Definition 3.2. A function f : U ×H → R̄ is said to be weakly level-compact if for
each z̄ ∈ H and α ∈ R there exist a weakly open neighbourhood V ⊂ H of z̄, and
a weakly compact set B ⊂ U , such that

levz,f (α) := {u ∈ U : f(u, z) ≤ α} ⊂ B for all z ∈ V.

We next list the basic assumptions of the primal–dual framework.

(H0) The objective function φ : U → R∞ is proper and w-lsc.
(H1) The function φ has weakly compact level sets.
(H2) The dualizing parameterization f is proper (i.e., dom f ̸= ∅ and f(u, z) >

−∞, ∀ (u, z) ∈ U ×H), w-lsc and weakly level-compact (see Definition 3.2).

The result below will be used in our application to optimal control problems.

Theorem 3.3 (Problem (P) verifies (H0)–(H2)). Let U be a reflexive Banach space
and let H be a Hilbert space. Consider a function φ : U → R+∞, a set K ⊂ U , and
a function h : U → H. Consider Problem (P), i.e.,

(P) minφ(u) s.t. u ∈ K and h(u) = 0.

Assume that S(P), the solution set of Problem (P), is nonempty and that the fol-
lowing hold.

(a) The objective function φ is proper, coercive and w-lsc.
(b) For every z ∈ H, the set K ∩ h−1(z) is weakly closed, where h−1(z) := {u ∈

U : h(u) = z}.
(c) The dualizing parameterization f : U ×H → R∞ is defined as follows

f(u, z) := φ(u) + δK(u) + δz(h(u)).

Then Problem (P) verifies assumptions (H0)–(H2).

Proof. We note that (H0) holds automatically by the choice of φ in (a). To check
(H1), we need to show that all level sets of φ are weakly compact. By (a) φ is
coercive and w-lsc, so we can apply Corollary 2.6 to conclude that all its level
sets are weakly compact. Thus (H1) holds. We proceed to check (H2). From the
definition of indicator function we have that

f(u, z) = φ(u) + δK∩h−1(z)(u) ≥ φ(u) > −∞.

Moreover, f(u, z) is not identically +∞ because ∅ ̸= S(P) ⊂ K∩h−1(0). Hence f is
proper. We proceed now to show that f is w-lsc. Indeed, it is enough to show that
it is the sum of w-lsc functions. By (a), φ is w-lsc. Assumption (b) and Fact 2.1(a)
imply that δK∩h−1(z) is weakly-lsc, too. Altogether, f is the sum of w-lsc functions
and hence w-lsc. We proceed now to show that f is weakly level compact. Fix
z0 ∈ H and W any weakly open set containing z0. With the notation of Definition
3.2, use assumption (c) to write for any z ∈W

levz,f (α) = {u ∈ U : f(u, z) ≤ α}
= {u ∈ K : φ(u) ≤ α, h(u) = z} ⊂ {u ∈ K : φ(u) ≤ α} ⊂ levφ(α),

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1307

where levφ(α) denotes the level set of φ. Since φ is weakly level compact, levφ(α) =:
B is w-compact. Since B does not depend on z, the expression above yields⋃

z∈W
levz,f (α) ⊂ B,

which implies that f is weakly level compact. Therefore (H2) holds. □

Remark 3.4. Problem (P) as in Theorem 3.3 has been considered in [10, Example
2.1], where h is assumed to have a weakly closed graph. In infinite dimensions,
this assumption may be too restrictive or hard to establish. We replace it here
by the less restrictive assumption (b) which is enough to ensure the w-lsc of the
duality parametrization required for (H2) to hold. In later sections, we will show
that (a)-(c) in Theorem 3.3 hold for our optimal control examples.

We define next the augmented Lagrangian function, and the resulting problem
dual to (P). As mentioned in the introduction, this Lagrangian is a particular case
of that analyzed in [14, Section 3]. Namely, we take A = 0 and σ a suitable norm
in (1.1).

Definition 3.5 (Augmented Lagrangian and associated dual problem). Let U,H
and h be as in Problem (P). Define K0 := K ∩ {u ∈ U : h(u) = 0}, i.e., K0 is the
constraint set for Problem (P). Take ∥ · ∥ a norm in H. Assume that the dualizing
parameterization f is given by

(3.1) f(u, z) := φ(u) + δK(u) + δz(h(u)),

and that it satisfies assumption (H2). We consider the following type of augmented
Lagrangian ℓ : U × R+ → R−∞ for Problem (P):

(3.2) ℓ(u, c) := inf
z∈H

{f(u, z) + c∥z∥} =

 {φ(u) + c∥h(u)∥}, if u ∈ K,

+∞ otherwise.

The resulting dual function q : R+ → R−∞ is

(3.3) q(c) := inf
u∈U

ℓ(u, c) = inf
u∈K

φ(u) + c∥h(u)∥,

where we used (3.1) and (3.2) in the last equality. The dual problem of (P) is given
by

(D) maximize q(c) s.t. c ≥ 0.

Denote byMP := inf
u∈K0

φ(u) and byMD := sup
c≥0

q(c) the optimal values of the primal

and dual problem, respectively. The primal and dual solution sets are denoted by
S(P) and S(D), respectively.

Remark 3.6 (Finite primal value for Problem (P)). Assumption (H0) implies that
φ is proper, so Definition 3.1 yields MP < +∞.

Remark 3.7 (Optimal control examples). In our examples, we will always have
that H, the co-domain of the function h, is a finite dimensional Hilbert space.
Namely, we will always have that H := Rm for some m ∈ N. This will allow us to
take the (finite dimensional) ℓ1 norm as the norm in (3.1) and (3.2).

1308 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

3.2. Properties of the Primal–Dual Setting. We next present some basic prop-
erties of the dual function given in Definition 3.5. The proof of the proposition below
is standard, and can be found in [14].

Proposition 3.8 (Properties of the dual function). Let q : R+ → R−∞ be the dual
function defined in (3.3). The following facts hold.

(i) The dual function q is concave, increasing and weakly upper-semicontinuous
(i.e., −q is w-lsc).

(ii) If c1 ∈ S(D), then c ∈ S(D) for all c ≥ c1.

We state next, adapted to our type of Lagrangian, several properties of the primal
dual scheme. We start with strong duality, proved in [14, Theorem 3.1].

Theorem 3.9 (Strong duality for (P)–(D) framework). Consider the primal–dual
problems (P) and (D). Assume that (H0)–(H2) hold. Suppose that there exists
some c̄ ∈ R+ such that q(c̄) > −∞. Then the zero-duality-gap property holds, i.e.
MP =MD.

Definition 3.10 (Superdifferential of a concave function). Let g : R → R−∞ be a
concave function. The superdifferential of g at c0 ∈ dom(g) := {c ∈ R : g(c) > −∞}
is the set ∂g(c0) defined by

∂g(c0) := {v ∈ R : g(c) ≤ g(c0) + ⟨v, c− c0⟩, ∀c ∈ R}.

Definition 3.11 (Approximations for the primal–dual and Lagrangian). Define the
set

X(c) := {u ∈ U : φ(u) + c∥h(u)∥ = q(c)}.
Namely, X(c) is the set of minimizers of the augmented Lagrangian.

The next proposition will be used to justify the stopping criterion in the PDP
algorithm.

Proposition 3.12 (Search direction and stopping criterion for the PDP algo-
rithm).
Assume that (H0)–(H2) hold for Problem (P). If û ∈ X(ĉ), then the following facts
hold.

(i) ∥h(û)∥ ∈ ∂q(ĉ).
(ii) If h(û) = 0 then û is an optimal primal solution, and ĉ is an optimal dual

solution. Conversely, assume ĉ > 0 and that either û is an optimal primal
solution, or ĉ is an optimal dual solution. Then, we must have h(û) = 0.

