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ill-posed problem for tensor variational inequalities, namely when the uniqueness of
solution is not guaranteed, have been analyzed in [4]. In that paper a sequence of
solutions to regularized tensor variational inequalities is defined and its convergence
to a solution to the ill-posed inequality with minimal norm is proved. In [6] and [5]
some numerical methods to compute solutions to tensor variational inequalities are
presented and the convergence analysis is performed. Finally, in [1] inverse tensor
variational inequalities are introduced and some well-posedness characterizations
are obtained. Such inverse inequalities are useful to study the policymarker’s point
of view of the general oligopolistic market equilibrium problem. In the model taxes
and incentives are imposed by the policymaker in order to regularize commodity
exportations.

Among the many applications of tensor variational inequalities we find the model
of a general oligopolistic market equilibrium problem which is the problem of finding
a trade equilibrium in a supply-demand market between a finite number of spatially
separated firms who produce several commodities and ship such commodities to
some demand markets. Different and similar generalizations of this model and
Nash equilibrium based model can be found in [3], [12], [11], [7] and [8], [9].

Here we are interested on the study of a general supply chain network game the-
ory model with wage-response productivity since it was observed that recently some
international companies are raising wages to attract workers and improves the pro-
ductivity. This is confirmed by numerous statistical analysis in which raising wages
may enhance labor productivity, including that in manufacturing (Karp [10]). Pre-
cisely, in our model, we investigate on the impacts of wage-responsive productivity
of labor in supply chain networks on product consumer prices and profits of com-
peting firms which produce several commodities and share parts of the supply chain
network. The crucial point is to define for each path of the supply chain network
a flow conservation equation following the formulation of the traffic equilibrium
problem (see for instance [2]). Making use of the game theory, we present the
equilibrium condition and express it as a tensor variational inequality. In [11], the
author, for the first time incorporates the labor in supply chain networks using the
game theory. She considers three different sets of constraints on labor bounds on
supply chain network links; a bound on labor across a tier of supply chain links
corresponding to production, transportation, etc., or a bound on labor availability
in the supply chain network economy. Then, the same author in [12] improves the
model assuming that each link productivity factor is an increasing function of the
wage on the link (and not fixed) and the amount of labor available on each link is
fixed. Moreover an upper bound on the wage on each link is given. In this paper,
starting from this improvement, we want to include in the model that each firm
produces several commodities and shares parts of the supply chain network with
the other firms. Indeed it happens that companies from a specific sector produce
not one but several products. Moreover some companies can decide to have common
storage sites or distributors. Examples can be found in different industrial sectors:
modern fashion factories share same distribution network or firms that sell their
product online can share the same distributor/platform.

The paper is organized as follows. In Section 2, we present the setting in which
our results are obtained. In particular we give the definition of the tensor Hibert
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space and some preliminary results very useful in the sequel. In Section 2, we prove
the main results regarding the properties of the solution set of tensor variational
inequalities with pseudo-monotone tensor fields. Precisely we deduce, under which
assumptions, the existence of a solution is guaranteed. Section 4 deals with a general
supply chain network game theory model with wage-response productivity and its
tensor variational formulation. In Section 5 we illustrate the proposed model on an
example and we compute the solution to the governing tensor variational inequality.

2. Preliminaries and notations

Let N ≥ 1 and m1,m2, . . . ,mN be positive integers. A N -order (m1, . . . ,mN )-
dimensional real tensor X is a multiple array in Rm1×m2×···×mN which elements
xi1,...,im ∈ R, for any ik = 1, . . . ,mk and k = 1, . . . , N . We denote by R[m1,...,mN ]

the set of N -order (m1, . . . ,mN )-dimensional real tensors. If m1 = · · · = mn = m,
then X is said to be an N−order m−dimensional real tensor and has mN entries.
Let us indicate the set of all the N -orderm-dimensional tensors with R[N,m]. Tensors
are denoted by an italic capital letter X ,Y, . . . . We remark that matrices, vectors
and scalars are tensors of order two, one and zero, respectively.

We introduce the product between tensors ⟨·, ·⟩ as follows

⟨X ,Y⟩ =
m∑

i1=1

· · ·
m∑

iN=1

xi1,...,iN yi1,...,iN , ∀X ,Y ∈ R[N,m],

and observe that (R[N,m], ⟨·, ·⟩) is a Hilbert space. Now we introduce the tensor
variational inequality problem.

Definition 2.1. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a tensor mapping. The tensor variational inequality is the problem of
finding X ∈ K such that:

(2.1) ⟨F (X ),Y − X⟩ ≥ 0, ∀Y ∈ K.

The solution set of (2.1) is denoted by Sol(K,F ). Let us introduce the maps G
and H as follows

G(X ) = X −ΠK(X − F (X )), ∀X ∈ K,

and

H(X ) = F (ΠK(X )) + X −ΠK(X ), ∀X ∈ R[N,m],

where ΠK is the projector operator into K. In the vectorial case, the maps G and
H are known as the natural map and normal map of the pair (K,F ), respectively.