Proof. Even though the proof of (i) is standard and can be deduced from [10, Propo-
sition 3.1], we include its proof here for convenience of the reader. To prove (i), use
the definition of q in (3.3) to write, for every c ≥ 0,

q(c) = infu∈K φ(u) + c∥h(u)∥ ≤ φ(û) + c∥h(û)∥

= φ(û) + ĉ∥h(û)∥+ (c− ĉ)∥h(û)∥ = q(û) + (c− ĉ)∥h(û)∥ ,
where we used the fact that û ∈ X(ĉ) and the definition of q in the last equality.
The above expression and Definition 3.10 yield ∥h(û)∥ ∈ ∂q(ĉ), establishing (i).
The first statement in part (ii) has a proof similar to the one in [10, Proposition

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1309

3.1] and hence omitted. So we prove the second statement in (ii). This statement
automatically holds when û is an optimal primal solution because û ∈ S(P) and
therefore it satisfies the equality constraints. We proceed now to prove the statemet
when ĉ is an optimal dual solution. Theorem 3.9 and Remark 3.6 yield

∞ > MP =MD = q(ĉ) = φ(û) + ĉ∥h(û)∥,

where we used the assumption that ĉ is a dual solution in the second equality, and
the fact that û ∈ X(ĉ) in the third one. Assume that h(û) ̸= 0. By Proposition
3.8(ii), for every λ > 0 we have that ĉ + λ ∈ S(D) and hence q(ĉ + λ) = MD. We
can write

∞ > MP =MD = q(ĉ+ λ) = φ(û) + ĉ∥h(û)∥+ λ∥h(û)∥.

whose right-hand side tends to infinity for λ → +∞. This contradiction implies
that h(û) = 0. □

3.3. The Primal–Dual Penalty (PDP) Algorithm. Our Lagrangian is given by
equation (3.2) in Definition 3.5, and it gives rise to a classical penalty method. This
motivates the name primal–dual penalty (PDP) algorithm, described below. We use
in this algorithm the notation of Problem (P) and Definition 3.5. By Remark 3.7,
we always have h(u) = (h1(u), . . . , hm1(u)) ∈ Rm1 for some m1 ∈ N. This allows us
to consider finite dimensional norms for h(u) in the definition of the PDP algorithm.
Namely, we use the ℓ1 and the ℓ∞ norms of h(u). Our dual variable is ck ∈ R+,
while our primal variable is a function uk ∈ (L2([0, tf];R))m2 for some m2 ∈ N.

Algorithm 3.1. Primal–Dual Penalty (PDP) Algorithm

Let α, ε > 0. Choose a sequence {αk} ⊂ (0, α).

Step 0. (Initialization) Choose c0 > 0 and let k := 0.
Step 1. (Solution of Subproblem and Stopping Criterion)
(a) Find uk ∈ argmin

u∈U
ℓ(u, ck).

(b) If ∥h(uk)∥∞ < ε, stop.
Step 2. (Selection of step-size and Update of Dual Variables)
Choose sk > 0 and set s̃k = (αk + 1)sk. Update the penalty param-
eter by

ck+1 := ck + s̃k ∥h(uk)∥1.
Set k := k + 1, go to Step 1.

Remark 3.13. Proposition 3.8(i) states that the dual function is non-increasing.
Moreover, for {ck} generated by the PDP algorithm, strict increase of the sequence
{q(ck)} is established in [10, Theorem 3.1]).

Remark 3.14. By Proposition 3.12(i), the search direction in Step 2 of the PDP
algorithm is a classical subgradient direction for improving q. Proposition 3.12(ii)
justifies the stopping criterion in Step 1(b).

Next we describe two choices for the step-size sk and the convergence results for
each choice.

1310 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

3.4. Algorithm PDP-1. We consider in this section a step-size as in [10, Algo-
rithm 1]. Take two parameters β > η > 0. Let uk be as Step 1(a). Consider the
step-size

(3.4) sk ∈ [ηk, βk],

where ηk := min{η, ∥h(uk)∥2} and βk := max{β, ∥h(uk)∥1+∥h(uk)∥2}, where ∥·∥2 is
the finite dimensional ℓ2 norm. With this choice of sk, we denote the PDP algorithm
as PDP-1.

Remark 3.15. Note that a constant step-size for all iterations is admissible.

The next theorem states the convergence results for PDP-1. The proof of part (a)
considers two possible cases, according to whether the dual sequence {ck} is bounded
or not. The case of an unbounded sequence has a proof similar to [10, Theorem
3.2]. The case of bounded dual sequence is slightly different, and can be found
in [14, Theorem 4.2]. The proof of part (b) follows directly from the fact that the
dual sequence is strictly increasing.

Theorem 3.16 (Convergence of PDP-1). Assume that MP = MD. Consider the
primal sequence {uk} generated by PDP-1. Take the parameter sequence {αk} sat-
isfying αk ≥ ᾱ for all k and some ᾱ > 0. The following hold.

(a) The primal sequence {uk} is bounded, all its weak accumulation points are
primal solutions, and {qk} converges to the optimal value MP .

(b) If PDP-1 generates an infinite sequence {ck}, then it converges if and only
if it is bounded above, and in this case its supremum is a dual solution.

3.5. Algorithm PDP-2. In this section we consider the step-size proposed in [10,
Algorithm 2], which ensures that the PDP algorithm converges in a finite number
of steps. Take β > 0 and a sequence {θk} ⊂ R+ such that

∑
j θj = ∞, and θk ≤ β

for all k. Let uk be as Step 1(a). Consider the step-size

(3.5) sk ∈ [ηk, βk],

where ηk := θk/∥h(uk)∥1 and βk := β/∥h(uk)∥1. With this choice of sk, we denote
the PDP algorithm as PDP-2. The following result from [14, Theorem 4.5] states
the convergence properties of PDP-2.

Theorem 3.17 (Convergence of PDP-2). Assume that MP = MD. Let {uk} and
{ck} be the sequences generated by PDP-2. Suppose that the parameter sequence
αk ≥ ᾱ > 0. Then only one of the following cases occurs:

(a) There exists a k̄ such that PDP-2 stops at iteration k̄. As a consequence uk̄
and ck̄ are optimal primal and optimal dual solutions, respectively. In this
situation {ck} must be bounded.

(b) The dual sequence {ck} is unbounded. In this case, {qk} converges to MP ,
and {uk} is bounded with all its weak accumulation points being primal so-
lutions.

4. A class of optimal control problems

4.1. Problem Formulation. In later sections, we will use the PDP algorithm to
solve the optimal control of the constrained double integrator and of the free-flying

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1311

robot. These problems fall into the class of optimal control problems described
in Problem (P1) below. Let the space L2([0, tf];Rm) be as in Definition 2.7 for
p = 2. Consider also the Sobolev space W1,2([0, tf];Rn) as in the same definition.
We consider the following class of optimal control problems.

(P1)

min
1

2

∫ tf

0
f0(u(t)) dt

subject to ẋ(t) = f(x(t), u(t)),

x(0) = x0 , x(tf) = xf ,

and |ui(t)| ≤ ai, i = 1, . . . ,m,

where the state variable x(t) = (x1(t), . . . , xn(t)) ∈ Rn, x ∈ W1,2([0, tf];Rn), the
control variable u(t) = (u1(t), . . . , um(t)) ∈ Rm, u ∈ L2([0, tf];Rm), ai > 0, for
i = 1, . . . ,m. Let f be linear in u, and f0 : Rm → R and f : Rn × Rm → Rn be C1

in their arguments. We assume that ai is large enough so as to ensure that Problem
(P1) has solutions.

4.2. Optimality Conditions. We now derive the first-order necessary conditions
of optimality for the optimal control Problem (P1) by means of the maximum
principle [26, Theorem 7.2]. The Hamiltonian function H : Rn ×Rm ×Rn ×R → R
for Problem (P1) is defined in the usual way as

(4.1) H(x, u, λ, λ0) := λ0 f0(u) + λT f(x, u),

where λ0 ∈ R and the adjoint (or costate) variable vector λ(t) := (λ1(t), . . . , λn(t)) ∈
Rn. We further note that λ ∈ W1,2([0, tf];Rn). In (4.1), we have dropped the
dependence on t of the variables, for clarity in appearance. Also keeping up with
the tradition we define

H[t] := H(x(t), u(t), λ(t), λ0) .

Next, we assume that the adjoint variable vector satisfies the differential equation

(4.2) λ̇(t) := −Hx[t] ,

where Hx = ∂H/∂x. Suppose that (x, u) ∈ W1,2([0, tf];Rn) × L2([0, tf];Rm) is
an optimal pair for Problem (P1). Then – see [26] – there exist λ0 ≥ 0 and a
continuously differentiable adjoint variable vector λ as defined in (4.2), such that
λ(t) ̸= 0 for all t ∈ [0, tf], and that, for all t ∈ [0, tf],
(4.3)
ui(t) = Argmin

w∈[−ai,ai]
H(x(t), (u1(t), . . . , w, . . . , um(t)), λ(t), λ0) , for i = 1, . . . ,m .

Note that in (4.3), the minimization is carried out with respect to w only, which
replaces ui(t) in the ith position of the u(t) vector. Problem (P1) is said to be
normal when λ0 > 0. When λ0 = 0, the maximum principle does not convey
sufficient information and Problem (P1) and its solution are referred to as abnormal.
In [27, Example 2, pp. 2800–2801] it is shown that if the control system involving
linear state ODEs is controllable then λ0 ̸= 0, i.e., the optimal control problem is
normal. From now on, we assume that Problem (P1) is normal, and set λ0 = 1,
without loss of generality.

1312 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

Let f0(u(t)) :=
(
u21(t) + · · ·+ u2m(t)

)
/2. Incorporating this special form of f0

and the linearity of f in u, (4.3) reduces to

(4.4) ui(t) =

−
n∑

j=1

λj(t)fui(x(t)) , if − ai <

n∑
j=1

λj(t)fui(x(t)) < ai,

ai , if

n∑
j=1

λj(t)fui(x(t)) ≤ −ai,

−ai , if
n∑

j=1

λj(t)fui(x(t)) ≥ ai,

for i = 1, . . . ,m. Due to the linearity of f in u, the uks, k = 1, . . . ,m, do not appear
explicitly in fui := ∂f/∂ui . For this reason, we write fui(x(t)) for fui(x(t), u(t)).
For the case when the ith control variable ui(t) is not constrained, i.e., ai = ∞, the
expression in (4.4) reduces to

ui(t) = −
n∑

j=1

λj(t)fui(x(t)) .

4.3. Direct Discretization and the Settings for Computations. For compu-
tations, we discretize the problem by using the following notation. Suppose that the
optimal control problem has n states and m control variables. We consider discrete
approximations of the functions over the partition 0 = t0 < t1 < . . . < tN = tf such
that

ti+1 = ti +∆t , i = 0, 1, . . . , N ,

∆t := tf/N and N is the number of subdivisions. Let urj be an approximation of
ur(tj), i.e., urj ≈ ur(tj), r = 1, . . . ,m, j = 0, 1, . . . , N − 1; similarly, xpi ≈ xp(ti),
p = 1, . . . , n, i = 0, 1, . . . , N .

We use the optimization modelling language AMPL [23] in coding for solving
our optimal control problems and get the discrete (finite-dimensional) solution.
We employ the optimization software Ipopt [30] (version 3.12.13) for solving the
subproblems in the PDP algorithm, i.e. minimize the augmented Lagrangian in
Step 1(a) of Algorithm 3.1. We also solve the same optimal control problems by
using Ipopt on its own, in order to make comparisons with our PDP algorithm.

The AMPL–Ipopt suite was run on a Dell desktop, with the operating sys-
tem Windows 10 Enterprise (version 20H2), the processor 2.40 GHz Intel Core
i7 and the memory 16 GB 2666 MHz SODIMM. We have used the Ipopt options
max iter=1000, tol=1e-8 and acceptable tol=1e-8.

AMPL can also be paired with other optimization software, e.g., Knitro [16],
SNOPT [25] and TANGO [1,5], in solving the subproblems in the PDP algorithm.

In the next two sections, we will use the PDP algorithm to solve two optimal
control problems and carry out numerical experiments with sk chosen as in (3.4)
and (3.5).

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1313

5. Application to the constrained double integrator

In this section, we use the PDP algorithm to solve the optimal control of the con-
strained double integrator of a car (Problem (P2) below). We proceed to describe
the classical mathematical model, and then we will present a reformulation that fits
the format of Theorem 3.3. Suppose that, at time t, the position of a car modelled
as a point mass travelling on a flat surface is given by y(t). Then its velocity and
acceleration are ẏ(t) = (dy/dt)(t), and ÿ(t) = (d2y/dt2)(t), respectively. Suppose
that the summation of all the external forces applied to the car is u(t). Then by
Newton’s second law of motion ÿ(t) = u(t) (assuming unit mass). Let x1 := y and
x2 := ẏ. We impose a constraint on u that |u(t)| ≤ a. We aim to minimize the
squared L2-norm of the acceleration, with starting position and velocity x1(0) = s0
and x2(0) = v0, and final position and velocity x1(1) = sf and x2(1) = vf , within
one unit of time. This problem can then be mathematically modelled as follows.

(P2)

min

1

2

∫ 1

0
u2(t)dt

subject to ẋ1(t) = x2(t), x1(0) = s0, x1(1) = sf ,

ẋ2(t) = u(t), x2(0) = v0, x2(1) = vf , |u(t)| ≤ a, ∀ t ∈ [0, 1].

Here the position x1 and the velocity x2 are the state variables. Assuming that we
can change u the way we like, it is nothing but the control variable of the problem.
Due to the box constraint on the control variable, an analytical solution for Problem
(P2) is in general not possible.

5.1. Problem (P2) Verifies (H0)–(H2). The box constraints on u can be written
as u ∈ K1, where K1 := {v ∈ L2([0, 1],R) : |v(t)| ≤ a, ∀ t ∈ [0, 1]}. To use
Theorem 3.3, a first step is to show that the ODE system in Problem (P2) can be
equivalently written as an equality constraint of the form h(u) = 0, for a suitable
function h. We do this in the following lemma.

Lemma 5.1 (ODEs as equality constraints). Consider the ODE system

(S1)

{
ẋ1(t) = x2(t) , x1(0) = s0 , x1(1) = sf ,

ẋ2(t) = u(t) , x2(0) = v0 , x2(1) = vf .

Define

(5.1) r1 := v0 + s0 − sf and r2 := v0 − vf .

The system (S1) can be written as h(u) = 0, where h : L2([0, 1];R) → R2 is defined
as

(5.2) h(u) :=

[
h1(u)

h2(u)

]
:=

r1 +

∫ 1

0

[∫ τ

0
u(s)ds

]
dτ

r2 +

∫ 1

0
u(τ)dτ

 .
Proof. Using the ODE constraints we re-write Problem (S1) as follows:

1314 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

(S1′)

{
x1(1)− sf = 0 ,

x2(1)− vf = 0 ,

where xi(1) for i = 1, 2 are defined as follows

(5.3)

x2(t) := v0 +

∫ t

0
u(τ)dτ,

x1(t) := s0 +

∫ t

0
x2(τ)dτ = s0 +

∫ t

0

[
v0 +

∫ τ

0
u(s)ds

]
dτ.

Note that the right hand sides in (5.3) are affine functions of u. Using this definition
and (5.1), it is direct to check that h(u) = 0 if and only if x1(1) = sf and x2(1) =
vf . □

Theorem 5.2 (Problem (P2) verifies (H0)–(H2)). Let h be defined as in (5.2).
Consider for Problem (P2) the dualizing parameterization f : L2([0, 1];R) × R2 →
R∞ defined by

f(u, z) := φ(u) + δz(h(u)) + δK1(u).

where φ(u) :=
1

2

∫ 1

0
u2(t)dt, and K1 = {u ∈ L2[0, 1] : |u(t)| ≤ a, ∀ t ∈ [0, 1]}. Then

assumptions (H0)–(H2) hold for Problem (P1).