We recall the following result which gives an equivalent nonsmooth equation
formulation of the problem (2.1) (see [5]).

Proposition 2.2. Let K be a nonempty closed convex subset of R[N,m] and F :
K → R[N,m] be a tensor mapping. It results that:

X ∈ Sol(K,F ) ⇔ G(X ) = 0.

From Proposition 2.2 , we can derive an alternative nonsmooth equation formu-
lation of tensor variational inequalities.



1286 A. BARBAGALLO AND S. GUARINO LO BIANCO

Proposition 2.3. Let K be a nonempty closed convex subset of R[N,m] and F :
K → R[N,m] be a tensor mapping. A tensor X is a solution to (2.1) if and only if
there exists a tensor Z such that X = ΠK(Z) and H(Z) = 0.

Proof. Let us suppose that X ∈ Sol(K,F ). Hence X = ΠK(X − F (X )) by Propo-
sition 2.2. Let us consider Z = X − F (X ). It is easy to remark X = ΠK(Z) and
H(Z) = 0.

Conversely let us assume that X = ΠK(Z) and H(Z) = 0, then

Z = X − F (X ) and X = ΠK(X − F (X )).

Making use of Proposition 2.2 we deduce that X is a solution to (2.1). □
Existence and uniqueness results for tensor variational inequalities were first

proved in [3] and [4]. For the sake of completeness we recall them here.

Theorem 2.4. Let K be a nonempty compact convex subset of R[N,m] and F :
K → R[N,m] be a continuous tensor mapping. Then the tensor variational inequality
problem (2.1) admits at least one solution.

Theorem 2.5. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a continuous tensor mapping satisfying the coercivity condition

lim
∥X∥→+∞

⟨F (X )− F (X0),X − X0⟩
∥X − X0∥

= +∞,

for some X0 ∈ K. Then the tensor variational inequality (2.1) admits a solution.

If the set K is unbounded, existence results can be proved adding monotonicity
assumption on the function F .

Definition 2.6. Let K be a subset of R[N,m]. A tensor mapping F : K → R[N,m]

is said to be

• monotone on K if, for every X ,Y ∈ R[N,m],

⟨F (X )− F (Y),X − Y⟩ ≥ 0;

• strictly monotone on K if, for every X ,Y ∈ R[N,m], with X ̸= Y,

⟨F (X )− F (Y),X − Y⟩ > 0;

• strongly monotone on K if, for every X ,Y ∈ R[N,m], there exists ν > 0 such
that

⟨F (X )− F (Y),X − Y⟩ ≥ ν∥X − Y∥2.
• ξ-monotone on K for some ξ > 1 if, for every X ,Y ∈ R[N,m], there exists
ν > 0 such that

(2.2) ⟨F (X )− F (Y),X − Y⟩ ≥ ν∥X − Y∥ξ.

The following result is valid (see [4]).

Theorem 2.7. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a tensor mapping. The following statements hold:

a) if F is continuous and monotone, then Sol(F,K) is nonempty closed and
convex;
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b) if F is strictly monotone and there exists a solution to (2.1), then it is
unique;

c) if F is continuous and strongly monotone, then there exists a unique solution
to (2.1).

In the sequel, we establish the existence results for tensor variational inequalities
under conditions based on the degree-theoretic approach. The Brouwer degree of
a function is a topological concept that allows us to claim the existence of zeros of
the function in a specified open bounded set (see [13]). It is natural to extend this
concept to maps on the tensor space.

We establish a new existence result.

Theorem 2.8. Let K be a nonempty closed convex subset of R[N,m], D be a subset
of K and F : D → R[N,m] be a continuous tensor mapping on the open set D. The
following statements hold:

(a) if there exists a bounded open set U satisfying U ⊆ D and such that deg(G, U)
is well defined and nonzero, then (2.1) has a solution in U ;

(b) if there exists a bounded open set U ′ such that deg(H, U ′) is well defined and
nonzero, then (2.1) has a solution X such that X − F (X ) ∈ U ′.

Proof. Both statements follow immediately from the property of the degree. Indeed,
if deg(G, U) is well defined and nonzero, then G has a zero in U ; but such a
zero is also a solution to (2.1) by using Proposition 2.2. For what concerns the
statement (b), H has a zero in U ′ which we denote by Z. By Proposition 2.2,
X = Π(Z) ∈ Sol(K,F ). Since 0 = H(Z) = F (X ) + Z − X , it follows that
X − F (X ) ∈ U ′ as claimed. □

We present a natural generalization of the classic theorem in topology known as
the Tietze-Urysohn Extension Theorem.

Lemma 2.9. Let K be a nonempty closed subset of R[N,m] and F : K → R[N,m] be a
continuous tensor mapping. Then there exists a continuous extension F : R[N,m] →
R[N,m] such that F (X ) = F (X ), for all X ∈ K.