Proof. It is clear that φ is proper and coercive. By Theorem 2.5 it is proper, coercive
and w-lsc. This fact, together with the definition of f , imply that assumptions (a)
and (c) from Theorem 3.3 hold. To complete the proof, we need to check that
assumption (b) from Theorem 3.3 holds. Namely, we need to show that the set
K1 ∩ h−1(z) is w-closed. In fact, we will show that this set is w-compact, and this
will provide the desired weak closedness by Fact 2.1(b). Using Theorem 2.2, it is
enough to show that K1∩h−1(z) =

(
K1 ∩ h−1

1 (z1)
)
∩
(
K1 ∩ h−1

2 (z2)
)
is sequentially

weakly compact. Define Γj := K1 ∩ h−1
j (zj) for j = 1, 2. We will show that each

Γj is sequentially w-compact. Fix j ∈ {1, 2}. Take a sequence {uk} ⊂ Γj . Since
Γj ⊂ K1 and K1 is weakly compact, there exists a subsequence {ukl} ⊂ {uk} s.t.
ukl ⇀ u ∈ K1. Using (5.2) and the notation of Lemma 2.10 with T := 1 andm := 1,
we have that

(5.4) h1(u) = r1 + ρφ1
1 (u, 1), h2(u) = r1 + ηφ1

1 (u, 1),

where φ1(s) = 1 for every s ∈ [0, 1]. Because {ukl} ⊂ Γj we have that hj(ukl) = zj .
By Lemma 2.10(c) and (5.4) we deduce that

zj = lim
l→∞

hj(ukl) = hj(u), j = 1, 2.

Hence, u ∈ Γj for j = 1, 2. This shows that both Γ1 and Γ2 are sequentially w-
compact and thus the set K1∩h−1(z) = Γ1∩Γ2 is sequentially weakly compact. By
Theorem 2.2, it is w-compact and therefore w-closed. This completes the proof. □

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1315

5.2. Numerical Solution of Problem (P2). Using Equation (4.2), the adjoint
variables for this problem can simply be written as

λ1(t) = c1 and λ2(t) = −c1t− c2,

for all t ∈ [0, 1]. Here c1 and c2 are real constants. Using (4.4), the optimal control
for this problem is given by

(5.5) u(t) =

−λ2(t), if − a ≤ λ2(t) ≤ a ,

a, if λ2(t) ≤ −a ,
−a, if λ2(t) ≥ a ,

for all t ∈ [0, 1]. We take a = 2.5, s0 = 0, sf = 0, v0 = 1, and vf = 0 in our
numerical implementation. We discretize Problem (P2) over 1000 time partition
points and use the PDP algorithm under both step-size of type 1 as in (3.4) and
step-size of type 2 as in (3.5) to solve it.

The feasibility tolerance ε in Step 1(b) of Algorithm 3.1 is set at 10−6. The
software package Ipopt is employed in solving the sub-problem, namely, in finding
the minimizer of the Lagrangian in each iteration. We assign the parameters for
the step-sizes of types 1 and 2 as follows.

• step-size of type 1: αk = 1, ηk = 0.1 and βk = 1 for all k and sk is taken to
be the midpoint of [ηk, βk].

• step-size of type 2: αk = 1 and θk = 1 for all k, β = 3. Using the definition
of step-size of type 2 that ηk = θk/∥h(uk)∥1 and βk = β/∥h(uk)∥1, we

have sk ∈ [ηk, βk] obtained as sk ∈
[

1

∥h(uk)∥1
,

3

∥h(uk)∥1

]
. Since ck+1 =

ck + (αk + 1)sk∥h(uk)∥1 by the PDP algorithm, combining the range of sk
and αk, we have that

ck+1 − ck = (αk + 1)sk∥h(uk)∥1 ∈ (αk + 1)[1, 3] = [2, 6].

That is to say, the increment of ck+1− ck is a quantity in the range of [2, 6].

In our experiments, PDP-2 uses step-size of type 2 with the parameters above,
and has usually found the solution in four or five iterations. The numerical results
obtained by the PDP algorithm are shown in Figure 1. One should note that
the first-order optimality of the control variable in Figure 1(b) (as the necessary
condition) is certified by the adjoint variable λ2 in Figure 1(c) via the expression
in (5.5). We include the graphs of the dual function and the dual iterates by PDP-1
and PDP-2 in Figure 2.

We plot the function iterates uk in Figure 3, where uk are the minimizers of the
dual function q(ck) (for k = 0, 1, 2, 3, 4).

We use different number of discretization points N to compute u(t) for Problem
(P2) by our PDP algorithm. We plot the solution of u(t) obtained by the PDP
algorithm with N = 10, 20, 100 and ∞ in Figure 4(a) and for comparison, plot the
solution of u(t) by using Ipopt alone in Figure 4(b). When n ≤ 19, Ipopt fails to
find a solution for Problem (P2), while the PDP algorithm gives a solution when
N is as small as 10.

We have also used Ipopt on its own to solve the discretization of Problem (P2)
(not as a part of the PDP algorithm). These two methods achieve both 100% success

1316 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

Figure 1. Problem (P2)—Solutions as obtained by the PDP algorithm.

Figure 2. Problem (P2)—The dual function updates (shown by red
dots on the blue curve representing the graph of the dual function) in
each iteration of the PDP algorithm using step-sizes of type 1 and 2.

rate in finding the solution, and Ipopt alone uses less CPU time than the PDP
algorithm. We note that a much more efficient method using projection techniques
is provided by Bauschke, Burachik and Kaya in [4] for a class of convex optimal
control problems, including Problem (P2). Therefore, neither Ipopt nor the PDP
algorithm should be the method of choice for Problem (P2).

6. Application to the free flying robot problem

The PDP algorithm can also solve non-convex problems, including the challenging
Problem (P3) below, involving the so-called free-flying robot (FFR). Problem (P3)
is highly non-convex and thus cannot be solved by existing projection methods.

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1317

Figure 3. Problem (P2)—The iterations (u0, u1, u2, u3 and u4) of
u(·) under the PDP algorithm with step-size of type 2. The iterate u3
is (indicated in purple but) not labelled for clarity.

Figure 4. Problem (P2)—Solution u(·) obtained by the PDP algo-
rithm with step-size of type 2 and by Ipopt alone, under different number
of discretization points (N = 10, 20 and 100; the solution when N → ∞
is represented in red solid-line curve by the solution obtained with N =
1000).

This warrants implementing our PDP algorithm for solving it and comparing it
with the approach using Ipopt on its own.

6.1. The Mathematical Model for Problem (P3). The mathematical model
for this problem is as follows. The aim is to minimize the fuel consumption of a
robot which is moving at a constant height from an initial to a final equilibrium
position. The robot can be controlled by the thrust of two jets. We use x1 and x2
for the coordinates of the FFR, x4 and x5 for the corresponding velocities, x3 for the
direction of thrust, x6 for the angular velocity, and u1 and u2 for the thrusts of the
two jets. The model was formulated initially in [28] and further studied in [2,3,29].
We use the control constraints as in [2, 3, 29]. Figures 5(a) and 5(b) respectively
show a diagrammatic illustration of the model and the solution trajectory.

1318 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

Figure 5. Configuration and solution trajectory of the free flying robot.

The model, as studied in [2, 3, 29], is as follows.

(P3)

min

∫ 12

0

(
u21(t) + u22(t)

)
dt

s.t. ẋ1(t) = x4(t) ,

ẋ2(t) = x5(t) ,

ẋ3(t) = x6(t) ,

ẋ4(t) = (u1(t) + u2(t)) cosx3(t) ,

ẋ5(t) = (u1(t) + u2(t)) sinx3(t) ,

ẋ6(t) = 0.2 (u1(t)− u2(t)) ,

x(0) = (−10,−10, π/2, 0, 0, 0), x(12) = (0, 0, 0, 0, 0, 0) ,

|u1(t)| ≤ 0.8 , |u2(t)| ≤ 0.4 .

6.2. Formulation of the Free-flying Robot Problem. To be able to apply
the PDP algorithm for solving the FFR problem, we need to formulate (P3) in
the format (P) of Theorem 3.3. With the notation of that theorem, take U :=
L2([0, 1];R)×L2([0, 1];R) and H := R6. The box constraints on u can be expressed
using the set K2 := {u ∈ L2([0, 1];R) × L2([0, 1];R) : |u1(t)| ≤ 0.8, |u2(t)| ≤
0.4, ∀ t ∈ [0, 1]}. As in Section 5, our first step is to show that the ODE system
appearing in the constraints of (P3) can be equivalently reformulated as h(u) = 0
for a suitable function h : U → R6. This fact is established in the next lemma. The
idea, which is elementary albeit laborious, is to integrate the ODE system.

Lemma 6.1 (ODEs as equality constraints). There exists a function h : L2([0, 1];
R)×L2([0, 1];R) → R6 such that the ODE system in (P3) can be written as h(u) = 0.

Proof. See the proof of Lemma 6.1 in Appendix. □
Recall our notation K2 := {(u1, u2) ∈ L2([0, 1];R) × L2([0, 1];R) : |u1(t)| ≤

0.8, |u2(t)| ≤ 0.4, ∀ t ∈ [0, 1]}. To verify Assumption (b) in Theorem 3.3, we need

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1319

to show that K2 ∩ h−1(z) is w-closed, for h as in Lemma 6.1. We establish this in
the next lemma.

Lemma 6.2. Consider the ODE system and the corresponding boundary conditions
given for Problem (P3) and let h : L2([0, 1];R)×L2([0, 1];R) → R6 be as in Lemma
6.1. Then the set K2 ∩ h−1(z) is w-compact and hence w-closed.

Proof. See the proof of Lemma 6.2 in Appendix. □

Corollary 6.3 (Problem (P3) verifies (H0)–(H2)). Let h be as in Lemma 6.1. Con-
sider for Problem (P3) the dualizing parametrization f : L2([0, 1];R)×L2([0, 1];R)×
R6 → R∞ defined by

f(u, z) := φ(u) + δz(h(u)) + δK(u) = φ(u) + δh−1(z)∩K(u).

Then assumptions (H0)–(H2) hold for Problem (P3).

Proof. The verification of assumptions (a) and (c) of Theorem 3.3 for (P3) is iden-
tical to the one in Theorem 5.2. Assumption (b) follows from Lemma 6.2 and the
fact that Γ(0) ⊃ S(P) ̸= ∅ by [3, Section 6.2]. Indeed, the latter paper shows that
there is a unique solution u of (P3). By Theorem 3.3, we conclude that (P3) verifies
(H0)–(H2). □

6.2.1. Optimality Conditions for Problem (P3). We consider the optimality con-
ditions for Problem (P3) as computed in Section 4.2. The Hamiltonian function
H : R6 × R2 × R6 → R for Problem (P3) is

H(x, u, λ) = u21 + u22 + λ1x4 + λ2x5 + λ3x6 + λ4 (u1 + u2) cosx3

+ λ5 (u1 + u2) sinx3 + 0.2λ6 (u1 − u2) ,

where the state variable vector x(t) = (x1(t), . . . , x6(t)) ∈ R6, the control
variable vector u(t) = (u1(t), u2(t)) ∈ R2. The adjoint variable vector λ(t) =
(λ1(t), . . . , λ6(t)) ∈ R6 satisfies, by Equation (4.2),

λ1(t) = c1, λ2(t) = c2, λ4(t) = −c1t+ c4, λ5(t) = −c2t+ c5, λ̇6(t) = λ3(t),

and λ̇3(t) = λ4(t) (u1(t) + u2(t)) sinx3(t)− λ5(t) (u1(t) + u2(t)) cosx3(t),

for all t ∈ [0, 1], where c1, c2, c4 and c5 are real constants. By Equation (4.3), we
obtain the optimal control variables as follows

(6.1) u1(t) =

−ψ1(t) , if − 0.8 ≤ ψ1(t) ≤ 0.8,

0.8 , if ψ1(t) ≤ −0.8,

−0.8 , if ψ1(t) ≥ 0.8,

where the switching function for u1 is given by

ψ1(t) :=
1

2
(λ5(t) cosx3(t) + λ4(t) sinx3(t) + 0.2λ6(t)) ;

(6.2) u2(t) =

−ψ2(t) , if − 0.4 ≤ ψ2(t) ≤ 0.4,

0.4 , if ψ2(t) ≤ −0.4,

−0.4 , if ψ2(t) ≥ 0.4,

1320 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

Figure 6. Problem (P3)—Optimal state and adjoint variables.

where the switching function for u2 is given by

ψ2(t) :=
1

2
(λ5(t) cosx3(t) + λ4(t) sinx3(t)− 0.2λ6(t)) .

6.2.2. Numerical Solution of Problem (P3). We discretize and solve Problem (P3)
numerically as described in Section 4.3. We use the PDP algorithm with the two
choices of step-sizes we have proposed, and we use Ipopt on its own to solve Problem
(P3), running each of the methods 1000 times in order to get reliable statistics. We
take random initial guesses generated uniformly in given intervals, such that

xpi ∈ [−0.4, 0.4] and urj ∈ [−0.4, 0.4],

for p = 1, . . . , 6, r = 1, 2, i = 0, . . . , N , j = 0, . . . , N − 1. The results for x(·)
and λ(·) are shown in Figure 6, while those for ui(·) and their switching functions
ψi(·), i = 1, 2, are displayed in Figure 7. The graphs in Figure 7 play the role
of a certificate verifying the optimality conditions given in (6.1) and (6.2). Recall
that we had already included the trajectory of the free-flying robot earlier in the
x1x2-plane in Figure 5(b).

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1321

Figure 7. Problem (P3)—The optimal control variables and their
switching functions.

In the PDP algorithm with the step-size in (3.4), we have taken

sk = (1 + αk)

[
1

2
min(η, ∥h(uk)∥2) +

1

2
max(β, ∥h(uk)∥1 + ∥h(uk)∥2)

]
,

where αk = 0.4 for all k, η = 0.1, and β = 1, and h(uck) is the constraint function h
at the current iterate uck , for h as given in (A.12) in the proof of Lemma 6.1. In the
PDP algorithm with the step-size in (3.5), we have taken sk = (1 + αk)γk, where

γk ∈
[

θk
∥h(uk)∥1

,
β

∥h(uk)∥1

]
,

and αk = 1, θk = 1 for all k, and β = 2. The resulting dual function value iterates
of the PDP algorithm, superimposed with the numerically computed graph of the
dual function for Problem (P3), are displayed in Figure 8.

In Figure 9, we illustrate the iterations of u(t) using the same step-size of type 2 as
in Figure 8(b). The performance of each approach, with randomly generated initial
guesses, is presented in Table 1. Note that the CPU time in column 5 for Ipopt
alone corresponds to the average CPU time for all runs, successful or unsuccessful.
The CPU time for Ipopt alone in column 8 (last column) corresponds to the average
CPU time for successful runs only.

When compared with the case of using Ipopt on its own, the PDPmethod achieves
100% success rate at all levels of discretization shown in Table 1. Moreover, PDP
has a better performance in terms of CPU time when the number of discretization
points is greater than 2000 and Ipopt is successful. When compared with the inexact
restoration algorithm proposed in [3], the PDP method has a similar success rate
and a better performance in terms of the CPU time, although the codes of either
approach were run on different computers.

We observe that when using Ipopt alone to solve the problem, the success rate
decreases as N increases. This is because in practice, the computation of a solution
becomes harder as the number of optimization variables increases. When we use the
PDP algorithm, the ODE system is not a hard constraint anymore, but instead it is
reflected in the objective function of the minimization step. The fact that the ODE
system is no longer a hard constraint seems to have a beneficial effect in terms
of CPU time. More experimentation, with different types of problems, however,
is needed to determine precisely whether or not this is the reason for the better
performance in terms of CPU of PDP. We use different number of discretization N

1322 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

Figure 8. Problem (P3)—The dual function updates (shown by red
dots on the blue curve representing the graph of the dual function) in
each iteration of Algorithm PDP using step-sizes of type 1 and 2.

Table 1. Problem (P3)—Success rates [%] correct to one significant fig-
ure for the PDP algorithm and Ipopt alone for the free-flying robot.

success rate [%] Ave. CPU time [sec] Ave. CPU time
N Ipopt PDP Ipopt PDP for Ipopt alone

alone sk (3.4) sk (3.5) alone sk (3.4) sk (3.5) (when successful) [sec]
100 80 100 100 0.2 0.2 0.6 0.1

500 70 100 100 2.4 0.9 3.1 0.9

1000 50 100 100 6.0 1.6 5.8 2.2

2000 30 100 100 22.7 3.8 12.2 5.2

5000 20 100 100 108.7 9.8 30.8 17.1

10000 10 100 100 517.6 16.3 62.3 46.4

to compute u for Problem (P3) by our PDP algorithm with the same step-size of
type 2 as in Figure 8(b).