Let us fix K a closed subset of R[N,m] and F : K → R[N,m] a continuous tensor
mapping. Let us remark that if F : R[N,m] → R[N,m] denotes a continuous extension
of F as stipulated by Lemma 2.9, then Sol(K,F ) = Sol(K,F ). Based on this
observation, we next give a very wide sufficient condition under which (2.1) has a
solution.

Now we prove the following proposition.

Proposition 2.10. Let K be a nonempty closed convex subset of R[N,m] and F :
K → R[N,m] be a continuous tensor mapping. Let us consider the following state-
ments:

(a) there exists a vector Xref ∈ K such that the set

L< = {X ∈ K : ⟨F (X ),X − Xref ⟩ < 0}
is bounded (possibly empty);

(b) there exist a bounded open set Ω and a tensor Xref ∈ K ∩ Ω such that

(2.3) ⟨F (X ),X − Xref ⟩ ≥ 0, ∀X ∈ K ∩ ∂Ω;
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(c) (2.1) has a solution.

It results that (a) ⇒ (b) ⇒ (c). Moreover, if the set

L≤ = {X ∈ K : ⟨F (X ),X − Xref ⟩ ≤ 0},
which is nonempty and larger than L<, is bounded then Sol(K,F ) is nonempty and
compact.

Proof. Let us suppose that the statement (a) holds. Let Ω be a bounded open set
containing {Xref} ∪ L<. Since Ω is open and contains L<, we have L< ∩ ∂Ω = ∅.
As a result (2.3) holds and (b) follows.

Assume (b) holds. Let F : R[N,m] → R[N,m] be the continuous extension of F as
in Lemma 2.9. Since F and F are equal on K, it follows

⟨F (X ),X − Xref ⟩ ≥ 0, ∀X ∈ K ∩ ∂Ω.

For simplicity, we drop the bar on F and assume that F is a continuous mapping
defined on the entire tensor space R[N,m]. In order to prove that Sol(K,F ) is
nonempty, we proceed by contradiction. Let us assume that the solution set is
empty. Since the zeros (if any) of G coincide with the solutions to (2.1) and the
latter problem has no solutions by assumption, we have G−1(0) ∩ ∂Ω = ∅. As
a consequence, deg(G,Ω) is well defined. We claim that this degree is nonzero.
Consider the homotopy:

G(X , t) = X −ΠK(t(X − F (X )) + (1− t)Xref ), ∀(X , t) ∈ Ω× [0, 1].

We deduce G(X , 0) = X − Xref ; since Xref ∈ Ω, it results that deg(G(·, 0),Ω) is
well defined and equal to one. Furthermore, G(X , 1) = G(X ). We now show that
if G(X , t) = 0, for some (X , t) ∈ Ω × (0, 1), then X /∈ ∂Ω. Assume G(X, t) = 0
for some 0 < t < 1. Without loss of generality, we may assume X ̸= Xref . Since
G(X , t) = 0, by the definition of G, we have X ∈ K and

⟨X − t(X − F (X ))− (1− t)Xref ,Y − X⟩ ≥ 0, ∀Y ∈ K.

In particular, for Y = Xref , we get

⟨tF (X ) + (1− t)(X − Xref ),Xref −X⟩ ≥ 0,

which implies

⟨F (X ),Xref −X⟩ ≥ 1− t

t
∥X − Xref∥2 > 0,

since t ∈ (0, 1) and X ̸= Xref . Thus X does not belong to ∂Ω. Consequently, by
the homotopy invariance property of the degree, we deduce that

deg(G,Ω) = deg(G(·, 1),Ω) = deg(G(·, 0),Ω) = 1.

Taking into account Theorem 2.8, we have that Sol(K,F ) is nonempty. Conse-
quently we obtain a contradiction. Hence we have shown that (b) ⇒ (c). If the
set L≤ is bounded, then L< is also bounded; hence Sol(K,F ) is nonempty. More-
over, observing that Sol(K,F ) is a subset of L≤, we deduce the compactness of
Sol(K,F ). □

Proposition 2.10 has some special cases. Let us start with the first fundamental
consequence which improves Theorem 2.4.
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Corollary 2.11. Let K be a nonempty compact convex subset of R[N,m] and F :
K → R[N,m] be a continuous tensor mapping. Then Sol(K,F ) is nonempty and
compact.

Proof. The set L≤ is trivially compact for every choice of Xref ∈ K. □

The next result is another consequence of Proposition 2.10, which holds for an
unbounded set K.

Corollary 2.12. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a continuous tensor mapping. If there exists a tensor Xref ∈ K such that

⟨F (X ),X − Xref ⟩ ≥ 0, ∀X ∈ K,

then (2.1) has a solution.

Proof. The last assumption trivially implies that the set L< is empty. □

We are able to obtain the following result.

Theorem 2.13. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a tensor mapping. The following statements hold:

(a) if F is continuous and ξ-monotone on K for some ξ > 1, then (2.1) has an
unique solution X ∗;

(b) if F is defined, Lipschitz continuous, and ξ-monotone on a set Ω ⊇ K for
some ξ > 1, then there exists a constant ν ′ > 0 such that for every tensor
X ∈ Ω,

∥X − X ∗∥ ≤ ν ′∥G(X )∥
1

ξ−1 ,

where X ∗ is the unique solution to (2.1).

Proof. If F is continuous and ξ-monotone on K for some ξ > 1, the existence of a
solution to (2.1) follows by using Proposition 2.10 and the observation noted before
the statement of the proposition; the uniqueness of the solution follows from the
statement (b) of Theorem 2.7. Thus the statement (a) is achieved.

In order to establish (b), let ν > 0 be such that (2.2) holds. For a given tensor
X ∈ Ω, we set V = G(X ). We have

X − V = ΠK(X − F (X )).

By the tensor variational characterization of the projection, it results

⟨F (X )− V ,Y − X + V⟩ ≥ 0, ∀ Y ∈ K.

In particular, set Y = X ∗, we obtain

⟨F (X )− V ,X ∗ −X + V⟩ ≥ 0.

Since X ∗ ∈ Sol(K,F ) and X − V ∈ K, it follows

⟨F (X ∗),X − V − X ∗⟩ ≥ 0.

Adding the two inequalities and rearranging terms, we deduce

⟨F (X )− F (X ∗),X − X ∗⟩ ≤ ⟨F (X )− F (X ∗),V⟩.
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By the ξ-monotonicity of F on Ω, the left-hand side is not smaller than ν∥X −X ∗∥ξ
while the right-hand side is not greater than L∥V∥∥X − X ∗∥, where L > 0 is a
Lipschitz constant of F on Ω. Consequently, we get

∥X − X ∗∥ ≤ (ν−1L)
1

ξ−1 ∥V∥
1

ξ−1 .

Hence the statement (b) holds, where ν ′ = (ν−1L)
1

ξ−1 . □

3. Existence results for pseudo-monotone tensor variational
inequalities

We investigate on the existence of solutions for pseudo-monotone tensor varia-
tional inequalities. To this aim we present some definitions.

Definition 3.1. Let K be a nonempty subset of R[N,m]. A tensor mapping F :
K → R[N,m] is said to be

(a) pseudo-monotone on K if, for all X ,Y ∈ K,

⟨F (Y),X − Y⟩ ≥ 0 =⇒ ⟨F (X ),X − Y⟩ ≥ 0;

(b) strictly pseudo-monotone on K if, for all X ,Y ∈ K, with X ̸= Y,

⟨F (Y),X − Y⟩ ≥ 0 =⇒ ⟨F (X ),X − Y⟩ > 0;

(b) strongly pseudo-monotone on K if there exists a constant ν > 0 such that,
for all X ,Y ∈ K,

⟨F (Y),X − Y⟩ ≥ 0 =⇒ ⟨F (X ),X − Y⟩ ≥ ν∥X − Y∥.

Firstly we prove the following result.

Theorem 3.2. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a tensor mapping. If F is strictly pseudo-monotone on K and there exists
a solution to (2.1), then it is unique.

Proof. Let us suppose that X ̸= X ′ are two distinct solutions to (2.1). It results,
for all Y ∈ K,

⟨F (X ),Y − X⟩ ≥ 0 and ⟨F (X ′),Y − X ′⟩ ≥ 0.

Substituting Y = X ′ into the first inequality and Y = X in the second one, we
deduce

⟨F (X ),X ′ −X⟩ ≥ 0 and ⟨F (X ′),X − X ′⟩ ≥ 0.

By the first inequality and the strict pseudo-monotonicity of F on K, we obtain

⟨F (X ′),X ′ −X⟩ > 0,

which is in contradiction with the second one. Hence the claim is achieved. □

The strict pseudo-monotonicity of F on K is in general not sufficient so that (2.1)
has a solution (see some examples in the vectorial case). It is worth to show the
following necessary and sufficient condition for a pseudo-monotone tensor variational
inequality to have a solution.
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Theorem 3.3. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a continuous tensor mapping. Let us suppose that F is pseudo-monotone
on K. Then the statements (a), (b) and (c) in Proposition 2.10 are equivalent.

Proof. Taking into account Proposition 2.10, it suffices to prove that (c) implies
(a). If (2.1) has a solution, we denote by Xref such a solution. By the pseudo-
monotonicity of F on K, it results

⟨F (Y),Y − Xref ⟩ ≥ 0, ∀Y ∈ K.

As a consequence the set L< is empty. □
The previous characterization allows us to establish the following existence result.

Theorem 3.4. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a strongly pseudo-monotone and continuous tensor mapping. Then (2.1)
has a unique solution.