We plot the solution of u with N = 39, 100 and∞ (the case of ∞ is represented by
the solution obtained by N = 1000) in Figure 10. The second coordinate u2 seems to
be more sensitive to the number of discretization points than the first coordinate u1.
Since the curves obtained by the PDP algorithm and those obtained by Ipopt alone
are indistinguishable from each other, we only show in Figure 10 those generated
by the PDP algorithm. In the implementation of the PDP algorithm, N = 38
does not seem to be large enough to observe the true solution pattern with the
correct number of junction points in time and the more-or-less correct locations of
the junctions, while Ipopt alone seems to yield solutions with correct pattern for
N ≤ 38. However, as discussed for Table 1, Ipopt alone fails to solve the problem
over half of the time and uses more average CPU (when successful) than the PDP
algorithm when N ≥ 1000.

7. Conclusion and discussion

Our work is an application of the primal–dual framework and the deflected sub-
gradient algorithm studied in [14] with a numerical implementation to solve optimal
control problems. Hence our framework inherits the theoretical properties of the

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1323

Figure 9. Problem (P3)—The iterations of u labelled 0–4, standing
for ui,j , i = 1, 2 and j = 0, 1, 2, 3, 4, obtained by algorithm PDP-2. In
(a), u1,3 is not labelled for clarity in the appearance.

Figure 10. Problem (P3)—Solution u(·) by algorithm PDP-2 under
different number of discretization points (N = 39, and 100; the solution
when N → ∞ is represented in the red solid-line curve, obtained with
N = 1000).

previous work, such as (i) strong duality (Theorem 3.9), (ii) monotone improvement
of the dual function (Proposition 3.8), and (iii) every accumulation point of the pri-
mal sequence is a solution (for both step-sizes in PDP-1 and PDP-2). Moreover,
PDP-2 converges in a finite number of iterations when the dual sequence is bounded
(Theorem 3.17(a)).

We consider infinite dimensional optimization problems which satisfy the as-
sumptions (H0)–(H2). We have presented here a systematic technique to verify
these assumptions in the framework of very general types of optimization problems
(Theorem 3.3). We show this for problems (P2) and (P3) (see Theorem 5.2 and
Corollary 6.3). Particularly, we have demonstrated how to reformulate the ODE
constraints in Problems (P2) and (P3) as equality constraints so that the assump-
tions (H0)–(H2) can be verified.

Problem (P2) is the constrained optimal control of the double integrator and
Problem (P3) is the more challenging free-flying robot, again constrained. We
illustrate the iterations of the control variables using our PDP algorithm, using
Ipopt in solving its subproblems, for Problem (P2) in Figure 3 and for Problem
(P3) in Figure 9. Compared with using Ipopt alone, our PDP algorithm shows a
better performance in solving the challenging flying robot problem in terms of the
CPU time and in the case of increased number of discretization points (see Table 1).

1324 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

In PDP-1, the step-size sk as in (3.4) gets smaller in each iteration and the incre-
ments in the penalty parameter ck gets smaller accordingly. In numerical practice,
PDP-1 has a much bigger increment in ck in the first one or two iterates. Hence,
PDP-1 can often find the optimal dual solution in just a few iterates. Although
PDP-1 approaches the dual solution very quickly in the first few iterates, it be-
comes sluggish in the following iterates since ck is incremented very slowly.

Algorithm PDP-2 uses the step-size sk as in (3.5). The increase in the penalty
parameter ck is small in the initial iterates, compared to PDP-1. PDP-2 resembles
the penalty method with constant increments in ck. In practice, PDP-2 approaches
the dual optimal solution slowly but steadily. To avoid the slow progress of PDP-1
in later iterations, we would suggest a hybrid strategy, which applies PDP-1 in the
first few iterates and then switches to PDP-2.

Apart from the examples in this paper, our algorithm should be applicable to
more general optimal control problems, for example the more challenging problems
involving mixed state-control constraints or even pure state constraints.

The PDP algorithm could be used as a theoretical tool that provides dual in-
formation on a given problem. When PDP is applied to solve problems where the
analytical solution can be found relatively easily (e.g., the unconstrained double
integrator problem), then the use of the algorithm is likely to reveal new properties
of the problem, especially those arising from duality.

Practically speaking, because we are doing the iterations with discretized func-
tions, there is already a level of inexactness introduced into the subproblem so-
lutions. The numerical experiments show that this kind of inexactness is dealt
with successfully. Other types of inexact versions could be done by extending the
work presented in [12], which deals with finite dimensional problems. The cases
we consider in the present paper are infinite dimensional and hence more challeng-
ing. Theoretical investigation of inexactness in infinite dimensions remains an open
problem and hence the topic of future research.

Appendix Appendix A

Proof of Lemma 2.10

Proof. Assume that {uk} ⊂ (L2([0, T];R))m is such that uk ⇀ u. Then for all

j = 1, . . . ,m we have ujk ⇀ uj (weakly in L2([0, T];R)). For t ∈ [0, T], define
ξt(s) = 0 for s ∈ (t, T] and ξt(s) = 1 for s ∈ [0, t]. Then ξt ∈ L2([0, T];R) and it is
easy to check that ∥ξt∥2 =

√
t. The weak convergence yields

(A.1) lim
k→∞

∫ t

0
ujk(s)ds = lim

k→∞

∫ T

0
ujk(s)ξt(s)ds =

∫ T

0
uj(s)ξt(s)ds =

∫ t

0
uj(s)ds,

where we used the definition of ξt in the first and last equality, and the assumption of

weak convergence in the second one. For each j = 1, . . . ,m, define f jk , f
j : [0, T] → R

as f jk(t) :=
∫ t
0 u

j
k(s)ds and f j(t) :=

∫ t
0 u

j(s)ds. By (A.1),

(A.2) lim
k→∞

f jk(t) = f j(t),

for every t ∈ [0, T] and each j = 1, . . . ,m. We will apply Theorem 2.9 to the

sequence {f jk} for each j = 1, . . . ,m. Since {uk} converges weakly, the set U0 :=

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1325

{uk : k ∈ N} ∪ {u} is weakly compact, and hence bounded by Corollary 2.4.

Therefore, there exists L0 > 0 such that ∥ujk∥2 ≤ L0 for all k ∈ N, j = 1, . . . ,m.

We show next that the sequence {f jk} is bounded over [0, T] for each j = 1, . . . ,m.
Indeed, for every t ∈ [0, T] we can use Cauchy-Schwartz to write

(A.3) |f jk(t)| =
∣∣∣ ∫ t

0
ujk(s)ds

∣∣∣ = |⟨ujk, ξt⟩L2([0,T];R)| ≤ ∥ujk∥2∥ξt∥2 ≤ L0

√
t ≤ L0

√
T ,

where ⟨·, ·⟩L2([0,T];R) denotes the scalar product in L2([0, T];R). This establishes the
desired boundedness. Using now Theorem 2.9 we deduce that

(A.4)

∫ t

0
f j(s)ds = lim

k→∞

∫ t

0
f jk(s)ds,

which by definition of f jk , f
j re-writes as

(A.5)

∫ t

0

∫ s

0
uj(r)drds = lim

k→∞

∫ t

0

∫ s

0
ujk(r)drds,

Using the definition of π(u) and (A.5) we deduce that

lim
k→∞

π(uk)(t) = π(uk)(t),

for every t ∈ [0, T]. Since φ is continuous, we further have

(A.6) lim
k→∞

φ(π(uk)(t)) = φ(π(uk)(t)),

for every t ∈ [0, T]. Consider the functions ωk := φ(π(uk)) and ω := φ(π(u)). By
definition, ωk, ω : [0, T] → R. We claim that ωk, ω ∈ L2([0, T];R). Indeed, the
boundedness assumption on φ gives

∥ωk∥22 =
∫ T

0
|φ(π(uk)(s)|2ds ≤ L2

1 T.

An identical argument shows that ω ∈ L2([0, T];R). Note that this claim implies
that ωk, ω ∈ L2([0, t];R) for every t ∈ [0, T]. Now we claim that ωk → ω strongly
in L2([0, t];R) for every t ∈ [0, T]. Namely, we claim that

(A.7) lim
k→∞

∥ωk − ω∥2L2([0,t];R) = lim
k→∞

∫ t

0
|ωk(s)− ω(s)|2ds = 0,

for every t ∈ [0, T]. Indeed, for s ∈ [0, T] define ∆k(s) := |ωk(s) − ω(s)|2. The
definition of the functions ωk, ω and (A.6) imply that limk→∞∆k(s) = 0 for every
s ∈ [0, T]. Using the boundedness of φ and the definitions, we also have that

∆k(s) = |ωk(s)|2 + |ω(s)|2 + 2|ωk(s)| |ω(s)| ≤ 4L2
1,

for every s ∈ [0, T]. Now we can apply Theorem 2.9(b), (A.6), and the definitions
to deduce that

lim
k→∞

∫ t

0
∆k(s)ds = lim

k→∞

∫ t

0
|ωk(s)− ω(s)|2ds =

∫ t

0
lim
k→∞

∆k(s)ds = 0,

1326 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

for every t ∈ [0, T]. This establishes (A.7). Using the definition of ξt, the above
expression re-arranges as follows.