Proof. Let ν > 0 be the modulus of the strong pseudo-monotonicity of the tensor
mapping F . Let us observe that the statement (a) of Theorem 3.2 implies that (2.1)
cannot have more than one solution.

Now we prove that Sol(K,F ) is nonempty. To this aim, taking into account
Theorem 3.3, it is sufficient to find a tensor Xref ∈ K such that the set L≤ is
bounded. Let us fix the tensor Xref ∈ K. For every X ∈ L≤, it results ⟨F (X ),Xref−
X⟩ ≥ 0. By the strong pseudo-monotonicity of F we deduce

⟨F (Xref ),Xref −X⟩ ≥ ν∥Xref −X∥2.
Thus, by the Cauchy–Schwarz inequality, one has

ν∥Xref −X∥2 ≤ ⟨F (Xref ),Xref −X⟩
≤ ∥F (Xref )∥∥Xref −X∥.

As a consequence, we get

∥Xref −X∥ ≤
∥F (Xref )∥

ν
.

Therefore, we have that L≤ ⊆ B
(
Xref ,

∥F (Xref )∥
ν

)
, where B

(
Xref ,

∥F (Xref )∥
ν

)
is the

closed ball with center Xref and radius
∥F (Xref )∥

ν . For the boundedness of L≤, we
conclude that Sol(K,F ) is nonempty. □

We introduce the recession cone of a nonempty closed convex subset K of R[N,m]

which is the maximal convex cone whose translate in every tensor of K lies in K:

K∞ = {X ∈ K : X0 + αX ∈ K, ∀α ≥ 0, ∀X0 ∈ K},
and the orthogonal complement of K:

K⊥ = {X ∈ K : ⟨X ,Y⟩ = 0, ∀Y ∈ K } .

Theorem 3.5. Let K be a nonempty closed convex subset of R[N,m] and F : K →
R[N,m] be a continuous tensor mapping. Assume that F is pseudo-monotone on K.
The following statements are equivalent:

(a) Sol(K,F ) is convex;
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(b) if there exists a tensor Xref ∈ K such that F (Xref ) ∈ int(K∞)∗ then
Sol(K,F ) is nonempty, convex and compact.

Proof. Let F be a pseudo-monotone tensor mapping on K. We claim that

(3.1) Sol(K,F ) =
∩
Y∈K

{X ∈ K : ⟨F (Y),Y − X⟩ ≥ 0} .

Indeed if X ∈ Sol(K,F ), we have

⟨F (X ),Y − X⟩ ≥ 0, ∀ Y ∈ K.

Making use of the pseudo-monotonicity of F on K, it follows

⟨F (Y),Y − X⟩ ≥ 0, ∀ Y ∈ K.

Consequently X belongs to the right-hand set in (3.1). Vice versa, let us suppose
that X belongs to

∩
Y∈K {X ∈ K : ⟨F (Y),Y − X⟩ ≥ 0}. Let Z ∈ K be arbitrary.

The tensor

Y = τX + (1− τ)Z, ∀ τ ∈ [0, 1],

belongs to K. Hence we obtain

⟨F (τX + (1− τ)Z),Z − X⟩ ≥ 0, ∀τ ∈ (0, 1).

Passing to the limit as τ → 1, we get

⟨F (X ),Z − X⟩ ≥ 0, ∀Z ∈ K,

thus X ∈ Sol(K,F ). Therefore, the identity (3.1) holds. Since for each fixed but
arbitrary Y ∈ K, the set

{X ∈ K : ⟨F (Y),Y − X⟩ ≥ 0}

is convex and the intersection of any number of convex sets is convex, then Sol(K,F )
is convex. Then the statement (a) is achieved.

In order to prove the opposite implication, it suffices to show that if the tensor
Xref exists with the above property, then the set

L≤ = {X ∈ K : ⟨F (X ),X − Xref ⟩ ≤ 0}

is bounded. By the pseudo-monotonicity of F on K, we deduce

(3.2) L≤ ⊆ {X ∈ K : ⟨F (Xref ),Xref −X⟩ ≥ 0}.

The set in the right-hand side is closed and convex. If it is unbounded then it must
have a nonzero recession direction; namely there exists a nonzero tensor V ∈ K∞
such that ⟨F (Xref ),V⟩ ≤ 0. Since F (Xref ) ∈ int(K∞)∗, we obtain that F (Xref ) −
δV ∈ (K∞)∗ for some scalar δ > 0. Hence, it results

0 ≤ ⟨V , F (Xref )− δV⟩ ≤ −δ⟨V ,V⟩ < 0.

Such a contradiction shows that the set on the right-hand side of (3.2) is bounded
and hence L≤ is bounded too. □

Finally, the following result is valid.



ON THE PSEUDO-MONOTONICITY OF TENSOR VI AND APPLICATIONS 1293

Proposition 3.6. Let K be a nonempty convex subset of R[N,m] and F : K →
R[N,m] be a pseudo-monotone tensor mapping. For any two solutions X1 and X2 to
(2.1), it results

(3.3) ⟨F (X1),X1 −X2⟩ = ⟨F (X2),X1 −X2⟩ = 0;

consequently,

(3.4) ⟨F (X1)− F (X2),X1 −X2⟩ = 0

and F (Sol(K,F )) ⊆ (Sol(K,F )∞)⊥.

Proof. Since X1 and X2 are both solutions to (2.1), we deduce

⟨F (X2),X1 −X2⟩ ≥ 0 and ⟨F (X1),X2 −X1⟩ ≥ 0

By using the pseudo-monotonicity of F on K, the previous inequalities imply

⟨F (X1),X1 −X2⟩ ≥ 0 and ⟨F (X2),X2 −X1⟩ ≥ 0,

respectively. As a consequence, the equalities (3.3) hold true. The equality (3.4) is
a trivial consequence of (3.3). Finally, if V ∈ Sol(K,F )∞ and X ∈ Sol(K,F ), then
we have X + V ∈ Sol(K,F ). Then, it results ⟨F (X ),V⟩ = 0, which implies that
F (Sol(K,F )) is a subset of the orthogonal complement of Sol(K,F )∞. □

4. A general supply chain network game theory model with
wage-responsive productivity

In many economic models the labor to supply chain network activities from pro-
duction to distribution plays an important role.

Here we extend the model in [12] introducing two main novelties which are specif-
ically:

• each firm can produce not only one but several different type of commodities;
• in the model proposed by Nagurney in [12] the supply chain network of the
firms had no links in common. In our supply chain network we remove this
constraint, namely it can happen that different firms share storage sites or
distributors.

The novelty of our model is to take into account these possibilities and to derive a
tensor variational formulation of the Nash equilibrium condition.

The supply chain network, we consider, is made up of m firms Fi, i = 1, . . . ,m,
and n demand markets Dj , j = 1, . . . , n, which are generally spatially separated,
as depicted in Figure 1. Each firm Fi produces l different commodities which are
indicated by k = 1, . . . , l. The firms compete in a noncooperative manner, namely
each one seeking to maximize its profit when the optimal distribution pattern of
the others is given. The global supply chain network is made by production links,
transportation links, storage links and distribution links which, as said before, the
firms can share some of them.

Let G = [N,L] be the graph made up of the set of nodes N and the set of links
L. The set of all the paths originating from the firm Fi and ending in a demand
market Dj regarding the commodity k is denoted by P k

ij , the set of all the paths

from the firm Fi for the commodity k is denoted by P k
i , the set of all the paths
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Figure 1. The Supply Chain Network Topology

from the firm Fi is denoted by Pi, while the set of all the paths is denoted by P .
The number of paths in this sets are

|P k
ij | = pkij , |P k

i | = pki , |Pi| = pi, |P | = p,

respectively. Moreover we denote by Lk
i all the links contained in paths belonging

to P k
i , for i = 1, . . . ,m and k = 1, . . . , l, while by L all the links contained in paths

belonging to P and assume that |L| = r.
The product flow of a path p connecting Fi to Dj of a commodity k is denoted

by zkp , p ∈ P k
ij . Every product path flows zkp , with p ∈ P k

ij , for every i = 1, . . . ,m,
j = 1, . . . , n and k = 1, . . . , l, must be nonnegative, i.e.

zkp ≥ 0, ∀p ∈ P k
ij .

Let us consider xkij the total product flow for the commodity k sent from the firm
Fi to the demand market Dj , which is given by

xkij =
∑
p∈Pk

ij

zkp ,

All the firm’s product path flows are grouped in the tensor X = (xkij).
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The flow conservation laws and the equations relating labor on each link to the
product output on the link are presented. To this aim, let dkj be the variable
expressing the demand for the commodity k of the demand market Dj , j = 1, . . . , n,
k = 1, . . . , l. The demand for each product must be satisfied at each demand market.
Consequently the following feasible condition is satisfied:

dkj =

n∑
i=1

xkij =

n∑
i=1

∑
p∈Pk

ij

zp, ∀j = 1, . . . , n, k = 1, . . . , l.

Thus the feasible set is given by

K =

{
X ∈ R[m,n,l] : xkij ≥ 0, ∀i = 1, . . . ,m, ∀j = 1, . . . , n,

∀k = 1, . . . , l,

dkj =

n∑
i=1

xkij , ∀j = 1, . . . , n, k = 1, . . . , l

}
.