0 = limk→∞
∫ t
0 |ωk(s)− ω(s)|2ds =

∫ T
0 ξt(s)|ωk(s)− ω(s)|2ds,

=
∫ T
0 (ξt(s))

2|ωk(s)− ω(s)|2ds =
∫ T
0 |ξt(s)ωk(s)− ξt(s)ω(s)|2ds,

showing that the sequence {ξtωk} converges strongly in L2([0, T];R) to ξtω. To
complete the proof, we will use Proposition 2.8, for the space X := L2([0, T];R), the
strongly convergent sequence {ξtωk}, and each of the weakly convergent sequences

{ujk} for j = 1, . . . ,m. This proposition implies that

(A.8)
limk→∞

∫ t
0 ωk(s)u

j
k(s)ds = limk→∞

∫ T
0 ξt(s)ωk(s)u

j
k(s)ds

=
∫ T
0 ξt(s)ω(s)u

j(s)ds =
∫ t
0 ω(s)u

j(s)ds.

the above expression and the definition of ωk, ω imply that (2.1) holds. Finally
(2.2) will follow from applying Theorem 2.9(b) to the sequence {ηφj (uk, ·)}. Indeed,
(A.8) means that limk→∞ ηφj (uk, s) = ηφj (u, s) for every s ∈ [0, T]. We now use an

argument similar to the one in (A.3) to show the boundedness of the sequence over
[0, T]. Indeed, fix t ∈ [0, T].

|ηφj (uk, t)| = |
∫ t
ωk(s)u

j
k(s)ds| = |

∫ T
ξt(s)ωk(s)u

j
k(s)ds|

= |⟨ujk, ξtωk⟩L2([0,T];R)| ≤ ∥ujk∥2∥ξtωk∥2 ≤ L0 L1

√
t ≤ L0L1

√
T ,

Now Theorem 2.9(b) yields

lim
k→∞

∫ t

0
ηφj (uk, s)ds =

∫ t

0
ηφj (u, s)ds,

which is (2.2). The proof is complete. □

Proof of Lemma 6.1

Proof. Fix T := 12. The desired function h will be obtained by repeatedly applying
the Fundamental Theorem of Calculus to each equation of the ODE system in
Problem (P3), starting with the last equation. Consider the last ODE equation in
(P3), together with its boundary conditions, namely

(A.9)

 ẋ6(t) = 0.2 (u1(t)− u2(t)) =: g6(u(t)),

x6(0) = 0, x6(T) = 0,

By Fundamental Theorem of Calculus this system is equivalent to G6(u(T)) = 0,

where G6(u(t)) :=

∫ t

0
g6(u(s))ds. Hence, for every u ∈ L2([0, T];R)× L2([0, T];R)

we define

h6(u) := G6(u(T)) =

∫ T

0
g6(u(s))ds = a1

∫ T

0
u1(s)ds− a2

∫ T

0
u2(s)ds,

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1327

where we used the definition of g6 in the third equality with the notation a1 :=
a2 := 0.2. Thus, h6 : L2([0, T];R) × L2([0, T];R) → R. In particular, we can write
the solution x6(·) of system (A.9) as a function of u. Namely,

(A.10) x6(t) =

∫ t

0
g6(u(s))ds = a1

∫ t

0
u1(s)ds− a2

∫ t

0
u2(s)ds.

Since x6 is a function of u, a similar procedure can be used for the third equation
in (P3) and its boundary conditions. Indeed, using (A.10)

(A.11)

the system

{
ẋ3(t) = x6(t) =

∫ t
0 g6(u(s))ds,

x3(0) = π/2, x3(T) = 0,

}
, is equivalent to G3(u(T)) = 0,

where G3(u(t)) := π/2 +

∫ t

0

∫ r

0
g6(u(s))dsdr and g6 is defined in the previous

system. We can thus write, for every u ∈ L2([0, T];R)× L2([0, T];R)

h3(u) := G3(u(T)) = π/2 +

∫ T

0

∫ r

0
g6(u(s))ds dr

= π/2 + a1

∫ T

0

∫ r

0
u1(s)ds dr − a2

∫ T

0

∫ r

0
u2(s)ds dr.

Hence, h3 : L2([0, T];R) × L2([0, T];R) → R. We proceed now to define the re-
maining hi’s. As a consequence of our last construction, we have that we can write
the solution x3(·) of system (A.11) as a function of u. Namely, x3(t) = G3(u(t)).
Therefore, we have the following equivalence

ẋ5(t) = (u1(t) + u2(t)) sinx3(t)

= (u1(t) + u2(t)) sinG3(u(t)) =: g5(u(t)),

x5(0) = 0, x5(T) = 0,

 , if and only if G5(u(T)) = 0,

where G5(u(t)) :=

∫ t

0
g5(u(s))ds. As above, use the definition of g5 to define

h5(u) := G5(u(T)) =

∫ T

0
g5(u(s))ds

=

∫ T

0
u1(s) sinG3(u(s))ds+

∫ T

0
u2(s) sinG3(u(s))ds.

Using again the fact that x3(t) = G3(u(t)), write
ẋ4(t) = (u1(t) + u2(t)) cosx3(t)

= (u1(t) + u2(t)) cosG3(u(t)) =: g4(u(t)),

x4(0) = 0, x4(T) = 0,

 , is equivalent to G4(u(T)) = 0,

1328 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

where G4(u(t)) :=

∫ t

0
g4(u(s))ds. So we define

h4(u) := G4(u(T)) :=

∫ T

0
g4(u(s))ds =

∫ T

0
(u1(t) + u2(t)) cosG3(u(t))dt.

Again, note that the system
ẋ2(t) = x5(t) =

∫ t

0
g5(u(s))ds =: g2(u(t)),

x2(0) = −10, x2(T) = 0,

 , is equivalent to G2(u(T)) = 0,

where G2(u(t)) := −10 +

∫ t

0

∫ r

0
g5(u(s))dsdr. So we define

h2(u) := G2(u(T)) := −10 +

∫ T

0
g2(u(s))ds.

Finally, we can write
ẋ1(t) = x4(t) =

∫ t

0
g4(u(s))ds =: g1(u(t)),

x1(0) = −10, x1(T) = 0,

 , is equivalent to G1(u(T)) = 0,

where G1(u(t)) := −10 +

∫ t

0

∫ r

0
g4(u(s))dsdr. So we define

h1(u) := −10+

∫ T

0
g1(u(s))ds. Altogether, the ODE system in (P3) can be rewrit-

ten in terms of u as

(A.12) h(u) = (G1(u(T)), . . . , G6(u(T))) = (h1(u), . . . , h6(u)) = 0 ∈ R6.

□
Proof of Lemma 6.2

Proof. The w-closedness will follow from the w-compactness and Fact 2.1(b). We
proceed to establish the w-compactness. For h as in Lemma 6.1, write

Γ(z) := {u ∈ K2 : h(u) = z} = h−1(z) ∩K2 =
6⋂

j=1

[
h−1
j (zj) ∩K2

]
.