Moreover we denote by

• fk
a,i the nonnegative flow of each firm Pi of the commodity k on link a ∈ L;

• lk,fixeda,i the fixed amount of labor on link a ∈ L for the commodity k;

• wk
a,i the wage for a unit of labor on link a ∈ L for the commodity k per hour

the cognizant firm is willing to pay;
• αk

a,iw
k
a,i the productivity factor relating input of labor to output of product

flow on link a ∈ L for the commodity k, where αk
a,i is given and positive and

is refered to as the wage responsiveness productivity factor;
• ĉa the total operational cost associated with link a ∈ L, which may depend
upon the entire link flow pattern, namely ĉa = ĉa(f), f ∈ R[n,r,l];

• ρkj the variable expressing the demand price for unity of the commodity
k associated to the demand market Dj , j = 1, . . . , n, k = 1, . . . , l, which

may depend upon the entire consumption pattern, namely ρkj = ρkj (X ),

X ∈ R[m,n,l].

The link flows of each firm Pi, i = 1, . . . ,m and for every commodity k are related
to the product path flows as follows:

(4.1) fk
a,i =

n∑
j=1

∑
p∈Pk

ij

zkp =
n∑

j=1

xkij , ∀a ∈ Lk
i .

All the link flows f = (fk
a,i) depend on the total product flow X . Moreover we use

the following equation to express that the greater is the value of the wage wa on
link a, the more productive is the labor on the link

(4.2) fk
a,i = αk

a,iw
k
a,il

k,fixed
a,i , ∀a ∈ Lk

i .

Now we introduce the utility function of each firm Pi, i = 1, . . . ,m. The utility
function ui describes the profit of each firm Fi and it is given by the difference
between the income (given by the sum of the incomes for every product) and the
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total operating costs which include fixed costs and all the wages paid for the labor.
Hence, the utility ui is given by

ui =
l∑

k=1

n∑
j=1

ρkj (X )xkij −
l∑

k=1

∑
a∈Lk

i

ĉa(f)−
l∑

k=1

∑
a∈Lk

i

wk
a,il

k,fixed
a,i .

Since the total operating costs depend on the entire pattern X and, due to (4.1)
and (4.2), we have

wk
a,il

k,fixed
a,i =

fk
a,i

αk
a,il

k,fixed
a,i

lk,fixeda,i =

∑n
j=1 x

k
ij

αk
a,i

, ∀a ∈ Lk
i

and then

ui(X ) =

l∑
k=1

n∑
j=1

ρkj (X )xkij −
l∑

k=1

∑
a∈Lk

i

ca(X )−
l∑

k=1

∑
a∈Lk

i

∑n
j=1 x

k
ij

αk
a,i

.

Each firm follows a noncooperative behaviour trying to maximize its own profit
function considering the optimal distribution pattern of the others. Therefore, the
goal of the game is to determine a nonnegative tensor feasible commodity distri-
bution X for which the m firms and the n demand markets will be in a state of
equilibrium according to a general Nash equilibrium principle.

Definition 4.1. A feasible tensor X ∗ ∈ K is a general supply chain network Nash
equilibrium distribution if and only if, for each i = 1, . . . ,m, it results

(4.3) ui(X ∗) ≥ ui(Xi,X ∗
−i),

where X ∗
−i = (X∗

1 , . . . , X
∗
i−1, X

∗
i+1, . . . , X

∗
m) and Xi is a slice of X of dimension nl.

For technical reasons, we assume the following:

a) ui is continuously differentiable, for each i = 1, . . . ,m;
b) ui is pseudoconcave

1 with respect to the variables Xi, for each i = 1, . . . ,m.

Moreover, we indicate with

∇Du =

(
∂ui

∂xkij

)
, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l.

We are able to show the tensor variational formulation of the equilibrium problem.

Theorem 4.2. A tensor X ∗ ∈ K is a general supply chain network Nash equilibrium
distribution if and only if it is a solution to the following tensor variational inequality

⟨−∇Du(X ∗),X − X ∗⟩

= −
m∑
i=1

n∑
j=1

l∑
k=1

∂ui(X ∗)

∂xkij
(xkij − (xkij)

∗) ≥ 0, ∀X ∈ K.(4.4)

1The profit function ui(X ) is pseudoconcave with respect to the variable Xi ∈ Rnl if and only if⟨
∂ui

∂xi
(X1, . . . , Xi, . . . , Xm), Xi − Yi

⟩
≥ 0

⇒ ui(X1, . . . , Xi, . . . , Xm) ≥ ui(X1, . . . , Yi, . . . , Xm).
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Proof. Let us start supposing that X ∗ ∈ K is a solution to (4.4). We prove that it
is a general supply chain network Nash equilibrium distribution. By contradiction,
we suppose that there exists i∗ such that

ui∗(X ∗) < ui∗(Xi∗ ,X ∗
−i∗).

By virtue of the pseudoconcavity of the profit function vi with respect to the variable
Xi ∈ Rnl, for each i = 1, . . . ,m, we deduce

⟨−∇Du(X ∗),X − X ∗⟩ < 0,

which is in contraction with (4.4). The opposite implication follows easily. □

Observing that the feasible set K is a nonempty closed convex subset of R[m,n,l]

and taking into account Theorem 3.4, the existence of a unique general supply
chain network Nash equilibrium distribution is guaranteed assuming that the profit
function u is strongly pseudo-monotone and continuous.

5. Numerical example

Let us now consider an economic supply chain network consisting of two firms
and two demand markets. Each firm produces two different kind of commodities.
The scheme of the production/storage/distribution network is depicted in Figure 2
(precisely dashed and continuous lines depict the two kinds of commodities): the
firms share the storage center for the first kind of commodity and the production
sites for the second kind of commodity and sell their products at two demand
markets.

The total operational link cost functions are:

ca1(X ) = (x111)
2

ca2(X ) = 1
2(x

1
12)

2,
cb1(X ) = 2x211 − x222 + 2x112,
cb2(X ) = 3

4(x
1
21)

2 + x122x
1
21 − 2x112x

2
22 + x122x

1
12 + 3x222,

cc1(X ) = (x211)
2,

cc2(X ) = x222,
cd1(X ) = x121x

1
22 +

1
2(x

2
21)

2 + 1
2x

2
11x

2
21 +

1
2x

1
22,

cd2(X ) = (x112)
2,

ce1(X ) = (x121)
2 + 2(x222)

2 − 2x212x
2
22 + 2x112x

2
22,

ce2(X ) = x211 − (x212)
2,

cf1(X ) = 2x112x
2
12 − 1

2(x
2
12)

2.

The demand price functions are:

ρ11(X ) = x111 + x121 − 1,
ρ21(X ) = 1

2x
2
11 + x221 + 3,

ρ12(X ) = x112 + x122,
ρ22(X ) = 2x212 + x222 + 1.
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The αk
a,i parameters, for a ∈ L are as follows

α1
a1,1

= 3, α2
a1,1

= 5, α1
b2,2

= 15/2, α2
b2,2

= 2,

α1
b1,1

= 10, α2
b1,1

= 5, α1
d1,2

= 10, α2
d1,2

= 8,

α1
a2,1

= 3/2, α2
a2,1

= 10, α1
c2,2

= 20, α2
c2,2

= 8,
α1
c2,1

= 10, α2
c2,1

= 5, α1
e1,2

= 60, α2
e1,2

= 4,
α1
c1,1

= 10, α2
c1,1

= 5/2, α1
d2,2

= 20, α2
d2,2

= 4,

α1
f1,1

= 3, α2
f1,1

= 10/3, α1
e2,2

= 15, α2
e2,2

= 1,

α1
d2,1

= 10, α2
d2,1

= 5/2, α1
c1,2

= 20, α2
c1,2

= 2,

α1
e2,1

= 3, α2
e2,1

= 5, α1
f1,2

= 30, α2
f1,2

= 4.

The paths in this exam-
ple are

p1 = (a1, b1, c1),
p2 = (a1, b1, f1),
p3 = (d1, e1, c1),
p4 = (d1, e1, f1),
p5 = (a2, c2, d2),
p6 = (a2, c2, e2),
p7 = (b2, c2, d2),
p8 = (b2, c2, e2).

Figure 2. The Supply Chain Network
Example.

So the utility functions become

u1(X ) = x111x
1
21 − 2x111 −

1

2
(x112)

2 + x112x
1
22 − 3x112 −

1

2
(x211)

2

+x211x
2
21 − 2x211 +

3

2
(x212)

2 + x212x
2
22 − x212,

u2(X ) = x111x
1
21 −

3

4
(x121)

2 − x121x
1
22 −

3

2
x121 + (x122)

2 − x122x
1
21

+
1

2
(x221)

2 − x221 + 2x212x
2
22 − (x222)

2.
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Therefore ∇Du is given by

∂v1
x111

(X ) = x121 − 2,
∂v2
x121

(X ) = x111 − 3
2x

1
21 − x122 − 3

2 ,

∂v1
x112

(X ) = −x112 + x122 − 3,
∂v2
x122

(X ) = 2x122 − x121,

∂v1
x211

(X ) = −x211 + x221 − 2,
∂v2
x221

(X ) = x221 − 1,

∂v1
x212

(X ) = 3x212 + x222 − 1,
∂v2
x222

(X ) = 2x212 − 2x222.

Taking into account Theorem 4.2, the general supply chain network Nash equi-
librium distribution is a solution to the following tensor variational inequality

⟨−∇Dv(X ∗),X − X ∗⟩ = −
2∑

i=1

2∑
j=1

2∑
k=1

∂vi(X ∗)

∂xkij
(xkij − (xkij)

∗) ≥ 0, ∀X ∈ K.

Making use of Corollary 2.1 in [6], the numerical equilibrium distribution can be
found solving the following system

−∇Dv(X ) = 0R[2,2,2]

and verifying that its solution belongs to the interior of the feasible set K. Thus it
results

X ∗
1 =

(
11
2 1
2 1

4

)
, X ∗

2 =

(
2 1
1 1

4

)
.
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