Call Γj := h−1
j (zj)∩K2 for j = 1, . . . , 6. We will show that each Γj is weakly compact

for j = 1, . . . , 6. Indeed, with the notation of Lemma 2.10, and the definition of hj
given in Lemma 6.1, we have that
(A.13)
h1(u) = −10 + ρφc

1 (u, T) + ρφc
2 (u, T), h2(u) = −10 + ρφs

1 (u, T) + ρφs
2 (u, T),

h3(u) = π/2 + ρφ1
1 (u, T)− ρφ1

2 (u, T), h4(u) = ηφc
1 (u, T) + ηφc

2 (u, T),

h5(u) = ηφs
1 (u, T) + ηφs

2 (u, T), h6(u) = 0.2 (ηφ1
1 (u, T)− ηφ1

2 (u, T)),

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1329

where φc := cos(·), φs := sin(·) and φ1(r) = 1 for every r ∈ [0, T]. Fix j ∈
{1, . . . ,m}. By Theorem 2.2, Γj is weakly compact if and only if it is sequentially
weakly compact. Namely, if and only if, for every sequence {uk} ⊂ Γj , there exists
a subsequence {ukl} ⊂ {uk} s.t. ukl ⇀ u ∈ Γj . Take now any sequence {uk} ⊂ Γj .
Since Γj ⊂ K2 and K2 is weakly compact, there exists a subsequence {ukl} ⊂ {uk}
s.t. ukl ⇀ u ∈ K2. Because {ukl} ⊂ Γj we have that hj(ukl) = zj . By (2.1) and
(2.2) in Lemma 2.10 we deduce from (A.13) that

zj = lim
l→∞

hj(ukl) = hj(u),

for j = 1, . . . , 6. Hence, u ∈ Γj as wanted and Γj is weakly compact for all j =
1, . . . ,m. Therefore Γ(z) is w-compact and hence w-closed. □

Acknowledgments

The authors offer their warm thanks to the Editor for their efficient handling
of the paper. They are also indebted to an anonymous reviewer whose comments
improved the manuscript. Xuemei Liu was supported by an Australian Government
Research Training Program Scholarship.

References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, On augmented Lagrangian
methods with general lower-level constraints, SIAM J. Optim. 18 (2007), 1286–1309.

[2] N. Banihashemi and C. Y. Kaya, Inexact restoration for Euler discretization of box–constrained
optimal control problems, J. Optim. Theory Appl. 156 (2013), 726–760.

[3] N. Banihashemi and C. Y. Kaya, Inexact Restoration and adaptive mesh refinement for optimal
control, J. Indust. Man. Optim. 10 (2014), 521–542.

[4] H. H. Bauschke, R. S. Burachik and C. Y. Kaya, Constraint splitting and projection methods
for optimal control of double integrator, in: Splitting Algorithms, Modern Operator Theory,
and Applications, Springer, 2019, pp. 45–68.

[5] E. G. Birgin and J. M. Mart́ınez, Practical Augmented Lagrangian Methods for Constrained
Optimization, SIAM Publications, 2014.

[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer,
Berlin, 2011.

[7] R. S. Burachik, W. P. Freire and C. Y. Kaya, Interior epigraph directions method for nonsmooth
and nonconvex optimization via generalized augmented Lagrangian duality, J. Global Optim.
60 (2014), 501–529.

[8] R. S. Burachik, R. N. Gasimov, N. A. Ismayilova and C. Y. Kaya, On a modified subgradient
algorithm for dual problems via sharp augmented Lagrangian, J. Global Optim. 34 (2006),
55–78.

[9] R. S. Burachik, A. N. Iusem and J. G. Melo, A primal dual modified subgradient algorithm
with sharp Lagrangian, J. Global Optim. 46 (2010), 55–78.

[10] R. S. Burachik, A. N. Iusem and J. G. Melo, An inexact modified subgradient algorithm for
primal–dual problems via Augmented Lagrangians, J. Optim. Theory Appl. 157 (2013), 108–
131.

[11] R. S. Burachik and C. Y. Kaya, A deflected subgradient method using a general augmented La-
grangian duality with implications on penalty methods, in: Variational Analysis and General-
ized Differentiation in Optimization and Control, Springer Optimization and Its Applications,
R.S. Burachik, J. C. Yao (eds.), vol. 47, Springer, New York, 2010, pp. 109–132.

[12] R. S. Burachik, C. Y. Kaya and M. Mammadov, An inexact modified subgradient algorithm
for nonconvex optimization, Comput. Optim. Appl. 45 (2010), 1–24.

1330 R. S. BURACHIK, C. Y. KAYA, AND X. LIU

[13] R. S. Burachik, C. Y. Kaya and C. J. Price, A primal–dual penalty method via rounded
weighted-ℓ1 Lagrangian duality, Optimization 71 (2022), 3981–4017.

[14] R. S. Burachik and X. Liu, An inexact deflected subgradient algorithm in infinite dimensional
spaces, arXiv, https://arxiv.org/abs/2302.02072, 2023.

[15] R. S. Burachik and A. M. Rubinov, Abstract convexity and augmented Lagrangians, SIAM J.
Optim. 18 (2007), 413–436.

[16] R. H. Byrd, J. Nocedal and R. A. Waltz, KNITRO: An integrated package for nonlinear
optimization, in: Large-Scale Nonlinear Optimization, G. di Pillo and M. Roma (ed.),Springer,
2006, pp. 35–59.

[17] V. F. Demyanov, F. Giannessi and V. V. Karelin, Optimal control problems via exact penalty
functions, J. Glob. Optim. 12 (1998), 215–223.

[18] V. F. Demyanov, F. Giannessi and V. Karelin, On the penalization approach to optimal control
problems, IFAC Proc. 33 (2000), 71–74.

[19] V. F. Demyanov, F. Giannessi and V. V. Karelin, Optimal control problems and penalization,
in: Nonlinear Optimization and Related Topics, G. D. Pillo and F. Giannessi (eds), Springer,
Boston, 2000. pp. 67–78.

[20] V. F. Demyanov and G. S. Tamasyan, Exact penalty functions in isoperimetric problems,
Optimization 60 (2011), 153–177.

[21] M. V. Dolgopolik, Augmented Lagrangian functions for cone constrained optimization: the
existence of global saddle points and exact penalty property, J. Glob. Optim. 71 (2018), 237–
296.

[22] M. V. Dolgopolik, A unified approach to the global exactness of penalty and augmented La-
grangian functions I: parametric exactness, J. Optim. Theory Appl. 176 (2018), 728–744.

[23] R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Second Edition. Brooks/Cole Publishing Company / Cengage Learning, 2003.

[24] R. N. Gasimov, Augmented Lagrangian duality and nondifferentiable, optimization methods in
nonconvex programming, J. Global Optim. 24 (2002), 187–203.

[25] P. E. Gill, W. Murray and M. A. Saunders, SNOPT: an SQP algorithm for large-scale con-
strained optimization, SIAM Rev. 47 (2005), 99–131.

[26] M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, New
York, 1966.

[27] C. Y. Kaya and J. L. Noakes, Leapfrog for optimal control, SIAM J. Numer. Anal. 46 (2008),
2795–2817.

[28] Y. Sakawa, Trajectory planning of a free-flying robot by using the optimal control, Optim.
Control Appl. Methods 20 (1999), 235–248.

[29] G. Vossen and H. Maurer, On L1-minimization in optimal control and applications to robotics,
Optim. Control Appl. Methods 27 (2006), 301–321.

[30] A. Wächter and L. T. Biegler, On the implementation of a primal–dual interior point filter
line search algorithm for large-scale nonlinear programming, Math. Progr. 106 (2006), 25–57.

Manuscript received April 21 2023

revised September 15 2023

A PRIMAL–DUAL ALGORITHM FOR OPTIMAL CONTROL 1331

R. S. Burachik
Mathematics, UniSA STEM, University of South Australia, Mawson Lakes, S.A. 5095, Australia

E-mail address : regina.burachik@unisa.edu.au

C. Y. Kaya
Mathematics, UniSA STEM, University of South Australia, Mawson Lakes, S.A. 5095, Australia

E-mail address : yalcin.kaya@unisa.edu.au

X. Liu
Mathematics, UniSA STEM, University of South Australia, Mawson Lakes, S.A. 5095, Australia

E-mail address : xuemei.liu@mymail.unisa.edu.au

